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A b s t r a c t .  W ord em beddings can encode sem antic features and  have 
achieved m any recent successes in solving NLP tasks. A lthough word 
em beddings have high success on several downstream  tasks, there is no 
trivial approach to  extract lexical inform ation from them . We propose a 
transform ation th a t amplifies desired semantic features in the basis of the 
embedding space. We generate these semantic features by a distant super
vised approach, to  make them  applicable for Hungarian embedding spaces. 
We propose the Hellinger distance in order to  perform a transform ation to 
an  interpretable embedding space. Furtherm ore, we extend our research 
to  sparse word representations as well, since sparse representations are 
considered to  be highly interpretable.
K e y w o rd s : In terpretability , Sem antic Transform ation, W ord Em bed
dings

1 Introduction

Continuous vectorial word representations are routinely employed as the inputs 
of various NLP models such as named entity recognition (Seok et al., 2016), 
part of speech tagging (Abka, 2016), question answering (Shen et ah, 2015), text 
summarization (Mohd et ah, 2020), dialog systems (Forgues et ah, 2014) and 
machine translation (Zou et ah, 2013).

Static word representations acquire their lexical knowledge from local or global 
contexts. GloVe (Pennington et ah, 2014a) uses global co-occurrence statistics 
to determine a word’s representation in the continuous space, whereas Mikolov 
et ah (2013) proposed a predictive model for predicting target words from their 
contexts. Furthermore, Bojanowski et al. (2017) presented a training technique 
of word representations where sub-word information is in the form of character 
n —grams are also considered. The outputs of these word embedding algorithms 
are able to encode semantic relations between words (Pennington et ah, 2014a; 
Nugaliyadde et ah, 2019). This can be present on word-level -  such as similarity 
in meaning, word analogy, antonymie relation -  or word embeddings can be 
utilized to produce sentence-level embeddings, which shows tha t word vectors 
still carry intra-sentence information (Kenter and de Rijke, 2015).

Despite the successes of word embeddings on semantics related tasks, we have 
no direct knowledge of the human-interpretable information contents of dense
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dimensions. Utilizing human-interpretable features as prior information could 
lead to performance gain in various NLP tasks. Identifying and understanding 
the dense representation in each dimension can be cumbersome for humans. To 
alleviate this problem, we propose a transformation where we map existing word 
representations into a more interpretable space, where each dimension is supposed 
to be responsible for encoding semantic information from a predefined set of 
semantic inventory. There are various ways to form groups of semantic classes 
by forming semantically coherent groups of words. In this work, we shall rely on 
ConceptNet (Speer et al., 2016) to do so.

We measure the information contents of each dimension in the original em
bedding space towards a predefined set of human interpretable concepts. Our 
approach is inspired by §enel et al. (2018) which utilized the Bhattacharyya 
distance for the aforementioned purpose. In this work, we also evaluate a close 
variant of the Bhattacharyya distance, the Hellinger distance for transform
ing word representations in a way tha t the individual dimensions have a more 
transparent interpretation.

Feature norming studies have revealed that humans usually tend to describe 
the properties of objects and concepts with a limited number of sparse features 
(McRae et al., 2005). This kind of sparse representation became a major part of 
natural language processing since we can see the resemblance between sparse fea
tures and human feature descriptions. Hence, we additionally explore the effects 
of applying sparse word representations as an input to our algorithm which makes 
the semantic information stored along the individual dimensions more explicit. We 
published our work on GitHub for interpretable word vector generation: h t t p s : / /  
g ithub .com /ficstam as/w ord_em bedd ing_ in terp re tab ility , and shared the 
code for semantic category generation as well, alongside with the used se
mantic categories: h ttp s ://g ith u b .c o m /fic s ta m a s/m u ltilin g u a l_ se m a n tic _  
ca teg o rie s .

2 R elated Work

Turian et al. (2010) was one of the first providing a comparison of several word 
embedding methods and showed that incorporating them into established NLP 
pipelines can also boost their performance. word2vec (Mikolov et al., 2013), GloVe 
(Pennington et al., 2014b) and Fasttext (Bojanowski et al., 2017) methods are well 
known models for obtaining context-insensitive (or static) word representations. 
These methods generate static word vectors, i.e. every word form gets assigned a 
single vector that applies to all of its occurrences and senses.

The intuition behind sparse vectors is related to the way humans interpret 
features, which was shown in various feature norming studies (Garrard et al., 2001; 
McRae et al., 2005). Additionally, generating sparse features (Kazama and Tsujii, 
2003; Friedman et al., 2008; Mairal et al., 2009) has proved to be useful in several 
areas of NLP, including POS tagging (Ganchev et al., 2010), text classification 
(Yogatama and Smith, 2014) and dependency parsing (Martins et al., 2011). 
Berend (2017) also showed that sparse representations can outperform their
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Ours Sem Cat HyperLex

Num ber of Categories 91 110 1399
Num ber of Unique Words 2760 6559 1752

Average W ord Count per Category 68 91 2
Standard  Deviation of W ord Counts 52 56 3

Table 1. Basic statistics about the semantic categories.

dense counterparts in certain NLP tasks, such as NER, or POS tagging. Murphy 
et al. (2012) proposed Non-Negative Sparse Embedding to learn interpretable 
sparse word vectors, Park et al. (2017) showed a rotation based method and 
Subramanian et al. (2017) suggested an approach using a denoising k-sparse 
auto-encoder to generate interpretable sparse word representations. Balogh et al. 
(2019) made prior research about the semantic overlap of the generated vectors 
with a human commonsense knowledgebase and found that substantial semantic 
content is captured by the bases of sparse embedding space.

§enel et al. (2018) showed a method where they measured the interpretability 
of the dense GloVe embedding space, and later showed a method to manipulate 
and improve the interpretability of a given static word representation (§enel 
et al., 2020).

Our proposed approach also relates to the application of the Hellinger distance, 
which has been used in NLP for constructing word embeddings Lebret and 
Collobert (2014). Note that the way we apply the Hellinger distance differs from 
prior work in tha t we use it for amplifying the interpretability of contextual 
word representations, whereas the Hellinger distance served as the basis for 
constructing (static) embeddings in earlier work.

3 D ata

3.1 Sem antic Categories

Amplifying and understanding the semantic contents from word embedding spaces 
is the main objective of this study. To provide meaningful interpretation to each 
dimension, we rely on the base concept of distributional semantics (Harris, 1954; 
Boleda, 2020). In order to investigate the underlying semantic properties of word 
embeddings, we have to define some kind of semantic categories tha t represent 
the semantic properties of words. These semantic properties can represent any 
arbitrary relation which makes sense from a human perspective, for example, 
words such as "red", "green", and "yellow" can be grouped under the "color" 
semantic category which represents a hypernym-hyponym relation, but they 
can be found among "traffic" related terms as well. Another example is "car" 
semantic category which is in meronymy relation with words such as "engine ", 
"wheels" and "crankcase".

Previous similar linguistic resources that contain semantic categorization of 
words include HyperLex (Veronis, 2004) and SemCat (§enel et al., 2018). A
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Fig. 1. Generation of semantic categories with the help of allowed relations from 
ConceptNet, where the Query represents the root concept, and w denotes the 
weight of the relation.

major problem with them from the standpoint of applicability is tha t these 
datasets are restricted to English, so they can not be utilized in multilingual 
scenarios. From an informational standpoint, HyperLex with a low average and 
standard deviation category sizes also raises concerns. In order to extend it to the 
Hungarian language as well, we used the semantic category names from SemCat 
and defined relations on a category-by-category base manually. We relied on a 
subset of relations from ConceptNet (Speer et al., 2016). To obtain higher quality 
semantic categories, we introduced an intermediate language tha t works as a 
validation to reduce undesired translations. The whole process can be followed in 
Figure 1.

First, we generate the semantic categories from the source language by the 
allowed relations and restricted the inclusion of words by the weight of the relation. 
Semantic category names from SemCat were used as the input (Query) and the 
weight of each relation is originated from ConceptNet. Then we translate the 
semantic categories to the target language directly and through the intermediate 
language to the target language, where we kept the intersection of the two results. 
It is recommended to rely on one of the core languages defined in ConceptNet as 
Source and Intermediate language. Using ConceptNet for inducing the semantic 
categories for our experiments makes it easy to extend our experiments later for 
additional languages beyond Hungarian. We present some basic statistics about 
the mentioned semantic categories in Table 1. This kind of distant supervised 
generation (Mintz et al., 2009) can produce large number of data easily but it 
carries the possibility that the generated data is noisy.

3.2 W ord  E m bedd ings

We conducted our experiments on 3 embedding spaces trained using the Fast- 
text algorithm (Bojanowski et al., 2017). The 3 embedding spaces tha t we 
relied on were the Hungarian Fasttext (Fasttext HU) embeddings pre-trained on
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Wikipedia3, its aligned variant4 (Fasttext Aligned) th a t was created using the 
RCSLS criteria (Joulin et al., 2018) with the objective to bring Hungarian em
beddings closer to semantically similar English embeddings and the Szeged Word 
Vectors (Szeged WV) (Szántó et al., 2017) which is based on the concatenation 
of multiple Hungarian corpora.

We limited the word embeddings to their 50,000 most frequent tokens and 
evaluated every experiment with this subset of all vectors. The vocabulary of 
the Fasttext HU and Fasttext Aligned embeddings are identical, however, it 
is important to emphasize tha t the Szeged WV overlap with the vocabulary 
of these embedding spaces on less than half of the word forms, i.e. 22,112 
words. Furthermore, Szeged WV uses a cased vocabulary, unlike the Fasttext 
embeddings. In the case of Fasttext, the vocabulary of the embedding and our 
semantic categories overlaps in 1848 unique words. For the Szeged WV, it only 
overlaps with 1595 unique words.

Our approach can evaluate other embedding types as well. So due to the 
fact tha t sparse embeddings are deemed to be more interpretable compared to 
their dense counterparts, we also produced sparse static word representations by 
applying dictionary learning for sparse coding (Mairal et al., 2009) (DLSC) on 
the dense representation. For obtaining the sparse word representations of dense 
static embedding space £, we solved the optimization problem

ol,D  Z

that is, our goal is to decompose Í  e  R',x<i into the product of a dictionary matrix 
D  £ Mkxd and a matrix of sparse coefficients a  £ Rvxk with a sparsity-inducing 
t \  penalty on the elements of a. Furthermore, v denotes the size of the vocabulary, 
d represents the dimensionality of the original embedding space, and k is the 
number of basis vectors.

We obtained different sparse embedding space by modifying the hyperparam
eters of the algorithm. So we evaluated it with A £ {0.05,0.1,0.2} regularization 
and k £  {1000,1500,2000} basis vectors.

4 Our Approach

4.1 Sem antic D ecom position

The foundation of our approach is to measure the encoding of semantic information 
in the basis of pre-trained static word embeddings. In order to  quantify the 
semantic information, we have to observe the joint behavior of similarities in 
semantic distributions. This approach is feasible due to distributional semantics 
(Boleda, 2020), which states th a t similarity in meaning results in similarity in 
linguistic distribution (Harris, 1954). This behavior can be observed from the

3 h ttps://dl.fbaipublicfiles.com /fasttex t/ vectors-wiki/w iki.hu.vec
4 h ttps://dl.fbaipublicfiles.com /fasttex t/ vectors-aligned/w iki.hu.align.vec
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fact that static word representations are trained on co-occurrence information of 
word tokens. So if we are able to measure the dissimilarity between a distribution 
th a t represents a semantic information and the distribution of space (which is 
the complementary distribution of semantic information) then we can give a 
transformation that is going to explicitly express the semantic categories in each 
dimension.

In other words, the coefficients of a dimension form a distribution K g M’'. 
The desired semantic information we try  to express is denoted as V  Ç 1Z. For 
example, V  describes the "wave " semantic information, then words related to 
th a t term should occur in a similar context, such as "rising", "golden", or 
"lacy" in waves". So by expressing how far this distribution is from the 
distribution of a dimension, then we can see how significant is the dimension 
about the semantic information. The certainty of such a dimension about the 
desired semantic information can be formulated as D(V, V).  If this distance is 
low then it means that the information gain would be really low because the two 
distributions are nearly homogeneous. Analogously, if the distance is high then 
we can rely on that dimension with higher certainty. So the distance expresses 
the certainty we have in each dimension about the semantic information.

In order to express the certainty in a dimension, first, we have to separate the 
coefficients in a dimension to represent the previously defined distributions. As a 
reminder, we denoted the embedding space with £, then we denote the defined 
semantic categories as S.  So we can define function /  : x  —> £  which returns the 
representation of word token x, and function S  : x  —»• S  which maps word token 
x  to its corresponding semantic category. Then we can separate the coefficients 
along the zth dimension and j th  semantic category as

Pa = {  I f ( x )  e £, S(x) e S &  }

and similarly
Qij = { m ii) \f(x)e£, S(x) i SM},

where Pij represents the distribution of a particular semantic category in a 
dimension (in-category words) and Qij (=  PLj)  represents the distribution of the 
rest of the dimension (out-of-category words).

4.2 M easuring dissim ilarity

To measure the dissimilarity, hence observe the certainty of semantic categories 
in each dimension we define two distances. We apply Bhattacharyya distance 
as a baseline from §enel et al. (2018) and Hellinger distance as an alternative 
improvement. Both distances can be expressed by Bhattacharrya coefficient (or 
fidelity coefficient) as

OO _____________ / O O '_____________

D b (p , q) =  -  In /  y/p(x)q(x) dx D H(p,q) =  J l -  /  y/p(x)q(x) dx,
—oo y —oo

where the integrand expresses the fidelity coefficient.The important differences 
between the two types of distances are that
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— Hellinger distance is a bounded metric that eases the interpretation of values 
when the fidelity is close to 0,

— Hellinger distance accumulates small distributional differences better which 
means if the fidelity is close to 1, it can still enhance potentially significant 
information.

To maintain consistency, comparability and a baseline, we define Bhat- 
tacharyya distance as §enel et al. (2018), and Hellinger distance by their closed 
forms which assumes normality of the investigated distributions. Under the 
normality assumption, the Bhattacharyya distance can be expressed as

Qi,j)
1
4

i 1 (  (Mp Mg)
4 l al + a\ (1)

and Hellinger distance can be formulated as

N

/ Orr a  i (m p - m 9)2

V (2)

where a denotes the standard deviation and g  denotes the mean of Pij  and 
Q ij  respectively, assuming that Pij  ~  M(ap, gp) and Q ij  ~  A/"(erg, g q). We then 
define W n  6 l5 l that contains the distances of semantic category-dimension 
pairs, i.e. W o i h j )  =  D(Pij,Qij),  with D  denoting either of the Bhattacharyya 
or Hellinger distances.

4.3 Interpretable Word Vector G eneration

In order to obtain interpretable word vectors, we have to first refine the quality 
of transformation. It is highly possible tha t our semantic category dataset is 
imbalanced and/or during the pre-training process we do not have enough 
information about a word token. So we should reduce the bias of dominant 
semantic categories which can be obtained by performing i \  normalization on 
W d in such a manner that the values corresponding to each semantic category 
sum up to 1. We shall denote the transformation matrix that we derive in such a 
manner as W n d -

Another problem which occurs in embedding spaces is tha t semantic infor
mation can be encoded in both positive and negative direction relative to the 
mean, hence we should adjust the orientation of these vectors in certain bases in 
order to couple semantic categories in their corresponding bases and segregate 
them from others in other bases. We determine the directions from the sign of 
difference between the mean of the original distributions, thus we can obtain 
W n s d  as

W v s x > ( b j )  =  sign(Aij) ■ W ^ d (í J ) ,
where Aij = fiPij — [iqij and sign is the signum function.

We also standardize £  in order to avoid multicollinear issues, thus we can 
yield higher quality word vectors. We denote the standardized embedding space
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by £s- As a final step, we obtain our interpretable representations X  G R ^ 5 ! as 
the product of £s  and W n s d -

5 Evaluation m ethods

5.1 W ord Retrieval Test

We are concerned about the accuracy of our model, to know how well it behaves 
on unknown data. In W-d we can see the semantic distribution of the dimensions 
and in X  each column should represent a semantic category. So each dimension 
in X  should ideally represent a semantic category from the semantic categories.

In order to measure the semantic quality of X, we used 60% of the words 
from each semantic category for training and 40% for evaluation. By relying 
on the training set, we calculate the distance m atrix Wp from the embedding 
space, using any arbitrary distance we defined earlier. We also experiment with a 
pruned version of Wp by keeping the highest /C coefficients for each semantic 
category and setting the rest to 0, and denoting it as We do that, so we can 
inspect the importance of the strongest encoding dimensions. Then by employing 
Wp instead of W p, we do everything in the same way as we defined earlier.

We use the validation set and see whether the words of a semantic category 
are seen among the top n, 3n  or 5n words in the corresponding dimension in 
X s , where n  is the number of the words in the validation set varying across the 
semantic categories. The final accuracy is calculated as the weighted mean of the 
accuracy of the dimensions, where the weight is the number of words in each 
category for the corresponding dimension.

5.2 Interpretability

In order to measure the interpretability of the semantic space, we use a functionally- 
grounded evaluation method (Doshi-Velez and Kim, 2017), which means it does 
not involve humans in the process of quantification. Furthermore, we use contin
uous values to express the level of interpretability (Murdoch et al., 2019).

The metric we rely on is an adaptation of the one proposed in (§enel et al., 
2018). We ought to have a metric tha t is independent from the dimensionality 
of the embedding space, so models with different number of dimensions can be 
compared more meaningfully.

I S +  = I'Sj □ Vj^iP x  rij)\ I S _ = \ S j n y r ( ( 3  X nj)|

l’j rij '  l,j rij '  '
Eqn. (3) and (4) define the interpretability score for the positive and nega

tive directions, respectively. In both equation i represents the dimension (i G 
{ 1 ,2 ,3 ,... ,  ci}, where d is the number of dimensions of the embedding space) 
and j  the semantic categories (j G { 1 ,2 ,3 ,... ,  c}, where c is the number of the 
semantic categories). Sj  represents the set of words belonging to the j th  semantic 
category, rij the number of words in tha t semantic category. I7+ and V~  gives 
us the top and bottom  words selected by the magnitude of their coordinates
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0
Hellinger 

1 5 10
B hattacharyya 
1 5 10

Fasttex t HU 
Fasttex t Aligned 

Szeged W V

22.00 38.43 46.87 
26.81 43.71 51.26
16.34 31.71 40.04

21.29 38.80 47.01 
25.92 43.45 51.22
15.69 31.50 39.91

T able  2. Interpretability of Hungarian Fasttext, Aligned Fasttext and Szeged 
WV with different ¡3 relaxation and applied distance.

respectively along the ith  dimension. /3 x rij is the number of words selected 
from the top and bottom  words, hence (3 £ N+ is the relaxation coefficient, as 
it controls how strict we measure the interpretability. As the interpretability of 
a dimension-category pair, we take the maximum of the positive and negative 
direction according to

I S i j  = max {IS+j J S ^ }  . (5)

Once we have the overall interpretability (IS i j ) ,  we calculate the categorical 
interpretability according to Eqn. (6). §enel et al. (2018) took a different approach 
of taking the average of the maximum values over all the categories, however, 
this could easily overestimate the true interpretability of the embedding space.

In order to avoid the overestimation of the interpretability of the embedding 
space, we calculate Eqn. (6), where we have a condition on the selected i dimension 
which is defined by Eqn. (7). It chooses the highest encoding dimension according 
to Wd (distance m atrix of the examined space) which ensures th a t we obtain 
the interpretability score from the most likely encoding dimension. This method 
is more suitable to obtain the interpretability scores, because it relies on the 
distribution of the semantic categories, instead of the interpretability score equally 
sampled from each dimension.

IS j  = ISi* j  x 100 (6) i* = arg max Wp {i , j )  (7)
%

Finally, we define the overall interpretability of the embedding space by 
taking the average of the interpretability scores across the semantic categories, 
I S  = \  YTj=i IS ji  where c is the number of categories.

6 Results

6.1 D ense Representations

We transformed all 3 embedding spaces to their interpretable representations and 
measured the effectiveness of the encoding by the interpretability score which 
can be seen in Table 2. Furthermore, we measured the generalisability of the 
transformation with word retrieval test which is presented in Figure 2. These 
types of evaluations are better observed jointly because they represent a different 
aspect of the embedding space but we can not make any conclusion without each 
other.
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Fasttext HU Fasttext Aligned Szeged

Fig. 2. The results of word retrieval tests with a relaxed size of retrieved words, 
where the dimensions represent the K, kept coefficient from W d -

Fasttex t HU 
A 0.05 0.1 0.2

Fasttex t Aligned 
0.05 0.1 0.2

Szeged W V 
0.05 0.1 0.2

Hellinger distance
k  =  1000 58.11 43.21 19.33 
k  =  1500 64.49 49.24 23.82 
k  =  2000 68.29 52.53 26.98

60.13 47.58 24.25 
65.50 52.20 28.44 

68.79 57.05 30.63

58.88 53.85 33.82 
65.03 60.94 38.14 

67.65 64.08 42.22
B hattacharyya distance

fc =  1000 53.20 33.98 18.72 
k  =  1500 57.77 36.33 21.59 
k  =  2000 60.82 39.03 24.43

55.54 37.88 22.08 
59.91 39.54 24.61 

62.99 42.26 26.43

56.13 45.52 27.79 
62.85 50.53 30.77 

64.45 52.18 33.12

Table 3. The effects of relying on sparse static word representation with different 
hyperparameters for regularization coefficient (A) and number of basis vectors 
(k ). Interpretability scores represented at /3 =  1 relaxation.

We can immediately spot the dominant performance on both evaluation 
methods by the aligned Fasttext word vectors. It can indicate th a t either the 
alignment could carry extra semantic knowledge or the English Wikipedia corpus 
is a higher quality. Szeged WV seems to be the worst-performing model according 
to interpretability, but it is not necessarily the case because it has a third of the 
number of dimensions than the Fasttext models, and differ in overlap of words in 
the vocabulary. In Figure 2 we can also see tha t it has just enough dimensions 
(maybe it could utilize a little bit more). This can be seen by observing the 
accuracy of the embedding spaces. The accuracy has not peaked before relying on 
all 100 of the dimensions, unlike Fasttext HU which peaks between 150 and 250 
dimensions. Furthermore, it does not have a plateau-like effect where we yield 
little to no improvement. But these observations only apply from the standpoint 
of our semantic categories, not in a general manner.
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Fasttext HU Fasttext Aligned Szeged

6.2 Sparse R epresentations

If we closely inspect Eqn. (1) and (2), we can see that division errors occur when 
ap or aq equals 0. When the standard deviation for P  or Q would be 0, we replace 
it by VlO-5 instead.

We evaluated our experiments with different hyperparameters for sparse vector 
generation as we can see in Table 3 when using the ¡3 = 1 relaxation. We can 
conclude that increasing the level of sparsity does not benefit the interpretability. 
On the other hand, changing the number of basis vectors has a beneficial impact. 
We can see that sparse representation amplifies the semantic information on each 
basis, since the interpretability of these embedding spaces improved by 2-3 times.

Figure 3 demonstrates the results of the word retrieval test when using sparse 
representations obtained when setting A =  0.05 and k = 2000. We can see that 
the generalisability of the model is decreased overall, and we should rely on more 
/C none zero coefficients to extract the semantic information. This could be the 
cause of high level of noise is present in our semantic categories.

6.3 Sem antic D ecom position

We can see the semantic decomposition of the word "ember" on Figure 4. In 
the first row, we represent the dense and in the second we represent the sparse 
embedding spaces. We expect tha t in this case for the "ember" word, semantic 
categories that contain this word are among the highest coefficients. We can see 
that, after we obtained the sparse representations for Fasttext, and transformed 
them the semantic decomposition shows an identical representation even though 
their scores are different.

7 Conclusion

We evaluated the transformation of non-contextual embedding spaces into a more 
interpretable one, which can be used to analyze the semantic distribution which 
can have a potential application in knowledge base completion. We investigated
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Semantic decomposition of word "ember"

Fig. 4. Semantic decomposition of the word "ember". First row shows the de
composition of dense embedding spaces and the second represents the sparse 
embedding spaces (k = 2000, A =  0.05). On the y axis we represent the semantic 
categories and on the x  axis we show the corresponding weights of the word. Red 
bars represents that if the word is in the semantic category.

the interpretability of the Hungarian Fasttext, Hungarian Aligned Fasttext, and 
Szeged WV models as source embeddings, where we concluded that all of them 
are capable to express the anticipated semantic information contents and that the 
aligned word vectors performed above all. Furthermore, we proposed a modified 
version of the interpretability score, which let us compare the interpretability 
of embedding spaces with different dimensionality and consider errors from the 
transformation.

We also considered the utilization of the Hellinger distance instead of Bhat- 
tacharyya distance which improved the interpretability scores. Furthermore, we 
explored the behavior of sparse representations. As for the hyperparameter se
lection, we can conclude that we want to increase the number of the basis, and 
decrease the sparsity level in order to improve the performance.

However, if we consider sparse representations the generalisability of the 
embedding may decrease, but it might be a joint factor of the distant supervised 
generation of Hungarian semantic categories and random selection of validation 
test sets. If our semantic categories contain too much noise then it could ac
cumulate th a t noise during the transformation which is indicated by the high 
interpretability score, and a lower score on the word retrieval test (which can 
represent a distinct distribution from the original distribution of the semantic 
category).
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