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Abstract: The monitoring and analysis of human motion can provide valuable information for various 

applications. This work gives a comprehensive overview about existing methods, and a prototype system is also 

presented, capable of detecting different human arm and body movements using wrist-mounted wireless sensors. 

The wireless units are equipped with three tri-axial sensors, an accelerometer, a gyroscope, and a magnetometer.  

Data acquisition was done for multiple activities with the help of the used prototype system. A new online 

classification algorithm was developed, which enables easy implementation on the used hardware. To explore 

the optimal configuration, multiple datasets were tested using different feature extraction approaches, sampling 

frequencies, processing window widths, and used sensor combinations. The applied datasets were constructed 

using data collected with the help of multiple subjects. Results show that nearly 100% recognition rate can be 

achieved on training data, while almost 90% can be reached on validation data, which were not utilized during 

the training classifiers. This shows high correlation in the movements of different persons, since the training and 

validation datasets were constructed of data from different subjects. 

 

Keywords: activity recognition, wearable sensors, feature extraction, time-domain analysis, dimension reduction 

1 Introduction 

The analysis and real-time monitoring of human body motion is a widely-studied field of industrial, 

entertainment, health, and medical applications (Cornacchia et al. 2017). Such systems can be used for robot 

control, human-computer interaction, assisted living, gaming, fall detection, epileptic seizure detection, 

telerehabilitation, analysis of daily activities, emergency detection, health monitoring, or even human worker 

activity recognition in industrial environments.  

Human motion can be split into two basic categories, activities and movements. Movements typically last for 

several milliseconds or seconds, while an activity comprises of different movements, and can last for even 

minutes or hours (Varkey et al. 2012). For example, a “walking” activity contains several short physical leg 

movements. But more complex activities can also be defined, such as “cooking”, which is composed of multiple 

shorter activities in a specific sequence, like “walking”, “arm raising”, “standing”, etc. 

Sensor-based motion recognition integrates the emerging area of sensor networks with machine learning 

techniques. Inertial and magnetic sensors are widely used in wearable devices for motion recognition, due to 

their small size, low cost, and small energy consumption. These wearable devices applied to human bodies form 

Wireless Body Sensor Networks (WBSNs) (Alemdar and Ersoy 2010). Another option for human motion 

monitoring can be the use of Personal Area Networks (PANs), which are composed of environmental sensors, 

like Radio-Frequency Identification (RFID) readers, video cameras, or sound, pressure, temperature, luminosity, 

and humidity sensors. The vision-based activity recognition systems are the most popular types of PANs. One of 

the main advantages of body sensor networks to systems using cameras with fix places is that they support 

persistent monitoring of a subject during daily activities both in indoor and outdoor environments. The vision-

based systems are also influenced by environmental factors, such as lighting conditions, and they incur a 

significant amount of computational cost.  

Due to the difficult implementation of signal processing algorithms on resource constrained wireless nodes, 

the design of WBSN-based applications is a very complex task (Aiello et al. 2011; Gravina et al. 2017). Efficient 

implementation of WBSN applications requires appropriate usage of energy, memory, and processing. These 

systems must meet computational and storage requirements. They should also be wearable, which affects the 

possible usable battery size and therefore its duration. This is a challenging task, because these applications 

usually require high sampling rates of the sensors, real-time data processing, and high transmission capabilities. 

The goal of this research was to develop a wearable wireless system which does not disturb the user in free 

movement, and which can efficiently recognize basic body and arm movements using an online classification 

algorithm. It was also important to explore different setups to minimize the cost, the energy consumption, and 

the memory requirements, besides maximizing the classification efficiency.  

In the study, a prototype system is proposed which uses 9DoF sensor boards mounted on Wireless Sensor 

Network (WSN) motes, which were attached to the wrists of the subjects. The developed system was used to 

record measurements for multiple activities. The proposed system does not require any additional server for the 

processing of the data, and it is also suitable for the logging of the activities.  

Related works (described in Sect. 2) mainly do not deal with the implementability of the algorithms on the 

used hardware, or use a centralized server to do the necessary computation. The use of processing servers can 
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cause several disadvantages. First, the communication in the network is very costly due to the high sampling 

frequencies of the sensors, and secondly, since the subjects are moving, they can get out of the range of the 

server if its place is fixed. Some works implement their algorithm on a smartphone, but the performance of these 

systems can be affected by the varying placement of the units, or their use during the operation of the algorithm. 

Based on the above considerations, it was reasonable to develop an online method, and to examine the hardware 

implementability of different classification algorithms. Linear discriminant analysis (LDA)-based dimension 

reduction was also tested to investigate its effect on the tested classification methods in the meaning of 

recognition efficiency, memory consumption, and training time. 

Since related studies mainly consider complex activities or use more than 1-2 seconds of data for 

classification of motions, it was necessary to investigate the barriers in the performance when decreasing the 

processing window width. Related works which utilize multiple sensor types also do not consider the effect of 

different sensor types on classification efficiency. To find the optimal setup, multiple classification methods 

were investigated for various datasets, which were generated based on different sampling frequencies, processing 

window widths, feature extraction modes, and used sensor types. The extraction and reduction of feature vectors 

were also tested in multiple ways. The features were computed utilizing the sensor axes separately and using the 

magnitude. To reduce the required computation, only time-domain analysis was performed during feature 

extraction. An aggregation-based feature reduction method is also proposed in this study, which can help the 

system to be less sensitive to differences in orientations of the sensors on the arms.  

In this study, the data from the two wrists are used together for classification. An initial investigation was 

presented previously (Sarcevic et al. 2015a). A hierarchical-distributed approach was also tested with the 

collected data (Sarcevic et al. 2015b), where the movement class was determined for each arm separately, and 

one of the units combined the two classes to get the movement type of the entire body and arms. The approach 

reduces the energy consumption, since it needs less communication between the units, but the results showed 

that the recognition efficiency is lower than when data from the two sensor boards are used together in the 

classification process. 

The rest of the paper is organized as follows. Sect. 2 introduces related work, Sect. 3 presents the prototype 

measurement system, the defined activities, and the data acquisition. The proposed classification algorithm, 

including the used time-domain features (TDFs), the dimension reduction method, and the tested classification 

methods, is described in Sect. 4. The experimental results and the comparison of the tested classifiers and 

different setups are discussed in Sect. 5, while Sect. 6 summarizes the results of the paper. 

2 Related work 

In the research of using inertial and magnetic sensors in human movement recognition systems, various types 

and positions of the sensors, and methods for recognition were tested for different applications (Ghasemzadeh et 

al. 2013). Classification is typically done in a two-stage process. First, features are derived from windows of 

sensor data. A classifier is then used to identify the motion corresponding to each separate window of data. 

Table 1 summarizes the applied activity classes, sensor types and their placements, feature extraction modes, 

processing window widths, sampling frequencies, classification methods, and achieved accuracies in relevant 

works. The used abbreviations are described in the following subsections. 

 

Table 1 Summary of relevant works 

Related work Activity 

classes 

Sensors and 

placement 

Feature 

extraction 

Processing 

window width / 

Sampling 

frequency 

Classifiers Accuracy 

Preece et al. 

2009 

8 classes 

(moving, 

complex) 

ACC: waist, 

thigh, ankle 

TDFs 

FDFs 

Wavelets 

2s / 64Hz k-NN 95% 

Altun et al. 

2010 

21 classes 

(stationary, 

moving, 

complex) 

ACC, GYR, 

MAG: 

knees, 

wrists, chest 

TDFs 

FDFs 

5s / 25Hz PCA+BDM 99.1% 

PCA+SVM 98.6% 

PCA+DTW 98.5% 

PCA+k-NN 98.2% 

PCA+ LSM 89.4% 

PCA+MLP 86.9% 
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PCA+CT 81.0% 

Lee et al. 2011 6 classes 

(stationary, 

moving, 

complex) 

ACC: chest TDFs 

FDFs 

10s / 20Hz LDA+MLP 94.43% 

Zhu and Sheng 

2011 

8 classes 

(stationary, 

transitional, 

moving) 

ACC: right 

thigh 

TDFs 1s / 20Hz MLP+HMM 80.88% 

Fuentes et al. 

2012 

4 classes 

(stationary, 

transitional) 

ACC: chest TDFs 1s / 100Hz SVM 94.73% 

Varkey et al. 

2012 

6 classes 

(stationary, 

moving, 

complex) 

ACC, GYR: 

right wrist, 

right foot 

TDFs 1.6s / 20Hz SVM 97.2% 

Martin et al. 

2013 

6 classes 

(stationary, 

moving, 

complex) 

ACC, GYR, 

MAG: 

multiple 

places 

TDFs 

FDFs 

3s / 6.25Hz 

(ACC), 

100Hz (GYR), 

7.69Hz (MAG) 

CT 97% 

Decision table 88% 

NBC 78% 

Chernbumroong 

et al. 2014 

13 classes 

(moving, 

complex) 

ACC, GYR: 

dominant 

wrist 

TDFs 

FDFs 

3.88s / 33Hz SVM 97.2% 

MLP 96.73% 

RBF 95.67% 

Li et al. 2014 6 classes 

(stationary, 

moving, 

complex) 

ACC: waist TDFs 1s / 10Hz MLP 98.3% 

k-NN 94.1% 

Attal et al. 2015 12 classes 

(stationary, 

transitional, 

moving) 

ACC: chest, 

right thigh, 

left ankle 

TDFs 

FDFs 

Wavelets 

1s / 25Hz k-NN 99.25% 

Random forest 98.95% 

SVM 95.55% 

SLGMM 85.05% 

HMM 83.89% 

GMM 75.60% 

k-means method 72.95% 

Suarez et al. 

2015 

6 classes 

(stationary, 

moving) 

ACC, GYR: 

waist 

TDFs 0.64s, 1.28s, 

2.56s / 50Hz 

Lazy learner 99% 

CT 97% 

Rule-based 

classifier 

97% 

NBC 84% 

Korpela et al. 

2016 

5 classes 

(moving, 

complex) 

ACC: right 

wrist 

TDFs 

FDFs 

1s / 100Hz CT 97.8% 

 

2.1 Activity classes 

In the related work, many activity classification approaches were used. The most widely used activities were 

standing and walking, which can be found in almost all works. Besides standing, other stationary activities can 

also be found in the literature, such as lying (Lee et al. 2011), sitting (Yang et al. 2009; Martin et al. 2013; 

Ugolotti et al. 2013), or both (Altun et al. 2010; Zhu and Sheng 2011; Attal et al. 2015; Suarez et al. 2015). 

Different transitional movements were also parts of the activity classes in some works, e.g. sit-to-stand and 

stand-to-sit (Zhu and Sheng 2011; Ugolotti et al. 2013; Attal et al. 2015), lie-to-sit and sit-to-lie (Zhu and Sheng 

2011), lie-to-stand and stand-to-lie (Ugolotti et al. 2013), or stopping after walking (Fuentes et al. 2012). 

Regarding the classification of longer motional activities, various speeds and types of forward movements were 

also tested, such as slow, normal and rush walking (Martin et al. 2013), jogging (Preece et al. 2009; Yang et al. 

2009; Varkey et al. 2012; Field et al. 2015), and running (Preece et al. 2009; Altun et al. 2010; Martin et al. 

2013; Li et al. 2014; Korpela et al. 2016). Some works tried to differentiate different directions of an activity 

type, like level walking, walking downstairs and upstairs (Preece et al. 2009; Yang et al. 2009; Altun et al. 2010; 

Lee et al. 2011; Attal et al. 2015; Suarez et al. 2015) or walking backwards (Field et al. 2015). Yang et al. 2009 
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recorded even continuous rotational movements, such as walking left-circle or right-circle, and turning left or 

right. Special complex activities were also parts of the constructed databases, e.g. falling (Ugolotti et al. 2013; Li 

et al. 2014), jumping (Preece et al. 2009; Yang et al. 2009; Altun et al. 2010), writing (Varkey et al. 2012), 

brushing teeth (Bao and Intille 2004; Korpela et al. 2016), eating and drinking (Bao and Intille 2004), sweeping 

the floor, lifting a box onto a table, bouncing a ball (Field et al. 2015), driving (Lee et al. 2011), cycling (Bao 

and Intille 2004; Altun et al. 2010), etc. 

2.2 Sensors and placement 

The accelerometer (ACC) is the most popular sensor for monitoring the motion of the human body. This sensor 

measures acceleration in one or more axes. As seen in Table 1, many researchers used only a single unit to 

achieve activity recognition, but they differed in the placement of the sensor. Others applied multiple sensors 

fixed to different parts of the body. Beside the works listed in Table 1, Ugolotti et al. 2013 applied a single 

accelerometer fixed to the chest, Gonzalez et al. 2015 applied two accelerometer-based data loggers, which were 

mounted on each wrist, while Bao and Intille 2004 applied five biaxial sensors placed on each subject’s right hip, 

dominant wrist, non-dominant upper arm, dominant ankle, and non-dominant thigh. 

Gyroscopes (GYR), which measure angular velocity around one or more axes, are less popular in movement 

recognition applications, and are mostly used together with accelerometers. None of the related researches used 

only gyroscopes. Tri-axial accelerometers and gyroscopes used together provide six degrees of freedom (6DoF) 

sensor units. Yang et al. 2009 used measurement units containing a triaxial accelerometer and a biaxial 

gyroscope, and placed them to eight places on the body: the wrists, the ankles, the knees, the hip, and the left 

elbow. 

The fusion of inertial sensors and magnetometers (MAG) is also reported in the literature. The magnetic 

sensors measure the Earth`s magnetic field, and thus, they are able to detect rotational movements compared to 

the magnetic north. Magnetic sensors are usually used together with the inertial sensors, which provides 9DoF 

measurement systems, but Maekawa et al. 2013 utilized only magnetometers for activity classification. The 

authors used sensor gloves with 9 magnetic sensors on both hands, and tried to classify simple (walking, 

running) and complex (shave, brush teeth, use electric toothbrush, etc.) activities. Lee and Cho 2016 applied the 

sensors of mobile phones for activity recognition, while Field et al. 2015 utilized an inertial motion caption 

system, comprised of 17 inertial sensors attached to different parts of the body. The 9DoF sensors were 

combined to get a global orientation through a Kalman Filter. 

2.3 Feature extraction 

As activity and movement recognition is a typical pattern recognition problem, feature extraction plays a crucial 

role during the recognition process. Sensor-based features can be classified into three categories: TDFs, 

frequency-domain features (FDFs), and features computed using time-frequency analysis. 

Most of the related researches used TDFs and/or FDFs. The type of features and their frequency of usage in 

references are shown in Table 2. It can be concluded that the most used TDFs are the mean and the standard 

deviation, and the most frequent FDFs are the spectral energy and the frequency-domain entropy. 

 

Table 2 Used feature types in related works 

Feature type References 

Time-domain features  

standard deviation or variance  Preece et al. 2009; Altun et al. 2010; Lee et al. 2011; Zhu and Sheng 

2011; Cohn et al. 2012; Fuentes et al. 2012; Guo et al. 2012; Varkey et 

al. 2012; Martin et al. 2013; Chernbumroong et al. 2014; Li et al. 2014; 

Attal et al. 2015; Suarez et al. 2015; Korpela et al. 2016 

mean Bao and Intille 2004; Preece et al. 2009; Altun et al. 2010; Lee et al. 

2011; Zhu and Sheng 2011; Guo et al. 2012; Varkey et al. 2012; Martin 

et al. 2013; Chernbumroong et al. 2014; Li et al. 2014; Attal et al. 2015; 

Suarez et al. 2015; Korpela et al. 2016 

root mean square Varkey et al. 2012; Chernbumroong et al. 2014; Li et al. 2014; Attal et 

al. 2015; Korpela et al. 2016 

correlation Bao and Intille 2004; Lee et al. 2011; Varkey et al. 2012; Martin et al. 

2013; Li et al. 2014 

number of zero crossings Cohn et al. 2012; Martin et al. 2013; Attal et al. 2015; Korpela et al. 
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2016 

kurtosis Altun et al. 2010; Guo et al. 2012; Chernbumroong et al. 2014; Attal et 

al. 2015 

range Fuentes et al. 2012; Varkey et al. 2012; Li et al. 2014; Attal et al. 2015 

skewness Altun et al. 2010; Guo et al. 2012; Chernbumroong et al. 2014; Attal et 

al. 2015 

maximum Varkey et al. 2012; Chernbumroong et al. 2014; Suarez et al. 2015 

minimum Chernbumroong et al. 2014; Suarez et al. 2015 

number of rapid changes Cohn et al. 2012 

magnitude of the first peak of the 

autocorrelation 

Cohn et al. 2012 

Frequency-domain features  

frequency-domain entropy Bao and Intille 2004; Preece et al. 2009; Lee et al. 2011; Martin et al. 

2013; Chernbumroong et al. 2014; Attal et al. 2015 

spectral energy Preece et al. 2009; Maekawa et al. 2013; Martin et al. 2013; Li et al. 

2014; Attal et al. 2015; Korpela et al. 2016 

magnitude of the defined first few 

highest peaks 

Preece et al. 2009; Guo et al. 2012; Maekawa et al. 2013; 

Chernbumroong et al. 2014 

frequency of the defined first few 

peaks with highest amplitude 

Altun et al. 2010; Guo et al. 2012; Maekawa et al. 2013 

correlation between axes Preece et al. 2009; Chernbumroong et al. 2014 

median frequency Cohn et al. 2012; Martin et al. 2013 

DC component Attal et al. 2015 

median power Cohn et al. 2012 

principal frequency Preece et al. 2009 

 

Using wavelet analysis, the signal is decomposed into a series of coefficients, which carry both spectral and 

temporal information about the original signal. Two works (Preece et al. 2009; Attal et al. 2015) tested this 

feature extraction method for the classification of activities. Preece et al. 2009 utilized the next features: the sum 

of the squared detail coefficients at different levels, the sum of the squares of the detail and wavelet packet 

approximation coefficients across different levels, the standard deviations and root mean square (RMS) values of 

detail and wavelet packet approximation coefficients at a few different levels, and the sum of the absolute values 

of coefficients at different levels. Attal et al. 2015 applied the following features: the sum of detail coefficients 

of wavelets, the sum of squared detail coefficients of wavelets, the energy of detail wavelets coefficients, and the 

energy of approximation wavelets coefficients. 

2.4 Processing window width and sampling frequency 

Windowing plays also a very important role during the extraction of features. Usually features are computed in 

fixed-size windows, which are shifted also with a fixed time. In the related work, the width of the applied 

processing windows is between 1s and 10s, and the smallest size, 0.64s, was tested by Suarez et al. 2015. The 

sampling frequency is also a very important factor in the processing phase. In relevant works, the applied 

frequencies were between 10Hz and 100Hz. 

2.5 Classifiers 

The classification of the defined activities using the computed feature vectors can be done using different 

classification methods. As shown in Table 1, the most popular classifiers in relevant works are: support vector 

machines (SVM), the k-nearest neighbor (k-NN) method, decision trees or classification trees (CT), the naïve 

Bayes classifier (NBC), and multi-layer perceptron (MLP) neural networks. Some other methods were also 

tested, as radial basis function (RBF) neural networks, the least-squares method (LSM), Bayesian decision 

making (BDM), dynamic time warping (DTW), decision table, rule-based classifier, Gaussian mixture modeling 

(GMM), supervised learning GMMs (SLGMM), the k-means method, random forest, lazy learner, and hidden 

Markov models (HMMs). In some researches, the classifiers were used together with some dimension reduction 

methods. The most common methods are the principal component analysis (PCA) and the LDA. Guo et al. 2012 

applied the generalized discriminant analysis (GDA) method with the multiclass relevance vector machine 

classifier. Some researchers even tested two different classification methods together: neural networks and 
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HMMs (Zhu and Sheng 2011), hierarchical temporal memories and SVMs (Ugolotti et al. 2013), CTs and 

HMMs (Maekawa et al. 2013), k-means clustering and HMMs (Lee and Cho 2016). 

3 Experimental setup 

The sensor devices used in body sensor networks must be designed with the aim of providing the highest degree 

of mobility for the patients. They must be small, lightweight, and wireless wearable units. 

The used prototype system, which can be seen in Fig. 1 consists of an IRIS WSN mote, and a 9DoF digital 

sensor board connected to it. The IRIS mote is equipped with an Atmel ATmega 1281L 8-bit microcontroller, 

and an RF231 IEEE 802.15.4 compatible radio transceiver. The current draw of the microcontroller is 8mA in 

active mode, and 8µA in sleep mode, while the radio transceiver consumes 17mA during transmission, and 

16mA during reception. The maximal data throughput of the radio transceiver is 250kbps, and its outdoor range 

is over 300m. The connected 9DoF sensor board is made up of an ADXL345 tri-axial MicroElectroMechanical 

System (MEMS) accelerometer, an ITG3200 tri-axial MEMS gyroscope, and an HMC5883L tri-axial 

magnetoresistive technology-based magnetometer. The ADXL345 is a low power accelerometer (the current 

draw is 40µA in measurement mode, and 0.1µA in sleep mode), which can measure up to ±16g in 13-bit 

resolution with the highest sampling rate of 3.2kHz. The gyroscope features a 16-bit analog-to-digital converter, 

and it can measure angular rate in a range of ±2000deg/s with 8kHz frequency. The normal operating current of 

the gyroscope is 6.5mA, while the sleep mode current is 5µA. The measurement range of the magnetic sensor is 

±8.1Ga in 12-bit resolution with 160Hz maximal sampling rate, and it consumes 2µA current draw in idle mode, 

while 100µA in measurement mode. 

A TinyOS-based driver was developed and implemented to configure the sensors and cyclically read the 

measurement data. The data are read from the sensors via the I2C interface, and sent via wireless communication 

to a BaseStation mote, which uses serial communication to forward the data to a PC. 

3.1 Data acquisition 

Eleven activities were defined in order to recognize specific arm movements in stationary positions and also 

during the movement of the body. The used activities are the following: 

1. “standing without movement of the arms”,  

2. “sitting with the arms resting on a table”,  

3. “walking”,  

4. “turning around in one place”,  

5. “jogging”,  

6. “raising and lowering the left arm during standing”,  

7. “raising and lowering the right arm during standing”,  

8. “raising and lowering both arms during standing”,  

9. “raising and lowering the left arm during walking”,  

10. “raising and lowering the right arm during walking”,  

11. “raising and lowering both arms during walking”. 

Data were collected with the help of nine male subjects (ages between 20 and 50, and height between 165cm 

and 190cm) for all activities. The IRIS motes with the attached 9DoF sensor motes were mounted on each wrist 

of the subjects. The data were recorded in fixed-length sessions of 20s for all activities using 125Hz sampling 

frequency, which means 2500 measurements per sensor. The measurements were performed in a laboratory 

environment. 

4 Classification algorithm 

The classification is performed in four main stages. The software architecture with the four stages can be seen in 

Fig. 2. In the first step, the measurement data are preprocessed (Stage I.). In the second stage (Stage II.) features 

are extracted from the signals on each unit. Possible aggregation of the extracted features is also done in this 

stage. The proposed algorithm assumes the transmission of the vector of the extracted features from one mote to 

the other, and the rest of the algorithm should be implemented in the microcontroller of the receiving device. 

Dimension reduction is done in the third stage (Stage III.), while classification is performed in the fourth stage 

(Stage IV.). Two different algorithms were applied and tested. In the first type, the third stage is not performed, 

and the classifiers receive the feature vectors directly, while in the second case the data sets are dimensionally 
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reduced, so the classifiers have less input parameters. The advantage of the dimension reduction method is that it 

removes the redundant information.  

4.1 Preprocessing 

4.1.1 Error compensation 

Due to high error rates caused by structural errors of the sensors, the raw measurements were compensated in the 

preprocessing phase. The calibration parameters (scale factors, offsets, and non-orthogonality errors) were 

obtained using an offline evolutionary algorithm-based method (Sarcevic et al. 2014). For the computation of the 

parameters, the algorithm uses measurements recorded in multiple stationary orientations. 

4.1.2 Windowing 

The extraction of feature values is performed in fixed-size segments, which are shifted with constant sizes. To 

generate a high number of input vectors, small window shifts were used. For hardware implementation, the size 

of the shifts depends on the available resources and the required response time, since the algorithm updates the 

movement classes after each window shift, and the reduction of the size of the shifts increases the necessary 

computation performance. 

Both the CPU computation performance and the power resources are limited in IRIS WSN motes, so it is 

important to minimize the usage of these resources while maximizing the recognition efficiency. The required 

computation performance and the current draw of the sensors can be reduced if the sampling frequency is 

decreased. 

4.2 Feature extraction 

4.2.1 Feature types 

The used features were chosen by their memory usage, required computation, and possible quantity of 

information. Due to easy implementation and low memory usage, only time-domain analysis was performed on 

the signals. Many of the chosen features were previously used for EMG pattern recognition (Phinyomark et al. 

2012), and to the best knowledge of the authors, most of them were not applied previously for movement 

classification. The used TDFs require only one or two previous measurements, so there is no need to store all the 

measurement data in the window as it is required for frequency domain analysis. But even standard deviation, 

which is the most frequently used features, requires the storage of the measurement vector in the window, since 

first the average needs to be calculated. The following TDFs were chosen for this research: 

• Mean Absolute Value (MAV): The calculation of the MAV feature can be expressed as follows, 

MAV =
1

𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1 , (1) 

where N is the number samples in the window, and xi are the signal amplitudes at the given index. 

• Willison Amplitude (WAMP): The number of amplitude changes of incoming signals within a window, 

which are higher than a given threshold level. The computation of the WAMP can be expressed as 

WAMP = ∑ [𝑓(𝑥𝑖 − 𝑥𝑖+1)]
𝑁−1
𝑖=1 , 𝑓(𝑥) {

1, if(𝑥 ≥ 𝑡ℎ)

0, otherwise
, (2) 

where th is the threshold, which is the peak-to-peak noise level. 

• Number of Zero Crossings (NZC): The number of times when the amplitude values cross the zero-

amplitude level, and the difference between the values with opposite signs is larger than a defined 

threshold. The computation of the NZC feature can be represented as 

NZC = ∑ [𝑠𝑔𝑛(𝑥𝑖 ∙ 𝑥𝑖+1) ∩ |𝑥𝑖 − 𝑥𝑖+1| ≥ 𝑡ℎ]𝑁−1
𝑖=1 , 𝑠𝑔𝑛(𝑥) = {

1, if(𝑥 ≥ 0)

0, otherwise
 (3) 

• Number of Slope Sign Changes (NSSC): The number of direction changes, where among the three 

consecutive values the first or the last changes are larger than the predefined limit. The computation of 

this feature can be represented as follows, 

NSSC = ∑ [𝑓[(𝑥𝑖 − 𝑥𝑖−1) ∙ (𝑥𝑖 − 𝑥𝑖+1)]]
𝑁−1
𝑖=2 , 𝑓(𝑥) = {

1, if(𝑥 ≥ 𝑡ℎ)

0, otherwise
 (4) 

• Maximal (MAX) and Minimal (MIN) value: The highest and lowest measured value in the processing 

window. 
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• RMS: The calculation of the RMS in a processing segment can be done as 

RMS = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1  (5) 

• Waveform Length (WL): The cumulative length of the waveform over the time segment, which is 

calculated by the sum of absolute changes between two measurements: 

WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|
𝑁−1
𝑖=1  (6) 

4.2.2 Extraction modes 

The used input vectors were generated and tested with the use of two TDF calculation modes: 

• Separately used axes (SEP): The features are extracted separately for the X, Y, and Z axes of the sensors. 

• Vector magnitude-based (VL): The changes in the vector length are used for the computation of the TDFs. 

The advantages of this feature extraction mode are that three times less features are generated than with 

the SEP mode, and that it should be less sensitive to slight differences between movements of different 

subjects, or small displacements of the sensor motes on the wrists. However, it should not be able to 

recognize different poses in stationary positions. The magnitude-based feature extraction cannot provide 

valuable information in case of the magnetometer measurements, because the magnitude of the magnetic 

field is constant in ideal situations, thus, any measured distortions are caused by the changes in the indoor 

environment. Using the other two sensor types, the accelerometer and the gyroscope, this feature 

extraction mode can provide important information for the classification process. Except the NZC feature, 

which cannot give helpful information, since the magnitude cannot be negative, all other of the previously 

described TDF types can be effective. 

4.2.3 Feature aggregation 

The usage of the separately extracted features for the three sensor axes can result in a very high number of 

features, which can increase the complexity of the classification algorithm. Also, it can have a negative effect on 

the recognition efficiency if the subjects do not fix the units correctly to their wrists. A possible solution to both 

previous problems can be the aggregation (AGG) of the separately computed features. As expressed in Eq. 7, 

this can be done by calculating a linear combination of the feature values computed for each axis for a specific 

feature type. 

𝑓𝑒𝑎𝑡𝐴𝐺𝐺 = 𝑤𝑋 ∙ 𝑓𝑒𝑎𝑡𝑋 + 𝑤𝑌 ∙ 𝑓𝑒𝑎𝑡𝑌 +𝑤𝑍 ∙ 𝑓𝑒𝑎𝑡𝑍, (7) 

where featAGG is the aggregated feature value, featX, featY, and featZ are the extracted features for each axis, and 

wX, wY, and wZ are the corresponding weights.   

4.3 Dimension reduction 

The LDA method was used to perform dimensionality reduction on the datasets, which is a widely-used 

subspace learning method in statistics, pattern recognition and machine learning. This method aims to seek a set 

of optimal vectors, denoted by 𝑾 = [𝒘1, 𝒘2, … ,𝒘𝑚] ∈ ℜ𝑑x𝑚, projecting the d-dimensional input data into an 

m-dimensional subspace, such that the Fisher criterion is maximized (Martinez and Kak 2001; Gu et al. 2011). 

The Fisher criterion, given in Eq. 8, aims at finding a feature representation, by which the within-class distance 

is minimized and the between-class distance is maximized. 

argmax𝑾 tr((𝑾𝑇𝑺𝑤𝑾)−1(𝑾𝑇𝑺𝑏𝑾)) () 

where Sb and Sw are the between-class scatter matrix and the within-class scatter matrix respectively, and are 

defined as   

𝑺𝑤 = ∑ ∑ (𝒙𝑖
𝑗
− 𝝁𝑗)(𝒙𝑖

𝑗
− 𝝁𝑗)

𝑇𝑁𝑗
𝑖=1

𝑐
𝑗=1  () 

𝑺𝑏 = ∑ (𝝁𝑗 − 𝝁)(𝝁𝑗 − 𝝁)
𝑇𝑐

𝑗=1  () 

where 𝑥𝑖
𝑗
 represents the i-th sample of class j, µj is the mean vector of class j, c is the number of classes, Nj is the 

number of samples in class j, and µ is the overall mean vector of all classes. The mean vector of a class and the 

overall mean vector can be calculated as follows, 
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𝝁𝑗 =
1

𝑁𝑗
∑ 𝒙𝑖

𝑗𝑁𝑗
𝑖=1

 () 

𝝁 =
1

𝑐
∑ ∑ 𝒙𝑖

𝑗𝑁𝑗
𝑖=1

𝑐
𝑗=1  () 

The solution to the problem of maximizing the Fisher criterion is obtained by an eigenvalue decomposition of 

𝑺𝑤
−1𝑺𝑏, and taking the eigenvectors corresponding to the highest eigenvalues. There are c-1 generalized 

eigenvectors. If the number of features is less than c-1, then the number of eigenvectors will be equal to the 

number of features. 

4.4 Classification methods 

In this research seven possibly applicable classification methods were chosen and tested: 

• Nearest Centroid Classifier (NCC): The NCC is used in various areas of pattern recognition because it is 

simple and fast. The method determines the Euclidean distance from an unknown object to the centroid of 

each class, and assigns the object to the class with the shortest distance. The Euclidean distance between 

the  𝑥𝑖 ∈ ℜ𝑛 feature vector and the n-dimensional mj vector of mean values for class j can be calculated as 

𝑑𝑖𝑠𝑡(𝒙,𝒎𝑗) = √∑ (𝑥𝑖 −𝑚𝑗𝑖)
2𝑛

𝑖=1  () 

• MLP: Artificial Neural Networks (ANNs) are inspired by the animal`s brain, and are used to 

approximate target functions (Mitchell 1997). The MLP is a feedforward ANN, where neurons are 

organized into three or more layers (an input and an output layer with one or more hidden layers), with 

each layer fully connected to the next one using weighted connections. A neuron has an activation 

function that maps the sum of its weighted inputs to the output. The oj output of one node can be 

defined as 

𝑜𝑗 = 𝑓(𝒗𝑗 ∙ 𝒙 + 𝑏) () 

where x is the input vector, vj is the vector containing the weights, b is the bias value, and f is the applied 

activation function. 

Most commonly MLP networks are trained using the backpropagation algorithm, which employs gradient 

descent to attempt to minimize the squared error between target values and the network output values. 

• NBC: The NBC is a highly practical Bayesian learning method. It is based on the simplifying assumption 

that, given the target value of the instance, the attribute values are conditionally independent, and the 

probability of observing the conjunction for attributes is just the product of the probabilities for the 

individual attributes (Mitchell 1997). Eq. 15 presents the approach used by the NBC. 

𝜐𝑁𝐵 = argmax𝜐𝑗∈𝑉 𝑃(𝜐𝑗)∏ 𝑃(𝑎𝑖|𝜐𝑗)𝑖  () 

where υj denotes the target value output of the classifier, V is the finite set of target values, ai are the 

attribute values, and P(υj) are the probabilities of υj target values. 

• SVM: In SVMs, a data point is viewed as a p-dimensional vector, and the goal is to separate such points 

with (p-1)-dimensional hyperplanes (Varkey et al. 2012). The hyperplane can be defined as  

𝐹(𝒙) = 𝒘 ∙ 𝒙 + 𝑏, (16) 

where x is the vector to be recognized, w is the normal vector to the hyperplane, and b determines the 

offset from the origin along the normal vector. Eq. 17 defines the normal vector, and is subject to the 

condition expressed in Eq. 18. 

𝒘∗ = ∑ 𝛼𝑖∗ ∙ 𝑦𝑖𝑙
𝑖=1 𝒙𝑖, (17) 

where αi is the i-th Lagrange multiplier, 𝑦𝑖 ∈ {−1,1}, and l is the number of support vectors.   

𝛼𝑖∗[𝑦𝑖(𝒘∗𝑇𝒙𝑖 + 𝑏∗) − 1] = 0, ∀𝛼𝑖 ≠ 0 (18) 

The function of the hyperplane is not suitable for solving linearly non-separable problems, or dealing with 

more than two classes. To classify data into multiple classes, two common methods can be used: “one-
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versus-one” (OvO) and “one-versus-all” (OvA). 

• k-NN: The k-NN algorithm classifies the objects based on the closest training examples in the feature 

space (Altun et al. 2010; Li et al. 2014). To classify a new observation, the method finds the k nearest 

samples in the training data, and assigns the new sample to the class which provides the most neighbors. 

The Euclidean distance measure is used. 

• CT: The CT is a rule-based algorithm, which uses a tree-like set of nodes for classifying inputs (Altun et 

al. 2010; Martin et al. 2013). The tree has predefined conditions at each node of the tree, and makes 

binary decisions based on these rules. The condition of the following node is checked until a leaf is 

found that contains the classification result. 

5 Performance evaluation 

Altogether 340 datasets were constructed using different combinations of used sensor types, TDF calculation 

modes, processing window sizes, and sampling frequencies. 

The cost of the system can be decreased by decreasing the number of used sensor types, but in recognition 

efficiency their fusion can result in a drastic improvement. In order to explore the effect of the used sensor types 

in the application, seven sensor combinations were defined, since the three sensor types can be used alone, in 

pairs, and together. The SEP and AGG feature extraction modes were tested for all seven sensor combinations, 

while the VL mode was used only for the accelerometer and the gyroscope alone, and their data used together, 

since, as described in Sect. 4.2, the magnetometer data cannot provide valuable information using this feature 

extraction mode. Thus, 17 combinations were constructed using the applied sensor types and feature extraction 

modes. 

The use of large processing windows can increase the required computation, and it can make harder the 

detection of transitions between activities. Since one of the goals of this research is to explore the recognition 

efficiency using processing windows in millisecond range, the following window width and shift pairs were 

tested: 80ms width and 40ms shift; 200ms width and 40ms shift; 400ms width and 80ms shift; 800ms width and 

80ms shift. 

The necessary computation can be lowered by decreasing the sampling frequency, but it can have a negative 

effect if any important spectral components disappear. The spectral analysis of the obtained measurements 

shows, that in case of the accelerometer and the gyroscope, the highest frequencies of the dominant spectral 

components are below 15Hz, while in the case of the magnetometer data, no higher components can be noticed 

above 5Hz. To find the optimal setup, where the chosen TDFs can be still effective, datasets were generated 

using five sampling frequencies: 25Hz, 50Hz, 75Hz, 100Hz, and 125Hz. The data for the four lower frequencies 

were obtained by downsampling the measurement data collected with 125Hz sampling frequency. 

Data from five of the nine subjects were used for the training of the classifiers, while the data from the 

remaining four subjects were tested as unknown inputs for the validation of the trained classifiers. All six 

classification techniques were tested for all datasets with and without dimension reduction. No results could be 

achieved using the NBC without LDA, since some classes have features with zero variance. 

In this study both the OvA and the OvO methods were tested and used for comparison in case of the SVM 

classifier. 

The k-NN classification algorithm was tested with 1 to 10 neighbors. Analyzing the efficiencies on validation 

data, without dimension reduction a convergence (97%) can be noticed at 1-2 neighbors in almost 55% of the 

setups, while other setups mostly converge at 3-4 neighbors. With LDA 1-4 neighbors are needed to achieve 

convergence as well, but in most cases 4 neighbors are necessary.  

The training of the MLP was tested using 1 to 15 neurons in the hidden layer. The 70% of the training data 

were used as training inputs, and 30% as validation inputs for the training method. The validation datasets were 

used as unknown inputs for testing the efficiency of the classifier. Hyperbolic tangent sigmoid transfer function 

was used in the hidden layer, while the neurons in the output layer were created using the linear transfer 

function. The scaled conjugate gradient method was used for training. The results show that in both cases (with 

and without using LDA), at least 9 hidden layer neurons are needed to achieve convergence (97%), and in more 

than 70% of the setups 9-12 neurons were required. It can be also noticed, that without dimension reduction the 

distribution of the converge points is equal, while with LDA more setups converge at 9-10 neurons.  

In the further comparison, the authors used the setup with the highest recognition rate on unknown samples 
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for both the k-NN and the MLP algorithms. 

5.1 Efficiency comparison of the classification methods 

Table 3 summarizes the average rankings of the thirteen classification methods on training and validation data, 

and on weighted overall efficiencies. Since it is important to classify both the known and the unknown data 

correctly, the weighted efficiency was calculated using the sum of the achieved recognition rates on known and 

unknown data, but the efficiency on validation data was used with a double weight. The average ranking was 

computed using the ranking order of the methods for each of the 340 setups. The average efficiencies are also 

presented in Table 3. Comparing the rankings on validation data, it can be stated, that the MLP and the LDA-

MLP methods are the most powerful classifiers. The MLP was the best in almost 48% of the datasets, and its 

average ranking is 2.85, while the average ranking of the LDA-MLP is 3.13. The NCC method achieved the 

worst results with an average of 10.67, but the LDA-CT, CT and OvO SVM methods had also poor results with a 

ranking above 9. The results obtained only on training data show, that the CT and the LDA-CT provide the 

highest results, with an average recognition rate of 96.58% and 94.46% respectively. They are followed by the 

LDA-k-NN (89.46%) and the k-NN (86.09%) algorithms. These classification techniques are designed to best fit 

on training data, but are not too efficient on unknown data. The MLP, which proved to be the best method in 

case of validation data, provided 82.00% efficiency on known datasets, and was fifth in the rankings. Analyzing 

the overall recognition, it can be seen, that the LDA-k-NN is the best classifier with an average ranking of 2.89. 

This method is followed by the MLP (3.62) and the LDA-MLP (4.36). 

 

Table 3 Average ranking and efficiency of different classification methods on different data types 

Method Average 

ranking on 

training data 

Average 

ranking on 

validation 

data 

Average 

ranking on 

weighted 

overall 

efficiencies 

Average 

efficiency and 

standard 

deviation on 

training data 

Average 

efficiency on 

and standard 

deviation 

validation 

data 

CT 1.03 9.01 5.84 96.58% 

±3.09% 

58.91% 

±8.53% 

OvA SVM 11.22 9.86 10.61 44.97% 

±29.77% 

38.65% 

±24.17% 

OvO SVM 8.79 8.37 8.45 70.36% 

±18.75% 

58.41% 

±14.19% 

NCC 11.76 10.67 11.49 63.90% 

±13.71% 

56.46% 

±13.42% 

k-NN 4.69 6.96 6.28 86.09% 

±7.81% 

63.76% 

±9.96% 

MLP 5.63 2.85 3.62 82.00% 

±10.58% 

70.45% 

±8.82% 

LDA-CT 2.09 9.39 6.16 94.46% 

±3.72% 

60.33% 

±10.62% 

LDA-OvA SVM 10.28 7.95 9.11 72.30% 

±15.42% 

62.47% 

±13.80% 

LDA-OvO SVM 7.44 4.24 5.73 78.13% 

±14.26% 

67.05% 

±12.49% 

LDA-NCC 10.15 6.87 8.37 72.15% 

±15.87% 

62.83% 

±13.93% 

LDA-k-NN 3.32 4.46 2.89 89.46% 

±8.08% 

67.03% 

±11.42% 

LDA-MLP 6.49 3.13 4.36 80.84% 

±10.74% 

69.33% 

±9.53% 

LDA-NBC 8.10 7.21 8.08 77.16% 64.03% 
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±13.66% ±11.64% 

 

Rates for the 340 datasets when the tested classification techniques performed better without LDA, and the 

average rate of differences are tabulated in Table 4. It can be observed, that the LDA-based dimension reduction 

has in overall a slight negative effect on the efficiency of the MLP. It decreases the efficiency in around 70% of 

the datasets, but the differences are not significant. Also, very small differences can be noticed for the CT, but 

the dimension reduction decreases the ability to recognize known data for almost all setups, while in around half 

of the datasets it increases the overall efficiency and the recognition rate on validation data. The LDA method 

has a very positive effect on the other classification techniques. The most significant improvement was achieved 

with the NCC method, for which the application of dimension reduction increased the recognition rates in 

average by 10%. The obtained efficiencies were also higher in around 87% of the setups for all three compared 

result types. For the other three algorithms, higher classification rates were achieved in around 60-70% of the 

datasets both on training and validation data. The highest effect can be noticed on the OvA SVM, since without 

dimension reduction almost 37% lower efficiencies were obtained for both known and unknown data. 

 

Table 4 Effect of LDA-based dimension reduction on the tested classification techniques 

Method Higher results 

on training 

data  

Higher 

efficiency on 

validation data 

Higher 

weighted 

overall 

efficiency 

Average rate 

and standard 

deviation on 

training data 

Average rate 

and standard 

deviation on 

validation data 

CT 99.41% 50.88% 57.94% 2.29% ±1.52% -1.31% ±10.54% 

OvA SVM 40.00% 38.53% 40.59% -36.85% ±42.1% -36.45% 

±40.76% 

OvO SVM 41.18% 25.29% 33.82% -8.81% ±23.3% -11.83% 

±18.98% 

NCC 13.24% 13.82% 12.35% -10.44% 

±12.93% 

-9.44% ±12.18% 

k-NN 27.65% 30.29% 22.65% -3.59% ±5.51% -4.29% ±9.13% 

MLP 75.88% 64.71% 67.35% 1.54% ±3.67% 1.86% ±4.61% 

 

5.2 Efficiency comparison of the tested sampling frequencies and processing window sizes  

The further comparison of the results, achieved with different sampling frequencies and window sizes, was done 

using the best achieved overall weighted efficiencies. 

The results show, that using the five tested sampling frequencies, the average difference between the highest 

and lowest efficiencies is 6.74% ±8.47% for training data, and 6.83% ±6.45% for validation data. The impact of 

increasing the sampling frequency is almost the same for the four different processing window sizes, but it has 

different effect on the 17 combinations of extraction modes and used sensors. Analyzing results on validation 

data, larger differences can be noticed when the magnetometer is used alone. In case of the SEP mode, the 

difference between the largest and smallest efficiency is 3-7%, and the recognition rate is decreasing with the 

increasing of the sampling frequency. The other setups provide almost constant efficiency or a rising tendency 

by increasing the sampling frequency. The AGG setup provides differences between 2.5% and 4.5% using only 

the magnetometer data, and around 3% for the data of the angular velocity sensor. Higher differences, can be 

also observed when the SEP feature extraction is performed on the fused data of the magnetic sensor and the 

gyroscope (3-5.7%), when the AGG features are applied on the data of the magnetometer and the accelerometer 

together (2.5-8%), and when the data of the accelerometer and gyroscope are used together and VL-based feature 

extraction is done (3.2-6%). The other setups provided below 2% differences. 

The size of the processing window width has a more significant effect on recognition rates, since the larger 

windows always result in higher efficiency. In overall, the highest classification efficiencies are higher than the 

lowest rates for 13.24% ±6.34% on training data, and 28.1% ±14.48% on validation data. The improvements do 

not differ greatly for different sampling frequencies, but they are more significant in case of the 17 different 

combinations of sensors and feature extraction modes. Especially high differences on validation data can be 

noticed for the three setups when the VL-based feature computation was used: gyroscope – 27.6-29.2%, 

accelerometer – 18.7-27%, and the gyroscope and the accelerometer together – 26-28.6%. The lowest 
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improvements can be observed in case of the two setups when the three sensors were used together: SEP – 9.7-

11.1%, AGG – 7.1-9.5%. The increasing of the window size also has lower effect in case of the gyroscope when 

the features are computed using the SEP and AGG methods, 11.5-12.5% and 6.4-12.5% respectively, and when 

the SEP technique is used on the fused data of the gyroscope and the accelerometer, where the differences are 

between 10.4% and 12.8%. 

5.3 Efficiency comparison of the tested feature extraction modes and sensor combinations 

The best results for the 17 different combinations in the four different processing window widths can be seen in 

Fig 3. It can be observed, that using only the magnetic sensor with the AGG feature extraction can provide the 

lowest recognition rates, since with the smallest window size only 39.95% can be achieved, while with even the 

largest processing window the efficiency increases only to 60.05%. Using the SEP mode, the recognition rates 

are much higher, 57.03% with the 80ms window and 67.18% with the 800ms window size. 

 Using only the angular rate sensor provides the highest results with the SEP method: 66.6-80.7%. The VL 

mode provides smaller classification rates, but the difference decreases by increasing the size of the processing 

window, since with the smallest window size the difference is 20%, while with the largest window a recognition 

rate of 78.33% can be achieved, which is only 2.37% lower than with the SEP mode. The number of features 

was 48 for the SEP mode and 14 for the VL mode, which is a significant difference. Using the AGG extraction 

mode, for which the size of the feature vector was 16, significant difference to the VL mode can be noticed for 

the smaller window sizes. The recognition efficiency was 8,5% higher for the 80ms window, and 10,18% for the 

200ms window, but for the two larger sizes the VL achieved better results, 2.55% and 9.57% respectively. 

Using only the accelerometer, similar results can be achieved as with the gyroscope. For the two smaller 

windows with the SEP and AGG modes the accelerometer performed lower results, while with increasing the 

window size, the accelerometer provides higher efficiencies than the gyroscope. For the SEP mode, the 

differences were 1-3%, but for the two smaller windows with the AGG mode the recognition rates are lower for 

3-5%, and higher for the two larger windows for 7%. With the VL-based feature vectors the accelerometer 

provides better results. Using the 80ms processing window size the difference was around 10%, but the 

difference decreases, and was only 1% for the 800ms window. 

The usage of the magnetometer itself cannot provide usable results, but it can improve the performance of the 

inertial sensors, since the largest classification rates are 85.03% and 87.2% respectively. In case of the 

gyroscope, in average, the results were improved for 3.26% ±3.59% for the SEP mode, while with the 

accelerometer it provides an improvement of 5.11% ±3.19% for the SEP, and 7.45% ±7.44% for the AGG mode. 

For the setup where the data from the magnetometer and the gyroscope were fused, and the AGG feature 

extraction mode was performed, in average the results were even slightly lower than when the data from the 

gyroscope was used alone. 

The highest recognition rate on validation data, 89.14% (99.48% on training data), was reached using all 

three sensor types with the SEP feature extraction in the largest processing window. This setup requires the 

usage of 144 features. With the same extraction mode, but without using the magnetic sensor, 87.96% 

classification efficiency can be achieved on validation data, and 98.91% on training data, with a required feature 

number of 96. By decreasing the size of the processing window, the classification rate significantly decreases, 

but even with the smallest window, an efficiency of 77.32% can be achieved with, and 76.5% without the 

magnetometer. The difference between these two setups is a little above 1% in efficiency, but the number of 

features, the energy consumption, and the cost are all increased if the magnetic sensor is added to the system. 

Similar differences can be noticed with the AGG extraction mode also. 

The setup where the features were computed using the VL-based extraction, and the data from the angular 

velocity sensor and the accelerometer were used together, also proved to be very useful. The feature vectors 

consisted of 28 different features, and with the largest processing window the recognition rate was 86.17%. This 

extraction mode fails when the processing windows are small, since the efficiency with the 80ms size was only 

55.8%, and the AGG-based features provide higher efficiencies in these cases. 

5.4 Training time comparison of the classification methods 

Training time is not a crucial factor for the implementation of a classifier, but it can prove to be very important, 

especially when different combinations of features should be tested. To generate comparable data, all trainings 

were done on the same PC with the next characteristics: Intel core i7 3.5GHz processor, 16GB RAM, GeForce 
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GTX 770 video card. 

The computation of the LDA matrices proves to be very fast, and even for the largest setup, which contains 

144 inputs, less than 1.8s is required. 

The k-NN method does not require any training, since it uses the entire dataset for the classification. The 

shortest, longest, and mean training times for the other classification methods are summarized in Table 5. It can 

be stated, that the most time consuming from the tested classification methods is the OvA SVM algorithm, since 

the training of the larger setups can last for more than 2 hours, but even the shortest time was almost 1 minute. 

The OvO SVM method proves to be much faster, but the longest time is still above 1 hour, while the shortest is 

17s. The dimension reduction has a significant impact on the SVM-based methods, since it decreases the training 

time by 93.51% ±11.4% for the OvA, and by 92.45% ±10.79% for the OvO method. Beside the high reduction in 

training time, caused by the LDA, the longest required intervals are still too high for both methods. The training 

of the CT method requires between 0.37-15s, and the LDA method does not reduce the training time for all 

setups, but the longest training was three times shorter than without the dimension reduction. The computation of 

the parameters for the NCC classifiers is very low for low dimension setups, but for the largest setups it can last 

for even 25s. The effect of the LDA can be noticed only at the larger setups, and it reduces the maximal time to 

2s. The training of the LDA-NBC classification method, similarly to the LDA-NCC, lasts between a few 

hundredths and 2s. The training of the MLP classifiers is also very time-consuming. The longest interval using 

10 hidden layer neurons was 1331.6s. Besides, that even the length of only one training is long, to find the 

optimal setup, multiple trainings are required with different neuron numbers in the hidden layer. This 

significantly increases the required training time. The LDA-based dimension reduction has a significant effect on 

this classification method, since it reduces the longest training time to 97.83s, and in average it reduces the 

training time by 48.43% ±34.92%. 

 

Table 5 Smallest, highest, and mean required training times of the tested classification methods 

Method Shortest training time Longest training time Mean training time 

CT 0.37s 15.01s 3.41s 

OvA SVM 57.64s 7415.20s 3352.70s 

OvO SVM 16.99s 3791.40s 1414.70s 

NCC ~0s 2.12s 0.24s 

MLP 10.16s 1331.60s 84.81s 

LDA-CT 0.59s 5.30s 1.86s 

LDA-OvA SVM 8.28s 2576.20s 194.2s 

LDA-OvO SVM 2.43s 860.70s 52.38s 

LDA-NCC 0.03s 24.90s 1.64s 

LDA-MLP 6.36s 97.83s 26.71s 

LDA-NBC 0.06s 2.18s 0.34s 

 

5.5 Memory requirement comparison of the classification methods 

The required space for the implementation of a classifier is a very important factor, since microcontroller-based 

systems have limited amounts of memory.  

The required number of parameters for the implementation of the NBC, the NCC, and the MLP classifiers 

can be calculated using the number of features and classes. The number of hidden layer neurons is also needed in 

case of the MLP-based methods. In case of the k-NN, the number of samples in the classes is required, since the 

algorithm uses the entire feature set to determine the class. The required memory for the SVMs and the CTs 

cannot be calculated as a function of the number of features and classes, because the number of necessary 

support vectors in case of SVMs and necessary nodes in case of CTs differs. For comparison, the required 

memory spaces were calculated in bytes (1 floating-point number is equal with 4 bytes).  

The LDA projection matrices have 10 rows, because 11 classes are used, and the number of columns is equal 

to the number of features. If the number of features is less than 10, the number of rows will be equal to the 

number of features. 

The training of the NCC was performed by calculating the mean values of different features for each class, 

and the highest and smallest feature values were also needed for normalization when the dimension reduction 
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was not used. 

For the implementation of MLPs, input ranges, weights and biases are needed. The input ranges consist of the 

highest and lowest values for all inputs, and are used for normalization. Two weight matrices are needed to 

connect the input layer with the hidden layer, and the hidden layer with the output layer. The first consists of 

numHiddenLayerNeurons∙numInputLayerNeurons, while the second of numOutputLayerNeurons∙numInputLayerNeurons weights. Bias 

values are used in all neurons of the hidden and the output layer. For comparison, based on the convergence in 

efficiency, 10 hidden layer neurons were used for the computation of the required memory. 

The training of the NBC results in a numClasses∙numFeatures sized array of parameter pairs, where the first 

parameter is the mean deviation, and the second is the standard deviation. 

The memory requirements of the five determinable methods can be seen in Fig 4. It can be observed that they 

do not differ significantly. Considerable differences can be noticed only with a small number of features, e.g. 

with using 80 features, all methods require around 4kbytes of parameters, but with only 10 features the LDA-

MLP needs around 1.5kbytes, while the NCC only 0.5kbytes, which is three times lower. Generally, the LDA-

NCC needs the least memory space, only the NCC needs less when the number of features is smaller than 40.  

The k-NN method is a very memory demanding method, since the entire database of features is needed for its 

implementation. In this research, more than 13000 feature vectors were used even in the smallest setups, which 

would result in more 760kB memory space for a feature number of 15. 

The highest and lowest required memories for the CT and SVM-based methods can be seen in Table 6. 

 

Table 6 Highest and lowest memories required for implementation for the CT, OvA SVM, and the OvO SVM, 

with and without LDA-based dimension reduction 

Method Lowest required 

memory 

Highest required 

memory 

CT 2.03kB 83.45kB 

LDA-CT 6.67kB 84.86kB 

OvA SVM 652.36kB 27458.01kB 

LDA-OvA SVM 213.85kB 2358.40kB 

OvO SVM 369.30kB 17913.09kB 

LDA-OvO SVM 106.16kB 1176.95kB 

 

The implementation of the CTs requires the number of nodes (16-bit integer), parents (one 16-bit integer per 

node), children (two 16-bit integers per node), cut points (one floating-point number per node), cut types (one 

Boolean value per node), and cut predictors (one 8-bit number per node). Analyzing the results, it can be stated, 

that the required number of nodes and the classification efficiency are inversely proportional. As showed in 

Table 6, the achieved smallest needed memory space is 2.03kB, but high deviations can be noticed, and for the 

setup with most required nodes more than 83kB of storage is needed. The LDA has a negative effect on the CT 

for all setups, and even the lowest required memory is 6.67kB. In average the LDA increases the required 

memory space by 60.44% ±42.64%. 

In case of the SVM-based methods, due to the used 11 classes, the OvA method needs 11 support vector sets, 

while for the OvO numClasses∙(numClasses-1)/2 sets are needed, what means 55 sets for the used 11 classes. The 

support vector sets are made up of different numbers of support vectors and a bias value. The dimension of each 

support vector is equal to the number of features, and they also include an alpha value. The obtained results show 

that both the OvA and OvO methods require a very high number of parameters for implementation, and thus, are 

not suitable for application in the developed system. The required memory space is less for the setups with 

higher efficiency rates, and it decreases by increasing the size of the processing window, since the classification 

rates increase. The lowest memory requirement, as shown in Table 6, was 652.36kB for the OvA mode, and 

369kB for the OvO mode. In some setups, it can be even above 20MB using the OvA mode. The LDA has a very 

positive effect on the SVM classification algorithm, since it greatly decreases the required number of support 

vectors. The tested dimension reduction method decreases the number parameters for all setups in case of the 

OvA SVM method, with an average of 55.91% ±27.03%, while for the OvO SVM it reduced the memory 

consumption for 65.29% of the setups. 
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5.6 Comparison with frequency-domain features 

To explore the capabilities of the applied TDFs, it was reasonable to compare the achieved results with 

recognition rates obtained with FDFs used in the literature. The following FDFs were utilized in the feature sets: 

spectral entropy, spectral energy, magnitude of largest peak, frequency of largest peak, median frequency, DC 

component, median power, and principal frequency. Two TDFs, which require the storage of the measurement 

vectors for their computation, were also added to the datasets: standard deviation and correlation between axes. 

Feature extraction was performed on the sensor axes separately and on the magnitude, and the aggregation-based 

feature reduction was also applied. Classification was done using the MLP classifier, which earlier proved to be 

the most powerful method. 

The obtained results show, that the applied TDFs have better performance in around 60% of the datasets in 

case of the training data, while the rates are nearly equal on validation data. The rates, when the TDFs perform 

better on training data, are nearly equal for both different sampling frequencies and different processing window 

widths. In case of the validation data, the rates show a rising tendency when the sampling frequency or the size 

of the window is increased. With the smallest frequency or window size, TDFs give better results in around 40% 

of the datasets, while this rate is almost 60% with the largest frequencies or windows. Since the number of 

measurements in the processing window increases both with increasing the sampling frequency or the size of the 

processing window, this is a significant result, because the chosen TDFs do not require the storage of the 

measurement values in the window. 

Table 7 summarizes the obtained results with MLPs using TDFs and FDFs when the highest sampling 

frequency, 125Hz, was applied. The used abbreviations are the next: TR – training data, VA – validation data, 

TD – time-domain, FD – frequency domain. 

 

Table 7 Achieved classification efficiencies applying extraction based on TDFs and FDFs 
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 Processing window width 

Dataset 

80ms 200ms 400ms 800ms 

TR VA TR VA TR VA TR VA 

MAG 

SEP 
TD-48 74.54% 52.43% 85.76% 59.95% 91.27% 63.23% 96.36% 69.97% 

FD-60 80.86% 44.76% 84.89% 50.45% 88.35% 57.41% 95.98% 58.31% 

AGG 
TD-16 67.38% 48.50% 73.14% 55.40% 74.15% 55.25% 77.37% 58.50% 

FD-20 61.65% 46.45% 68.20% 53.88% 71.50% 56.93% 76.04% 59.62% 

GYR 

SEP 
TD-48 69.93% 62.47% 84.09% 70.90% 84.25% 72.86% 94.05% 76.39% 

FD-60 77.61% 69.98% 82.52% 76.29% 91.14% 78.76% 90.14% 82.83% 

AGG 
TD-16 62.56% 58.03% 71.32% 65.37% 68.51% 63.86% 74.71% 69.21% 

FD-20 63.15% 60.30% 68.97% 65.42% 70.10% 69.55% 72.63% 71.42% 

VL 
TD-14 56.82% 52.60% 62.19% 58.89% 74.81% 68.35% 84.61% 79.39% 

FD-18 56.54% 52.34% 65.60% 61.65% 73.94% 68.56% 80.82% 74.77% 

ACC 

SEP 
TD-48 72.90% 65.77% 84.60% 73.83% 87.67% 76.61% 90.75% 82.12% 

FD-60 76.07% 65.08% 83.00% 72.55% 88.17% 76.90% 94.30% 83.11% 

AGG 
TD-16 66.96% 63.62% 76.42% 69.34% 77.35% 72.95% 79.39% 74.28% 

FD-20 57.74% 52.48% 67.04% 58.94% 68.84% 66.83% 72.34% 70.96% 

VL 
TD-14 53.47% 53.51% 64.08% 62.78% 77.60% 73.50% 82.46% 79.47% 

FD-18 54.22% 52.89% 62.74% 60.82% 71.80% 72.23% 79.12% 80.31% 

MAG 

GYR 

SEP 
TD-96 89.80% 67.53% 94.06% 70.71% 96.70% 72.92% 83.85% 74.25% 

FD-120 92.08% 64.55% 93.92% 70.78% 95.98% 74.81% 99.57% 79.06% 

AGG 
TD-32 79.68% 61.44% 83.05% 64.51% 84.76% 67.53% 85.34% 70.99% 

FD-40 80.01% 68.63% 83.79% 72.38% 84.97% 74.95% 84.94% 77.95% 

MAG 

ACC 

SEP 
TD-96 84.35% 68.32% 86.41% 74.34% 96.20% 77.25% 98.43% 83.98% 

FD-120 88.11% 58.10% 92.41% 64.63% 95.67% 69.38% 98.87% 73.36% 

AGG 
TD-32 75.77% 67.86% 83.17% 71.45% 85.05% 73.78% 86.28% 74.79% 

FD-40 72.68% 56.81% 77.01% 66.84% 80.64% 66.48% 83.88% 70.73% 
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GYR 

ACC 

SEP 
TD-96 88.13% 76.60% 88.80% 80.57% 95.50% 83.25% 98.33% 84.69% 

FD-120 86.13% 77.94% 89.27% 81.64% 91.01% 84.63% 98.63% 87.38% 

AGG 
TD-32 74.77% 68.64% 80.80% 74.99% 81.24% 76.29% 81.67% 78.00% 

FD-40 69.72% 66.61% 77.59% 74.20% 80.38% 75.79% 80.76% 76.94% 

VL 
TD-28 67.46% 61.31% 76.17% 71.07% 84.08% 78.45% 91.51% 85.61% 

FD-36 67.45% 62.95% 76.90% 71.02% 80.88% 75.10% 89.81% 82.74% 

MAG 

GYR 

ACC 

SEP 
TD-144 93.98% 74.23% 93.98% 79.11% 97.16% 81.91% 98.70% 84.22% 

FD-180 93.34% 68.63% 95.73% 74.75% 98.30% 80.71% 98.98% 82.51% 

AGG 
TD-48 80.94% 69.59% 87.01% 76.04% 88.14% 75.95% 90.33% 78.53% 

FD-60 82.32% 70.27% 84.63% 74.83% 86.63% 75.85% 87.42% 77.65% 

 

The recognition rates achieved with FDFs, just like with TDFs, increase with the increasing of the sampling 

frequency or the processing window width. The highest classification efficiency on validation data, 87.38%, was 

achieved using the gyroscope and the accelerometer data together, and applying the SEP extraction mode. It 

should be noted, that, as it can be seen in Table 7, the number of applied features is considerably higher in the 

datasets based on FDFs.  The average difference between efficiencies obtained on validation data utilizing TDFs 

and FDFs is around 3%, while the highest differences, around 11%, can be noticed when features are extracted 

from the measurements of the magnetometers.  

Analyzing the classification efficiencies using different feature extraction modes, it can be concluded, that the 

aggregation-based feature reduction is also useful when FDFs are applied. The features computed from the 

accelerometer measurements provide better recognition rates using TDFs, but both the gyroscope and the 

magnetometer give even better results with FDFs in case of the AGG-based extraction. The magnitude-based 

extraction results in similar recognition efficiencies using TDFs and FDFs. 

6 Conclusion 

In this study, a wearable prototype measurement system was presented, which uses 9DoF sensor boards mounted 

on WSN motes. A new classification algorithm was also proposed, which utilizes two wrist-mounted sensor 

motes to detect different arm movements in stationary positions, and during the movement of the body. The 

major advance of the proposed algorithm is that the processing can be easily implemented on the microcontroller 

of the wearable unit. The measurement system can be realized in a wristwatch-like unit for real life applications. 

To explore the optimal cost, power consumption, and efficiency, 340 datasets were constructed based on 

different feature extraction modes, sampling frequencies, processing window sizes, and sensor combinations. To 

reduce computation costs, only time-domain features with low memory requirements were applied. The 

accelerometer, the gyroscope, and the magnetometer were tested separately, in pairs, and altogether, to 

investigate the impact of the sensors in the application, and to prevent unnecessary usage of memory and 

hardware resources, and of course, it can lower the overall cost and power consumption of the system.  

The results show that the recognition rates achieved, using only simple time-domain features, are not affected 

significantly by the sampling rate, and only slight improvements can be noticed when it is increased. The tested 

millisecond range processing windows prove to be usable, since above 77% percent efficiency can be reached on 

unknown data even with the smallest, 80ms, window width, while almost 90% can be achieved with the 800ms 

window size. It can be concluded from the achieved efficiencies, that the movements of different subjects show 

high correlation, since the training and validation datasets were constructed of data from different persons. The 

classification rates on training data can be almost 100%, which is also a very important factor if the application 

should be trained and used for one person. 

The magnetic sensor itself provides very low, 40-67%, recognition rates, but it can significantly improve the 

performance of the gyroscope and the accelerometer if they are used together. The two inertial sensors alone can 

provide around 80% applying the largest processing window. The highest efficiencies were achieved when the 

data from the three sensor types were applied together, but the impact of the magnetometer is very small, since it 

only increases the recognition rates by 1-2%, while it largely increases the cost, the energy consumption, and the 

required feature number. 

The highest efficiencies were achieved when the separately computed features were used, but they require 

three-times more used features than the aggregation- and magnitude-based datasets. The inertial sensors can 
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provide 86.17% using the VL-based extraction in the 800ms processing window, but for the smaller window 

sizes the proposed aggregation-based feature extraction provides higher classification rates.   

Seven popular classification methods, the MLP, the NCC, the NBC, the OvA SVM, the OvO SVM and the k-

NN, were tested with and without LDA-based dimension reduction. The classifiers were compared by efficiency, 

training time, and memory requirement for implementation. The obtained results show that the LDA can lower 

memory consumption and/or training time, but it can also increase classification efficiency of some classifiers. It 

can be concluded that the highest efficiency can be achieved using the MLP classifier, but the use of the LDA-

MLP is also reasonable due to the slightly lower efficiency, lower memory requirements in case of high feature 

numbers, and significantly lower training time. The CT can effectively classify the training data, but its 

performance is significantly lower for the unknown samples. The very popular k-NN and SVM-based methods 

showed to be unsuitable for use in this application due to their low efficiencies and high hardware requirements. 

The tested TDFs were also compared to FDFs utilized in the literature. The results show, that the TDFs 

perform better when the number of measurements is increased in the processing window, which is a significant 

result, since the chosen TDFs do not require the storage of the measurement data. The proposed aggregation-

based feature reduction is also useful in the case of the FDFs, since for some extraction modes, the obtained 

recognition rates are even higher than achieved using TDFs. 

The future goals of this research include distributing the algorithm on the two motes, finding optimal weights 

for the aggregation based feature extraction, as well as finding the features with the most influence. The 

proposed system could also be easily expanded for the detection of falls and epileptic seizures. 
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Fig. 1 a The prototype measurement system, b The unit attached to the wrist 

 

 
Fig. 2 Software architecture 

 

 



22 

 

 
Fig. 3 Achieved classification efficiencies on training and validation data using different processing window 

sizes. The horizontal axes show the feature extraction mode in the first row, the required feature numbers in the 

second row, and the used sensor types in the third row (MAG-magnetometer, ACC-accelerometer, and GYR-

gyroscope) 

 

 
Fig. 4 Memory requirement of the classification methods with determinable memory consumption 

 


