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Abstract: This paper proposes a novel fuzzy-adaptive extended Kalman filter (FAEKF) for the
real-time attitude estimation of agile mobile platforms equipped with magnetic, angular rate, and
gravity (MARG) sensor arrays. The filter structure employs both a quaternion-based EKF and an
adaptive extension, in which novel measurement methods are used to calculate the magnitudes of
system vibrations, external accelerations, and magnetic distortions. These magnitudes, as external
disturbances, are incorporated into a sophisticated fuzzy inference machine, which executes fuzzy
IF-THEN rules-based adaption laws to consistently modify the noise covariance matrices of the
filter, thereby providing accurate and robust attitude results. A six-degrees of freedom (6 DOF) test
bench is designed for filter performance evaluation, which executes various dynamic behaviors
and enables measurement of the true attitude angles (ground truth) along with the raw MARG
sensor data. The tuning of filter parameters is performed with numerical optimization based on the
collected measurements from the test environment. A comprehensive analysis highlights that the
proposed adaptive strategy significantly improves the attitude estimation quality. Moreover, the filter
structure successfully rejects the effects of both slow and fast external perturbations. The FAEKF
can be applied to any mobile system in which attitude estimation is necessary for localization and
external disturbances greatly influence the filter accuracy.

Keywords: adaptive filter; attitude estimation; fuzzy logic; inertial measurement unit; extended
Kalman filter; sensor fusion

1. Introduction

1.1. Survey on Attitude Estimation

The microelectromechanical systems-based (MEMS-based) relative localization problem is a
recent topic, which has been widely investigated in many areas including robotics and control [1–8],
healthcare and rehabilitation [9–11], consumer electronics mobile devices [12–14], and automated
driving and navigation [15–18], both in industry and in scientific research. Independent from the
application, accurate and robust attitude estimation is a crucial task to be solved, especially if the
results are to be incorporated into unstable closed-loop systems, such as the control algorithms of
mobile robots and unmanned aerial vehicles (UAVs) [1].
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The MEMS inertial measurement unit (IMU), composed of tri-axis MEMS accelerometer,
gyroscope, and magnetometer sensors, also known as the measurement system of magnetic, angular
rate, and gravity (MARG) sensor arrays, is the most commonly utilized device to track the real-time
orientation of mobile platforms at present. The low-cost, low power consumption, and small size
characteristics meet technological requirements, and therefore these devices have been widely utilized
in embedded systems, where the filtering algorithm is executed by a microprocessor. As a result,
an attitude and heading reference system (AHRS) has been formed, which provides the complete
orientation measurement relative to the Earth’s gravitational and magnetic fields (global reference
system), where the attitude denotes the roll and pitch angles, whereas heading refers to the yaw Euler
angle [19]. The role of the aforementioned filtering algorithm is to combine the individual features
of each sensor and provide both properly smoothed and robust attitude results with regard to the
global reference system, in either Euler angles or quaternions. The most common method applied in
sensor fusion techniques synthesizes the short-term accuracy of gyroscope-based attitude realizations
and the accelerometer and magnetometer provide rough, low-frequency attitude corrections. This
technique cancels the accumulated error (drift), smooths the signals, and produces long-term stable
outputs if the IMU is in stationary states. Significant decrease in estimation performance arises when
external disturbances are present, such as external accelerations, vibrations, and magnetic distortions,
which prevent the utilization of the pure gravity and local magnetic field vectors in the calculation
of the direction cosine matrix (DCM). The following paragraphs discuss the solutions provided in
the literature.

Among recent developments, the Kalman filter (KF)—by different variants, such as stochastic
approaches—and complementary filter (by frequency domain methods), both augmented with the
intelligent use of deterministic techniques, have become the most popular methods for robust attitude
determination [20]. Deterministic techniques have been shown to solve Wahba’s problem [21] and
provide attitude estimation based on gravity and magnetic field observations. The fundamental
solutions are three-axis attitude determination (TRIAD), which produces suboptimal attitude matrix
estimation by the construction of two triads of orthonormal unit vectors, and the QUaternion ESTimator
(QUEST), in which the quaternion is found by minimizing a quadratic gain function based on
a set of reference and observation vectors. Improved approaches have utilized the fast optimal
matrix algorithm (FOAM) [22], the factored quaternion algorithm (FQA) [23], the Gauss–Newton
algorithm [24], Levenberg Marquardt algorithm [25], the gradient descent algorithm [26], and the
super fast least-squares optimization-based algorithm [27]. Each approach estimates the attitude based
on accelerometer and magnetometer measurements and is characterized by reduced computational
complexity or more robust performance. As the estimation performance significantly decreases with
disturbances (magnetic perturbation and/or external acceleration), the incorporation of gyroscope
measurements has thus become a de facto standard for the state propagation.

Complementary filters (CF) use frequency domain information to synthesize signals that have
complementary spectral components. This concept enables us to combine the slowly varying signals of
the accelerometer and magnetometer with the fast signals of the gyroscope through low- and high-pass
filters, respectively. The CF has been widely implemented in the robotics and control community, due
to its simple structure and ease of implementation [28,29]. In [28], a nonlinear CF was developed for
UAVs, which also employed first-order vehicle dynamics to cancel the effect of external acceleration.
A quaternion-based nonlinear CF (qNCF) for attitude estimation was developed in [30] (hereafter
referred to as the Mahony filter), which corrects the gyroscope measurements with a proportional and
integral (PI) controller and provides attitude and gyroscope bias estimates. The popular Madgwick
filter [26] is a computationally efficient constant gain filter, which was developed originally for
human motion tracking applications. The filter has been improved recently in [7], employing
the accelerometer and magnetometer measurements in a gradient descent algorithm to correct the
quaternion obtained through the integration of rate measurements. Mahony and Madgwick filters are
widely utilized algorithms and their performances have regularly been considered in comparative
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analyses [9,13,15,31–33]. In [34], an adaptive-gain CF was proposed to provide good estimates, even in
dynamic or high-frequency situations. The filter gain was modified based on both the convergence
and divergence rates of observation-based orientation realization and gyroscope-based orientation
propagation, respectively. An improved qCF was designed in [32], in which two correction sequences
were employed based on separating the quaternion into accelerometer- and magnetometer-based
realizations. Moreover, the algorithm was augmented with an adaptive gain characterized by two
thresholds to reduce the estimation error when dynamic motion is present. The filter performance was
validated with experiments containing short external disturbances. This algorithm was adapted in [10],
where its real-time performance was evaluated on a microprocessor-controlled lower limb prosthesis.
An iteration-free variant of CF has been proposed for efficient attitude estimation calculation in [35],
where a linear system was employed for the accelerometer-based attitude realization. The filter
performance was evaluated under different conditions and the effects of vibration and magnetic
distortion were examined as well. However, the developed CF was not as accurate as the benchmark
KF, especially under highly dynamic conditions. In [36], a two-step qCF was implemented for human
motion tracking applications. The algorithm was characterized by two separate tuning parameters;
moreover, it contained a finite state machine-based adaptive strategy to cope with external disturbances.
The two-step configuration made the attitude output more resistant to magnetometer measurements,
as the attitude was obtained based on accelerometer and gyroscope data first, following which the
heading angle was updated using both the estimate and magnetometer data.

The KF and its extension for nonlinear cases, the extended KF (EKF), are the most prevalent
Bayesian state estimation algorithms utilized for attitude determination. These recursive algorithms
deal with statistical descriptions and predict the state of the Gaussian stochastic model of MARG with
minimum variance. The main performance, which includes both the filter dynamics and convergence,
is determined with the proper covariance matrices that describe the stochastic system. In [37],
a qEKF was developed for human movement tracking, in which the state of a rotation quaternion
was augmented with the random walk processes of accelerometer and magnetometer bias vectors.
Moreover, an adaptive strategy modified the noise covariance matrix if an external disturbance was
identified. The filter was improved by modeling the magnetic variations with a Gauss–Markov vector
random process, which aimed to reduce the effect of fluctuating magnetic environments [38]. Adaptive
threshold-based switching strategies have been used to modify the covariance matrices based on the
measured stationary-, low-, and high-acceleration modes in [39,40]. In [19], an acceleration model
was incorporated in the stochastic model, and thus the KF both estimated and compensated for the
external acceleration in an attitude determination process. The proposed method was evaluated under
dynamic conditions and compared with a threshold-based KF; however, significant improvement in
the estimation accuracy was not highlighted. In [14,41], smartphone-based human body orientation
estimation was addressed with the application of a qAEKF. The proposed adaptive strategy modified
the noise covariance matrix based on the variance of input signal. Moreover, the upper and lower
bounds of covariance values were selected by numerical optimization. Comparison with both the
Android OS algorithm and a simple CF highlighted the benefits of the proposed method. A similar
qEKF structure without adaptation laws was proposed for the attitude estimation of UAVs in [42].
The filter was set up with experimentally tuned noise covariance matrices; however, its performance
was evaluated without external dynamic effects on a multi-function turntable device. A reduced state
vector-based qEKF approach was applied in [3], in which the measurement noise covariance was
tuned in real-time, based on the angle between the predicted and measured gravitational accelerations.
A two-step geometrically-intuitive quaternion correction was proposed for a linear KF, which enabled
isolation of the pitch and roll estimation performance from magnetic distortion effects by decoupling
the accelerometer and magnetometer data [43]. In [44], a linear KF was implemented for human
motion tracking applications in dynamic environments. In their real-world experiments, the effects of
long external accelerations were addressed and good overall performance was achieved by the filter;
however, significant error peaks were present in the estimation as well. A smart detector augmented
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AEKF was proposed in [45] with similar filter efficiency. The adaptive strategy identified both static
and dynamic body motions. Moreover, the effect of external acceleration was suppressed through filter
gain tuning. The attitude estimation problem during sports activities was addressed in [46], where
the proposed EKF considered the model uncertainty of active acceleration. Experiments highlighted
the robustness of the approach, especially when large accelerations were present during the tests.
In [47], the maneuvering target tracking problem was addressed and the application of both General
Regression Neural Networks (GRNN) and an additional maneuver detector algorithm was proposed
for the state estimation of manoeuvring objects. Moreover, a comparison of the GRNN-based neural
filter and KF for target movement vector estimation was presented in [48,49], where the GRNN-based
approach was characterized by superior estimation performance only during steady motions. In [50],
a fuzzy inference system was proposed to tune the noise covariance matrix of the EKF based on
the filter innovation sequence through a covariance-matching technique. The experimental results
showed that the fuzzy rule-based adaptive strategy effectively improved the estimation accuracy with
respect to the standard EKF algorithm. In [51], an adaptive analytical algorithm was presented for
the determination of UAV orientation angles. The algorithm employed both MARG and GPS-based
correction channels; moreover, an UAV maneuver intensity classification method was implemented to
increase the orientation estimation performance.

Recent studies have proposed the use of unscented KF (UKF) over EKF [52,53], and stated
that UKF-based approaches better deal with the high-order nonlinear terms of large attitude errors.
Attitude estimation has been solved with computationally efficient geometric UKF [53], where a new
formulation of the UKF algorithm was proposed in [52] to maintain fast and slow variations in the
measurement uncertainty. The latter algorithm was augmented with both an adaptive strategy to tune
the covariance matrices on-the-fly and an outlier detector to reject the effects of external disturbances.
An industrial manipulator robot was used to conduct the experiments, where the algorithm provided
superior performance over the standard UKF and Madgwick filters. Recent developments have
considered the MARG as a non-Gaussian stochastic system and developed maximum correntropy KF
(MCKF) for attitude estimation [54,55]. These algorithms employed the MC criterion, instead of the
minimum mean square error, to estimate the state of the system corrupted by non-Gaussian impulsive
noises. However, the comprehensive case study provided in [56] has not highlighted the superior state
estimation performance of the MCC-based techniques in non-Gaussian noise environments.

Based on the methods discussed above, it can be concluded that the ultimate attitude estimation
quality is determined by three main factors:

1. The first impact is related to the flexibility of the implemented algorithm (i.e., the observation
models, equations defining the filter dynamics, and noise models jointly define the algorithm).

2. The filter performance heavily depends on properly selected filter gains (i.e., noise covariance
matrices). In general, the statistics of system noise cannot be determined; moreover, external
disturbances cause radical measurement noise during attitude realization, which make the
assumed noise models inappropriate. As a result, the filter parameters are usually selected
based on both experimental and engineering intuition, which result in a compromise between the
accuracy and filter dynamics. To enhance the filter performance, numerical optimization-based
filter tuning has been performed [1,14,40,57].

3. The papers above show that the common methods used to deal with external disturbances
(dynamic motions and magnetic perturbations) either work by the application of intelligent
adaptive strategies that on-the-fly modify the vector observation methods, filter gains, and
covariance matrices; or the compensation is maintained with additional dynamic models that
well-mimic the effects of the external forces and magnetic fluctuations.

1.2. Contribution of the Paper

This paper addresses the robust attitude estimation problem for mechatronic systems (robots)
characterized by fast dynamics, unstable equilibria, and/or mechanical difficulties (e.g., the driving
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mechanism backlash). For these type of systems, reliable state estimation is both an essential and crucial
task to be solved, as the unstable dynamics are stabilized in closed-loop with a control algorithm,
in which the stabilizing system inputs are calculated based on the estimation results. If the state
estimation contains significant errors, then these control signals will drive the system out of equilibrium
to unwanted states, which may eventually damage the system and its environment [1,42].

The aforementioned discussion highlights that providing both reliable and robust attitude
estimates, especially for extreme dynamic situations, remains an important issue. For this problem,
our paper proposes a novel qAEKF, in which new methods are employed to measure the external
disturbances and their effect is suppressed with adaptation laws described with fuzzy logic-based
IF-THEN rules. The results show that the proposed methods significantly improve the robustness of
the state estimation, both in static and extremely vibrating and accelerating environments. Moreover,
to the author’s best knowledge, no study has yet investigated the attitude estimation problem in such
dynamic environments. The basis of the proposed filter structure was presented in [1], where the
techniques were validated for one-dimensional attitude estimation using a linear KF. That investigation
showed promising results, thereby motivating us to extend the estimation problem to the complete
orientation based on MARG systems. The novelties of the paper are summarized as follows.

1. Formulating a novel quaternion-based FAEKF structure that incorporates the magnitudes
of vibration, external acceleration, and magnetic perturbation by a sophisticated heuristic
knowledge-based fuzzy inference machine to provide robust attitude estimation in both static
and dynamic environments.

2. Designing a 6 DOF test platform which enables both the execution of various dynamic (vibrating
and accelerating) behaviors in the three-dimensional space and the measurement of true attitude
angles along with the raw MARG data. An additional part of the test environment is a novel
magnetic perturbation algorithm. This test environment contributes to the successful evaluation
of state estimation quality.

3. Performing numerical optimization-aided tuning of filter parameters based on the collected
training measurements in the test environment.

4. Providing a free-to-use Robot Operating System (ROS) package that enables both the generation
of MARG-based measurements and the testing of filter performances. We made this package
publicly available on our website [58], with the aim of helping other laboratory teams with both
performing and developing similar experiments.

The proposed approaches can be advantageously applied in such mechatronic systems where
accurate attitude determination is crucial for the closed-loop dynamics; moreover, where external
disturbances are frequently present, due to fast maneuvers, collision, or unstable dynamics.

The remainder of the paper is organized as follows. Section 2 gives an introduction to quaternion
representation and highlights the important relationships. In Section 3, the stochastic models of
MARG sensor arrays are discussed and a suitable EKF formulation for attitude estimation is described.
Section 4 presents the fuzzy adaptive strategy in detail, in which external disturbance magnitudes
are measured with three novel methods; additionally, a sophisticated fuzzy inference machine is
employed to manipulate the noise variances consistently. Section 5 introduces the test bench which
was designed for estimation quality evaluation, the optimization-aided tuning of filter parameters,
and the experimental results of the proposed approaches. Finally, in Section 6, the conclusions and
recommendations for future studies are discussed.

2. Quaternion-Based Attitude Formulation

Let E and S denote the earth and sensor frames, also called the global non-moving inertial and
local mobile frames, respectively. These frames can be defined with the conventional North-East-Down
(NED) configuration often applied for robotic applications [3,5,42]. Namely, the x-axis points north
and y is directed east, whereas z completes the right-handed coordinate system by pointing down in
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the inertial reference frame (see Figure 1). Additionally, the origin of the right-handed sensor frame is
attached to the center of mass of the moving body, where the x-axis points forward and the y-axis is
directed to the right of the body. The mapping between these frames E and S is described by a rotation
matrix as

E x = E
SR Sx, (1)

where E x and Sx denote the 3× 1 vector observations in the earth and sensor frames, respectively.
Moreover, ESR ∈ SO (3) indicates the 3× 3 special orthogonal matrix, where the inverse transformation
is defined as ESR−1 = E

SRT = SER.

S
Earth frame

x

y

Sensor frame

x

y

z

θ

R

�� ��

N

z

Figure 1. Relative orientation between the earth frame (E ) and sensor frame (S).

A quaternion representation provides an effective way to both formulate the aforementioned
rotation matrix and describe the attitude of the coordinate frames in three-dimensional space [59]. The
advantageous structure both provides fast computation (compared to DCM) and completely avoids
the well-known singularity problem of Euler angles (also known as the gimbal lock problem) [60]. The
unit quaternion formulated by the four-dimensional vector ESq ∈ R4,

∥∥ESq
∥∥ = 1 describes the attitude

of frame E relative to frame S as a rotation by an angle µ about the unit vector e =
(
ex, ey, ez

)T , which

represents the rotation axis in S . This rotation quaternion is interpreted as ESq =
(

cos
µ

2
, eT · sin

µ

2

)T
=

(q0, $)T , where q0 and $ = (q1, q2, q3)
T denote the scalar and vector part terms, respectively.

Co-ordinate transformation is performed by the non-commutative quaternion product denoted by ⊗:

E x = E
Sq⊗ Sx⊗ ESq∗. (2)

In Equation (2), ESq∗ = (q0,−$)T denotes the conjugate quaternion that describes the attitude of
frame S relative to frame E (i.e., the inverse rotation is formulated as ESq∗ = S

E q). Moreover, E x and
Sx indicate the quaternions associated with the vector observations by their augmentation with zero
scalar parts (q0 = 0) as x =

(
0, xT)T . The rotation can be rearranged into the initial Equation (1) with

the quaternion-parameterized rotation matrix

E
SR (q) =

(
q2

0 − $T$
)

I3 + 2$$T + 2q0[$×]

=

q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 ,
(3)

where I3 is the identity matrix of size 3 and [$×] denotes the antisymmetric matrix of $, defined for the
vector cross product $× x = [$×]x as
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[$×] =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 . (4)

Let Sω =
(
0, ωx, ωy, ωz

)T denote the four-dimensional quaternion formed by the angular
velocities about the x, y, and z axes in the sensor frame. The time derivative of the quaternion
E
Sq represents the rate of change of attitude E relative to frame S , according to the vector differential
equation

E
S q̇ =

1
2
E
Sq⊗ Sω =

1
2

Q (q) Sω, Q (q) =

[
q0 −$T

$ q0 I3 + [$×]

]
, (5)

where the matrix-vector product is indicated by the quaternion matrix Q (q). The attitude of frame
E relative to S is obtained by integrating the quaternion derivative ES q̇. Thereforeforth, the sub- and
super-scripts are omitted, for the sake of simplicity.

The authors used the Euler angles for the quality evaluation of attitude estimation, as their
interpretation is straightforward for the reader. Euler angles (including yaw, pitch, and roll) describe
the attitude as a sequence of three rotations, where ψ, θ, and φ denote the rotation angles about the z,
y, and x axes, respectively. The quaternion output provided by the analyzed filters was converted to
Euler representation as follows.

φ = arctan2
(

2q2q3 − 2q0q1, 2q2
0 + 2q2

3 − 1
)

,

θ = − tan−1

 2q0q2 + 2q1q3√
1− (2q0q2 + 2q1q3)

2

 ,

ψ = arctan2
(

2q1q2 − 2q0q3, 2q2
0 + 2q2

1 − 1
)

.

(6)

3. Attitude Estimation with MEMS MARG Sensors

Each sensor of a MEMS-based MARG unit provides useful information of the instantaneous
attitude; however, none of the sensors are capable of providing reliable attitude results alone.
Gyroscopes measure angular velocities; therefore, gyroscope-based attitude realization is obtained
through numerical integration, but both the temperature-dependent bias and noise contained in the
measurements cause cumulative errors. An accelerometer measures the sum of gravitational and
external accelerations. In stationary states, long-term stable attitude realization can be obtained
based on the decomposition of the sensed gravity vector but, as external accelerations increase
as a result of dynamic motion, the quality of attitude realization drastically deteriorates, making
accelerometer-based realization highly unreliable. Magnetometers measure the geomagnetic field,
which is used to determine heading information. However, the magnetic fluctuation of the environment
caused by the perturbation of ferromagnetic objects highly disturbs the magnetometer output.

To provide reliable attitude estimation results, the individual features of each sensor are carefully
addressed in the following.

3.1. Gyroscope Model

Let Ωk denote the raw measurement vector of a tri-axis MEMS gyroscope in the kth time instance.
This measurement vector is composed of a 3× 1 vector ωk of true angular velocities around the x, y,
and z axes, a vector ω̄k containing the non-static bias terms, and a vector µk of additive measurement
noises. The imperfections of manufacturing results, in that the sensor model is extended with axis
misalignment and scale factor errors, are represented by the 3× 3 matrices MΩ and ∆SΩ, respectively.
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Moreover, the temperature sensitivity of the sensor makes the slowly varying bias vector ω̄k propagate
as a random walk process characterized by a driving noise vector ηk, and therefore [61]

Ωk = (I + ∆SΩ) MΩωk + ω̄k + µk,

ω̄k = ω̄k−1 + ηk.
(7)

in the above measurement model, the rate noise vectors contain zero-mean white Gaussian variables
for each axis (i.e., E [µk] = E [ηk] = 0) and the covariance matrices are defined as E

[
µkµT

l
]
= Σµ,kδkl ,

Σµ,k ≥ 0, and E
[
ηkηT

l
]
= Ση,kδkl , Ση,k ≥ 0, where δkl denotes the Kronecker delta.

Gyroscope-based (gyro-based) attitude realization is obtained by numerical integration of the true
angular velocity vector ωk in Equation (7). Common calibration procedures performed in laboratories
allow for the determination and compensation of the scale factor and misalignment errors. This
process exceeds the scope of this article; therefore, we assume that the compensation has already
been performed (MΩ = I and ∆SΩ = 0) [22,41,62]. Based on Equation (5), the gyro-based attitude
realization is given in quaternion form as

qk+1 = qk +
Ts

2
Q (qk)

[
0

Ωk − ω̄k

]
, (8)

where Ts = 1/ fs is the sampling time. However, this method yields only short-tem accuracy, due
to the presence of bias and measurement noise terms (ω̄k and µk) resulting in boundless drift in the
attitude propagation.

3.2. Accelerometer and Magnetometer Models

The accelerometer and magnetometer sensors provide absolute reference observations, and
therefore their measurements can be combined to determine the complete attitude of the sensor. The
raw output Ak of a tri-axis MEMS accelerometer consists of four main components: the gravitational
and external acceleration vectors gk and αk measured in the sensor frame (S), the vector a0 of bias
terms, and the vector νk of additive measurement noises. Additionally, the raw measurement vector
Hk of the tri-axis MEMS magnetometer model is composed of the true local magnetic field hk sensed in
S , the sensor bias vector h0, and the measurement noise vector εk:

Ak = (I + ∆SA) MA (αk + gk) + a0 + νk,

Hk = (I + ∆SH) MH (Bsihk + bhi) + h0 + εk.
(9)

Similarly to the gyroscope model, Gaussian noises are considered in the aforementioned models;
therefore, E [νk] = E [εk] = 0 and the covariance matrices are E

[
νkνT

l
]
= Σν,kδkl , Σν,k ≥ 0 and

E
[
εkεT

l
]
= Σε,kδkl , Σε,k ≥ 0. Beside the scaling and misalignment errors (∆SA, ∆SH , MA, and MH),

the magnetometer measurements are disturbed by magnetic soft iron and hard iron errors caused by
the local environment, represented by the 3× 3 matrix Bsi and the 3× 1 vector bh, respectively. These
model errors are determined via self-calibration procedures which address the time-invariant nature
of the vector fields and map the distribution of the measurements on an ellipsoid [63–65]. We assume
that the compensation has already been performed (therefore, hk := B−1

si hk − bhi), the bias and scale
errors are zero, and the misalignment errors are identity matrices.

If a mobile mechatronic system stays in stationary states (i.e., no external acceleration is performed;
αk ≈ 0) and, moreover, if the local magnetic field is not perturbed by ferromagnetic objects, then the
locally constant reference vectors can express the observations, with the help of the rotation matrix, as

SAk =
S
ER (qk)

E g,
SHk =

S
ER (qk)

Eh.
(10)
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In the aforementioned configuration, the gravity vector is given as E g = (0, 0, 9.81)T , whereas the
magnetic field vector is Eh = (b cos (σ) , 0, b sin (σ))T in SI units, where b and σ denote the magnitude
of the Earth’s geomagnetic field and inclination angle, respectively.

Let the components of an inertial frame in both S and E be expressed by constructing two triads
of orthonormal unit vectors. The first triad is defined with the reference vectors in E as

ŝ1 =
E g∥∥E g
∥∥ , ŝ2 =

E g× Eh∥∥∥E g× Eh
∥∥∥ , ŝ3 = ŝ1 × ŝ2. (11)

The second triad is constructed with the observation vectors in frame S , where

r̂1 =
SAk∥∥∥SAk

∥∥∥ , r̂2 =
SAk × SHk∥∥∥SAk × SHk

∥∥∥ , r̂3 = r̂1 × r̂2. (12)

Based on Equations (10)–(12), first the measurement (observation) and reference matrices are
formed, then the rotation matrix is determined as:

Mmea = [r̂1 r̂2 r̂3] , Mref = [ŝ1 ŝ2 ŝ3] , S
ER (qk) = MmeaMT

ref. (13)

The determined rotation matrix SER (qk) =
(
rij
)

enables the calculation of the quaternion
representing the attitude of the sensor frame:

q0 =
1
2

√
1 + r11 + r22 + r33, q1 =

r23 − r32

4q0
, q2 =

r31 − r13

4q0
, q3 =

r12 − r21

4q0
. (14)

The aforementioned algorithm is the well-known TRIAD [22,66], which produces the raw attitude
realization based on accelerometer and magnetometer measurements. The attitude realization, which
is described by Equation (14), is denoted by qk,TRIAD = (q0, q1, q2, q3)

T and can also be considered as
the sum of the real attitude characterized by the quaternion qk in the kth time instance and an additive
Gaussian white noise, vk, which represents the effects of νk and εk from Equation (9) after the TRIAD
output is evaluated:

qk,TRIAD = qk + vk, E [vk] = 0, E
[
vkvT

l

]
= Σv,kδkl , Σv,k > 0. (15)

This algorithm is characterized by a simple and straightforward implementation and, therefore, it is
a popular choice for raw attitude determination [2,3]. However, it has a disadvantage in producing large
errors when dynamic conditions are present or external magnetism disturbs the sensor readings. As a
result, if external acceleration is performed (αk 6= 0→ SA 6= R E g) or ferromagnetic materials distort
the geomagnetic field (SH 6= R Eh), then the attitude realization becomes unreliable with drastically
reduced accuracy. This implementation method does not include any explicit models of external
disturbances. Instead, the effects of external disturbances are absorbed by vk in Equation (15); that is,
the additive noise is characterized by a significantly larger noise variance in disturbed environments.

3.3. Attitude Estimation with Extended Kalman Filter

The MARG sensor-based attitude realizations described by Equations (8) and (15) are utilized in a
sensor fusion algorithm, which both synthesize the individual advantages and features of each sensor
and provides attitude results with higher reliability and accuracy. First, this sensor fusion algorithm
utilizes the gyroscope-based realization to propagate the attitude results, then these results are updated
with the most recent quaternion realization derived from accelerometer and magnetometer readings.
This propagate-update mechanism provides both a smooth output and stability in the attitude results
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by compensating for the drift error generated in Equation (8). The fusion of the sensor models is
executed with an EKF.

The EKF effectively combines the noisy measurements and dynamic model-based predictions;
moreover, in a recursive filter structure, it provides an approximate maximum-likelihood state estimate
x̂ of the stochastic nonlinear state-space model [22]. In fact, the filter linearizes the nonlinear dynamic
model around the last estimated state vector using the Jacobian matrix and, for the linearized dynamics,
the linear KF is utilized, which is an the optimal state estimator such that E [xk − x̂k] = 0 and
E
[
(xk − x̂k) (xk − x̂k)

T
]
→ inf.

The mathematical models and statistical assumptions of MARG sensors, as introduced in the
previous subsections, fully match the process and measurement equations of a stochastic nonlinear
state-space model. Namely, the process model describes the quaternion propagation with both
the discrete-time integrated angular velocities (Equation (8)) and the random walk process of the
bias term (Equation (7)). Therefore, the dynamic model is defined with the 7× 1 state vector xk =

(qk, ω̄k)
T , the 3× 1 input vector uk = Ωk, and the 7× 1 process noise vector wk =

(
µ

q
k, ηk

)T
, where µ

q
k

represents the quaternion noise generated due to the gyroscope measurement noise µk. For the sake of
comprehensiveness and to foster a straightforward implementation, we give the full description of
state propagation in Equation (16):

xk+1 = f (xk, uk, wk) , x (0)



q0

q1

q2

q3

ω̄x

ω̄y

ω̄z


k+1

=



q0,k +
Ts
2

(
q1,k (ω̄x,k −Ωx,k) + q2,k

(
ω̄y,k −Ωy,k

)
+ q3,k (ω̄z,k −Ωz,k)

)
+ µ

q
0,k

q1,k − Ts
2

(
q0,k (ω̄x,k −Ωx,k)− q3,k

(
ω̄y,k −Ωy,k

)
+ q2,k (ω̄z,k −Ωz,k)

)
+ µ

q
1,k

q2,k − Ts
2

(
q3,k (ω̄x,k −Ωx,k) + q0,k

(
ω̄y,k −Ωy,k

)
− q1,k (ω̄z,k −Ωz,k)

)
+ µ

q
2,k

q3,k +
Ts
2

(
q2,k (ω̄x,k −Ωx,k)− q1,k

(
ω̄y,k −Ωy,k

)
− q0,k (ω̄z,k −Ωz,k)

)
+ µ

q
3,k

ω̄x,k + ηx,k
ω̄y,k + ηy,k
ω̄z,k + ηz,k


(16)

According to Equation (15), the measurement model is characterized by a linear quaternion
mapping. Therefore, it is formed with the 4× 1 output vector zk = qk,TRIAD which provides the
quaternion update as the TRIAD output, the measurement noise vector vk, and the output matrix H, as

zk = Hxk + vk,

qk,TRIAD =
[

I4 04×3

] [ qk
ω̄k

]
+ vk.

(17)

If the x (0) Gaussian vector in Equation (16) is known along with its mean and covariance matrix;
that is, if

x̂0 = E [x (0)] , P0 = E
[
(x (0)− x̂0) (x (0)− x̂0)

T
]

, (18)

then the MARG sensor models fully satisfy the stochastic hypothesis. Namely, the process and
measurement noise vectors are zero-mean white Gaussian variables, x (0) is uncorrelated to wk and vk,
and, moreover,

E
[
wkvT

l

]
= 0, E

[
wkwT

l

]
= Qδkl , E

[
vkvT

l

]
= Rδkl , (19)

where Q ≥ 0 and R > 0 are the process and measurement noise covariance matrices, respectively.
The EKF algorithm provides a suboptimal state estimation x̂k with minimized estimation error
covariance. The state propagation, processing of the observations, and the covariance estimate update
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are performed through time and measurement update equations in the recursive filter structure; namely,
the time update equations utilize the input variable uk, the state estimation and error covariance
obtained in the previous step (x̂k−1 and Pk−1), and the state dynamics f (x̂k−1, uk) to calculate the a
priori state estimate (x̂−k ) and the corresponding error covariance (P−k ):

x̂−k = f (x̂k−1, uk) ,

P−k = ΦPk−1ΦT + Q, Φ =
∂ f
∂x

∣∣∣∣
x̂k−1

.
(20)

in Equation (20), the Jacobian Φ is applied in the a priori covariance matrix update. To foster
straightforward implementation, we give its full form as follows,

Φ =



1 Ts
2 (ω̄x −Ωx)

Ts
2 (ω̄y −Ωy)

Ts
2 (ω̄z −Ωz)

Ts
2 q1

Ts
2 q2

Ts
2 q3

Ts
2 (Ωx − ω̄x) 1 Ts

2 (Ωz − ω̄z)
Ts
2 (ω̄y −Ωy) − Ts

2 q0
Ts
2 q3 − Ts

2 q2
Ts
2 (Ωy − ω̄y)

Ts
2 (ω̄z −Ωz) 1 Ts

2 (Ωx − ω̄x) − Ts
2 q3 − Ts

2 q0
Ts
2 q1

Ts
2 (Ωz − ω̄z)

Ts
2 (Ωy − ω̄y)

Ts
2 (ω̄x −Ωx) 1 Ts

2 q2 − Ts
2 q1 − Ts

2 q0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (21)

The measurement update equations utilize the both the observation vector, zk (accelerometer and
magnetometer-based attitude realization), and the measurement noise covariance, R, to correct the
a priori state estimate. First, the Kalman gain matrix Gk is obtained, then the state estimate x̂k and
its error covariance Pk are corrected. The a posteriori estimation results are obtained in the following
steps.

Gk = P−k HT
(

HP−k HT + R
)−1

,

x̂k = x̂−k + Gk
(
zk − Hx̂−k

)
,

Pk = (I − Gk H) P−k .

(22)

The estimation performance of EKF is mostly determined by the noise covariance matrices Q
and R. Unfortunatelly, in practice, these parameters (i.e., the statistical description of the state and
observation noises) are not fully measurable (or require time consuming, complex, and extensive
verification and validation procedures); especially in the case of MARG sensors, as the effects of
both different noise sources and disturbances are represented with general noise vectors vk and wk in
Equations (16) and (17). Generally, the parameters Q and R are tuned based on engineering intuition
through trial-and-error analysis; however, that method yields only a compromise solution between
the estimation accuracy and filter dynamics. To overcome this compromise solution, numerical
optimization-based approaches have been proposed in our earlier work. The proposed method both
allows for evaluation of the best possible (achievable) estimation quality and provides the optimized
parameters which maximize the filter performance [1]. We recall this approach to find the optimized
parameters of EKF in Section 5.

4. Fuzzy-Adaptive Strategy

The adaptive approach varies the noise variances, according to both the instantaneous dynamical
behavior and external distrubances, thus providing filter performance superior to that provided by the
standard EKF. The instaneous dynamics are characterized by the magnitudes of vibration and external
acceleration of the sensor frame. Moreover, the adaptive strategy incorporates the magnitude of the
distorted geomagnetic field as an external disturbance. The following subsections present the structure
of the adaptive strategy, in which both novel measurement methods of external disturbances and the
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novel sophisticated fuzzy logic-based inference machine are implemented for the real-time tuning of
the noise covariances.

The measurement methods in Sections 4.1 and 4.2 have been described in detail, with multiple
examples and figures, in [1].

4.1. Measuring Vibration Magnitude

The system vibration magnitude is described by the oscillation frequency of the sensor frame.
For estimation of the instantaneous oscillation frequency, gyroscope readings are utilized, as the
sensors provides reliable angular rate measurements for both static and highly dynamic motions.
The oscillation frequency is obtained by fast Fourier transform-based (FFT-based) evaluation of short
angular rate measurement packets. Let L denote the length of these packets. Then, an oscillation
frequency estimation f̂ is calculated, in three steps, as follows.

1. Collect a measurement packet x from the angular rate readings.
2. Obtain frequency domain information about the instantaneous vibration by calculating the

discrete Fourier transform of x. Let ( fi, |Ω|i) denote the output of FFT, where fi and |Ω|i
represent the frequency components and amplitudes, respectively. The transform of LFFT length
is calculated as

Wl =
LFFT−1

∑
k=0

xke−j
(

2πlk
LFFT

)
, l = 0, ..., LFFT − 1, (23)

and the output is given by

( fi, |Ω|i) =
(

fsi
LFFT

,
2
L
|Wi|

)
, i = 0, ...,

LFFT

2
. (24)

3. Obtain the oscillation frequency estimate f̂ by finding the highest-intensity frequency component,
such that

fmax : ( fmax, |Ω|max) ∧ |Ω|max = max
∀i, fi≤ fthr

|Ω|i ,

f̂ =

{
0, if |Ω|max < |Ω|thr

fmax, otherwise
,

(25)

where fthr denotes the maximum oscillation frequency the system is expected to be exposed to,
while the threshold rate magnitude |Ω|thr cuts off the noise in the aforementioned evaluation.

4.2. Measuring External Acceleration and Magnetic Perturbation Magnitudes

The external acceleration magnitude is calculated based on the accelerometer measurements. The
system stays in stationary states (non-accelerating mode) if the magnitude of accelerometer readings
is approximately equal to the norm of the reference vector

∥∥E g
∥∥. Therefore, the external acceleration

magnitude ∆αk can be calculated as the difference between the norms of SAk and E g in each sampling
epoch. As the instantaneous difference does not provide an overall picture of the system dynamics, an
accumulated measure is thus utilized to describe the external acceleration magnitude. The accumulated
measure α̂ext is formulated as the integrated scalar external acceleration for a window of length L (see
Equation (26)). This average external acceleration measure provides both useful and broad information
of the instantaneous system dynamics.

α̂ext =
1
L

L

∑
k=1
|∆αk| , ∆αk =

∥∥∥SAk

∥∥∥− ∥∥∥E g
∥∥∥ . (26)

The magnetic perturbation magnitude is characterized based on the evaluation of the difference
between the norms of SHk (instantaneous magnetometer measurement at epoch k) and Eh (reference
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magnetic field). If no magnetic disturbance is present, then the magnitude of magnetometer
measurement is approximately equal to the norm of the reference vector. Otherwise, the magnitude of
their difference gives an instantaneous measure of the perturbation magnitude. As it is difficult to draw
conclusions based on this brief and instantaneous result at each epoch, similarity to the accelerometer
readings, an accumulated measure, is thus applied to quantify the magnetic perturbation magnitude
ĥext.

ĥext =
1
L

L

∑
k=1
|∆hk| , ∆hk =

∥∥∥SHk

∥∥∥− ∥∥∥Eh
∥∥∥ . (27)

Similarly to accelerometer and gyroscope sensors, the magnetic perturbation magnitude is determined
by collecting data packets of length L from the magnetometer and computing the average magnetic
field difference using Equation (27).

4.3. Fuzzy Inference Machine

The measures f̂ , α̂ext, and ĥext fully characterize both the instantaneous system dynamics and
disturbance magnitudes. These results can be utilized in an inference system in which the noise
covariance manipulation of the EKF is described according to the external effects. As a result, an
adaptive strategy is established that (online) tunes the noise covariances as a function of the measures
f̂ , α̂ext, and ĥext.

The relationships between the aforementioned measures and the EKF parameters are defined with
fuzzy reasoning. Fuzzy logic does not require complex mathematical models from the system designer
but, instead, it enables the implementation of deductions easily and effectively by using fuzzy sets
and simple IF-THEN linguistic rules. Therefore, heuristic knowledge and a collection of deductions
make such an inference system realizable. The fuzzy inference system is executed in three main
steps: fuzzification determines the membership values of the crisp input variables, inference machine
translates the heuristic knowledge and assigns a firing value to each fuzzy output, and defuzzification
maps the fuzzy output to the crisp domain. The main parts of the algorithm are detailed in [67].

Observations related to the system behavior and human common-sense contribute to collecting
the empirical IF-THEN rules (deductions) that define the fuzzy inference machine. In the case of
attitude estimation with MARG sensors, the main deductions are as follows.

• IF the sensor frame stays in stationary (non-accelerating and non-perturbed) mode, THEN a
well-chosen ratio between the noise covariances Q and R yields satisfactory state estimation
performance.

• As the external disturbance effects are absorbed by the measurement noise vk in Equation (17), IF
vibration, external acceleration, and magnetic perturbations disturb the MARG-based attitude
realization, THEN the measurement noise covariance R should be increased according to the
intensity of the measures f̂ , α̂ext, and ĥext (i.e., higher noise variance characterizes the attitude
realization qk,TRIAD with higher uncertainty).

The overall FAEKF structure is depicted in Figure 2, where a three-input one-output fuzzy
inference machine executes the online tuning of noise variances. The inputs of the fuzzy system are
the measures f̂ , α̂ext, and ĥext, whereas weighting factors, denoted by KR, are output weights for the R
parameter (i.e., the adaptive strategy varies the measurement noise covariance matrix in each epoch
k as Rk = KR,kR). The ranges of the input variables f̂ (Hz), α̂ext (g), and ĥext (normalized unit, nu),
as well as the output variable KR, were selected based on our earlier research results in [1]. Three
Gaussian membership functions cover each input range, where the magnitudes of f̂ , α̂ext and ĥext

are characterized by Z (zero), S (small), and B (big) fuzzy sets. The output ranges were covered with
seven singleton consequents (K1, · · · , K7), which represent the scaling magnitudes. Both the applied
membership functions and fuzzy inference system properties are depicted in Figure 3. The fuzzy
surfaces expressing the relationships between the crisp inputs and outputs are depicted in Figure 4.
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Figure 2. Structure of the FAEKF.
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Figure 3. Properties of the applied fuzzy inference machine.

A sophisticated inference system was implemented, where the initial deductions described above
were expanded into 27 rules. These simple IF-THEN linguistic rules completely describe the scaling
of noise variances, according to the magnitudes of the external acceleration, vibration, and magnetic
perturbation. The implemented rule base for KR is summarized in Table 1. Two examples describe the
interpretation of the implemented inference system, as follows:

1. IF the oscillation frequency f̂ is zero (Z) and the external acceleration α̂ext and magnetic
perturbation ĥext magnitudes are big (B), THEN a fairly large scaling factor (KR = K5) is applied
for the measurement noise covariance. This collocation of the system state means that the
observation is expected to have rather large uncertainty and, therefore, the algorithm relies more
heavily on the state propagation (left side, second row, second column).

2. IF f̂ is small (S) and the α̂ext and ĥext measures are close to zero (Z), THEN a smaller weight
of KR = K2 is applied for R. Therefore, the algorithm considers the observation with higher
reliability and maintains the correction of the state propagation by processing the measurements
with higher significance (middle, first row, first column).
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Figure 4. Generated surfaces related to the fuzzy rule base.

Table 1. Rule base of the fuzzy inference machine.

Vibration
f̂ = Z

Mag. pert.
ĥext

Vibration
f̂ = S

Mag. pert.
ĥext

Vibration
f̂ = B

Mag. pert.
ĥext

Z S B Z S B Z S B

Ext. acc.
α̂ext

Z K1 K2 K3 Ext. acc.
α̂ext

Z K2 K3 K4 Ext. acc.
α̂ext

Z K3 K4 K5
S K2 K3 K4 S K3 K4 K5 S K4 K5 K6
B K3 K4 K5 B K4 K5 K6 B K5 K6 K7

The crisp scaling factor is computed by weighted average-based defuzzification of the fuzzy
output, in three steps:

1. Fuzzification of the observation vector χ =
(

f̂k, α̂ext,k, ĥext,k

)
∈ f̂ × α̂ext × ĥext and calculation of

the firing values of the ith rule (i = 1, ..., 27). Let χj denote the jth dimension of the observation
vector (j = 1, 2, 3), then the firing value γi

j represents the fitting degree of the observation χj to

the antecedent fuzzy set Xi
j in the jth dimension of the ith rule as

γi
j = max

χj
{min{X∗j

(
χj
)

, Xi
j
(
χj
)
}}, X∗j

(
χj
)
= e
− (

χj−bij)
2

2c2
ij , (28)

where X∗j
(
χj
)

is the fuzzified observation, moreover, bij and cij denote the mean and standard

deviation of the Gaussian function antecedent defined in the jth dimension of the ith rule.
2. Calculation of the applicability measure of the ith rule, denoted by γi, as the minimum of the

aforementioned firing values. This weight determines the significance of the consequent fuzzy set
κi defined in the ith rule.

γi =
3

min
j=1

γi
j (29)
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3. Computation of the crisp output K as the weighted average over all rule outputs:

K =
∑27

i=1 κi · γi

∑27
i=1 γi

. (30)

The proposed fuzzy inference machine is a zero-order Sugeno system. The complete inference for
the adaptive measurement noise covariances in each epoch k can be given in a compact form as

K
(

κ, f̂ , α̂ext, ĥext

)
=

∑27
i=1 κi ·min

(
γi
(

f̂
)

, min
(

γi (α̂ext) , γi
(

ĥext

)))
∑27

i=1 min
(

γi
(

f̂
)

, min
(

γi (α̂ext) , γi
(

ĥext

))) ,

Rk = KR,kR, KR,k = K
(

κR, f̂k, α̂ext,k, ĥext,k

)
, κR = (K1, ..., K7)

T ,

(31)

where γi( f̂ ), γi(α̂ext), and γi(ĥext) are the ith-rule fired membership function values and κi denotes
the singleton value of the consequent weighting factor of the ith rule for scaling the noise covariance R
(see Figures 2 and 3).

5. Experimental Validation

This section describes the test platform employed in the evaluation of filter performance, the
optimization approach utilized to tune the filter parameters, and the attitude determination results
during different dynamic motions and external perturbations.

5.1. Test Environment

A comprehensive framework was designed, in which a 6 DOF test bench dynamically altered the
pose (position and orientation) of a MARG unit. The 6 DOF test bench was utilized to both simulate
various (accelerating, non-accelerating, and vibrating) dynamic behaviors and measure the real attitude
of the sensor frame, along with the raw MARG data. The framework was based on the widely used
ROS and the Gazebo open source dynamics simulator, which utilizes physics engines to consider the
effects of gravity, friction, and forces [68]. As a result, this framework enabled the evaluation of state
estimation error, quantification of the filter performance, and tuning of filter parameters.

The proposed test bench consisted of three prismatic joints and three revolute joints. The prismatic
joints made the sensor frame slide back and forth, up and down in the three dimensional (3D) space
by three 3m long rails. The revolute joints set the instantaneous attitude (Euler angles) of the sensor
frame. The MARG unit is attached to a plate at the end of this kinematic chain and, so, the 6 DOF
system enabled both the spatial coordinates and orientation of the sensor frame to be set and measured.
Moreover, this 6 DOF mechanism enabled the generation of external accelerations simultaneously
with sensor frame oscillations. Therefore, a variety of dynamic (vibrating and accelerating) system
conditions could be simulated, where both the raw sensor data and real joint states were be recorded.
Figure 5 shows the model of the test environment in Gazebo.

Let xb, yb, and zb denote the spatial coordinates of the body plate (i.e., the origin of the MARG
unit). Then, the total kinetic energy T of the test platform is given as

T =
1
2

q̇T Mmassq̇, Mmass = diag
((

mj + I3×1mb, Jb
))

, (32)

where mj =
(
mj,1, mj,2, mj,3

)T , mj,i denotes the mass of each prismatic joint for i = {1, 2, 3}, whereas

mb and Jb =
(

Jb,φ, Jb,θ , Jb,ψ

)T
indicate the mass and moment of inertia of the body plate, respectively.

Moreover, q = (xb, yb, zb, φ, θ, ψ)T denotes the vector of generalized coordinates. The potential energy
stored in the system is approximated as P =

(
mb + ∑3

i mj,i

)
gh0 +

(
mb + mj,3

)
gzb −mj,3gh1, where

the constants h0 and h1 denote the base height and distance between the body plate and third prismatic
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joint, respectively. The Lagrange function of the system is L = T− P, where the motion of the system
can be determined with the help of the Lagrange equations [69]. As a result, the equations of motion
can be written in the following form,

M (q) q̈ + V (q, q̇) = τa − τf , (33)

where M (q) is the inertia matrix, V (q, q̇), including the Coriolis, centrifugal, and potential force terms,
whereas τa and τf indicate the generalized external torques and friction effects, respectively.

The aforementioned dynamics were implemented in an Unified Robot Description Format (URDF)
file [70]. This file enables the specification of the whole geometric description of the system, including
the robot kinematics, motion ranges, location of frames, mass properties, and collisions. Each joint
(DOF) is driven in a closed-loop with an independent proportional-integral-derivative (PID) effort
controller. Each effort controller was implemented, using the ros controllers meta-package, as a
single-input single-output (SISO) low-level controller, in which torque control action was applied
to the joint. The PID parameters were set up heuristically by iterative tuning in Gazebo. The true
linear and angular positions of each joint were supplied by the joint state controller, a sensor controller
that publishes the joint state information (i.e., true positions, velocities, and efforts are represented
in double-precision floating-point format without measurement noise, discrepancy, or delay) [71,72].
In this application, the joint state information was obtained with a fs = 1 kHz sampling frequency.
The sensor measurements were provided by independent Gazebo plugins, developed in [73]. These
IMU and magnetic field sensor plugins were attached to the body plate of the 6 DOF test bench by
including them in the URDF file.

To execute different acceleration and vibration dynamic motions, on one hand, random desired
values were generated with random frequencies for the PID controllers of the three prismatic joints in
their configuration space. On the other hand, different sinusoidal signals were supplied as reference
values to the PID controllers of the three revolute joints, where both the amplitude and frequency
were varied randomly. Therefore, the closed-loop system caused the 6 DOF mechanism to execute
a wide variety of dynamic movements in the 3D space, with continously varying oscillations and
accelerations. Simultaneously, the three prismatic joints made the sensor frame slidd back and forth,
as well as up and down; simulating various external accelerations. The true joint states, along with the
instantaneous MARG sensor data, were collected to evaulate the attitude estimation performance.

Video demonstrations of the closed-loop dynamics have been shared on our website. Moreover,
as was described in Section 1, the whole ROS package, which includes the test bench properties, URDF
files, applied effort controllers, and Gazebo configuration files, have been made publicly available in
the supplementary online material, to help other lab teams evaluate similar experiments [58].
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Magnetic Perturbations

Magnetic perturbations were generated artificially, as the Gazebo simulation environment does
not contain such a feature. Therefore, based on the experimental results with magnetic disturbances
conducted in [74–77], we developed a simple algorithm to generate magnetic perturbations. The
algorithm is composed of three main steps, which are described as follows.

1. Generate a perfect artificial signal m of length Lm as a mixture of square, saw-tooth, triangle,
and two sinusoidal signals. Both the sequence of these signals and their parameters (i.e., the
amplitude and frequency) are randomly selected.

2. Obtain the analytic signal ma from m, where the real part is the original signal, while the imaginary
part contains the Hilbert transform (i.e., the original signal with a π/2 phase shift [78]). Then,
generate the artificial perturbation mp as the sum of the imaginary part and absolute value of the
Hilbert transformed complex signal, where the sequence of absolute values is reversed in time:

ma,k = mr,k + jmi,k, k = 1, ..., Lm,

mp,k = mi,k +
∣∣ma,l

∣∣ , k = 1, ..., Lm, l = Lm, ..., 1.
(34)

3. Remove the continuous linear trend of mp and low-pass filter the detrended signal with a first
order Butterworth infinite impulse response (IIR) filter.

Each step of the aforementioned algorithm is depicted in Figure 6. Moreover, Figure 7 highlights
the effect of the artificial perturbation on both the norm and each component of the raw magnetometer
signal. The blue curves represent the raw (calibrated, undisturbed, and normalized) magnetometer
measurements and the red curves show random sections, where the magnetometer had been disturbed
artificially with the proposed algorithm. These figures illustrate that the algorithm enabled both
generation of realistic magnetic perturbation effects and incorporation of effects of this type of
disturbance into the analysis of attitude estimation.
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Figure 6. Demonstration of the proposed magnetic perturbation generator algorithm.
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Figure 7. Magnetic field measurements before and after the application of the magnetic perturbation
generator algorithm.

5.2. Tuning of Filter Parameters

Tuning of the filter parameters was executed in MATLAB on a training data set collected in the
aforementioned test environment. The heuristic particle swarm optimization (PSO) algorithm was
utilized for the filter tuning problem, as it does not require gradient information, guides the search
well even in nonlinear noisy systems, and has demonstrated greater effectiveness and robustness
than other optimization methods [79–81]. Both the algorithm and applied PSO-based optimization
procedure have been presented in detail in our earlier works [1,82,83]; therefore, only key information
is described in the following paragraphs.

The inputs of the optimization problem are the real angular positions (i.e., the true Euler angles
φk, θk, and ψk provided by the 6 DOF test bench) and MARG sensor data (i.e., the acceleration,
angular velocity, and magnetic field measurements), whereas its outputs are the estimation errors
eφ,k = φk − φ̂k, eθ,k = θk − θ̂k, and eψ,k = ψk − ψ̂k, where φ̂k, θ̂k, and φ̂k denote the estimated Euler
angles (i.e., the outputs of the implemented filter algorithm). The PSO is a population-based search
algorithm that guides the search in the search space by employing a fitness function. In our work,
a complex fitness function was formulated for the problem to both quantify the differences between
the true and estimated Euler angles and measure the overall filter performance. Three mean squared
errors (MSE) were combined to evaluate the filtration quality. The PSO-based minimization of the
following fitness function enabled the filter parameters to be successfully tuned:

F = 3

√√√√√ksce

∏
j=1

∑
Nj
k=1 e2

φ,k

Nj

∑
Nj
k=1 e2

θ,k

Nj

∑
Nj
k=1 e2

ψ,k

Nj

, (35)

where ksce denotes the number of scenarios taken into account in the optimization problem; Nj is
the measurement length in the kth

sce scenario; and eφ,k, eθ,k, and eψ,k indicate the roll, pitch, and yaw



Sensors 2020, 20, 803 20 of 29

estimation errors, respectively. The optimization algorithm determined the optimal possible filter
parameters, corresponding to the lowest possible fitness function value. The block diagram of the filter
parameter optimization procedure is depicted in Figure 5.

The optimization could begin running once the parameters were initialized. The PSO parameters
were selected based on earlier studies [84,85], whereas the filter parameters (x̂0, P0, Q, and R) were
initialized by employing the results presented in [1]. As the sampling time in the ROS-based framework
was relatively low (Ts = 1ms), the adaptive strategy could be executed with bigger window size of
L = 400; moreover, the length of the transform was LFFT = 29 and the threshold oscillation frequency
and amplitude were fthr = 10 Hz and |Ω|thr = 0.26 rad/s, respectively. The process noises µ

q
k

and νk in Equation (16) were considered to be statistically independent [1,19,41]; therefore, diagonal
matrices were applied for both the process and measurement noise covariances with the following
characteristics,

Q =

[
I4 ·Qq 03×4

04×3 I3 ·Qω̄

]
, R = I4 · ρ, (36)

where the Qq, Qω̄, and ρ constant noise variances were tuned with PSO. Namely, the optimization
converged the quaternion measurement noise variance to a higher value of ρ = 3.53. This outcome
was expected, as intense accelerations and vibrations were applied with the 6 DOF test bench and the
effects of these external distrubances were absorbed in the measurement noise vk in Equation (17). This
high-noise variance value indicates that the TRIAD-based attitude realization was significantly more
unreliable than the gyro-based state propagation, especially in highly dynamic states of the system. At
the same time, the process noise variances converged to noticeably small values (i.e., Qq = 1.45× 10−6

and Qω̄ = 9.71× 10−10), resulting in the state-space dynamics (Equation (16)) becoming much more
reliable than the measurement correction equations. The successful optimization contributed to finding
the tuned EKF parameters which provided satisfactory attitude estimation quality with the help of
the adaptive strategy described in Section 4 for both static and extreme (vibrating and accelerating)
dynamic conditions.

5.3. Results

The attitude estimation performance of the FAEKF was evaluated on three measurements
performed in the test environment (Measurements 1–3 lasted for approximately 160 s, 210 s, and 315 s,
respectively). The dynamic motions executed by the 6 DOF test bench during these measurements
included stationary states, slow and fast changes in angular positions, mild and intense oscillations, and
external accelerations. The dynamic circumstances in which the filter performance was investigated
were characterized by the following ranges; 0− 8 Hz for sensor frame oscillation frequency, ±50 rad/s
for angular velocity, ±16 g for external spatial acceleration, and 0− 5 nu for magnetic perturbation
magnitude.

The robust filter performance in the highly disturbed (accelerating and vibrating) test environment
is highlighted in Figures 8–11. The first three rows of each figure show the roll (φ), pitch (θ), and
yaw (ψ) angles, where the blue curve indicates the true Euler angles (obtained by the joint states ROS
topic), whereas the red and yellow curves highlight the attitude estimation with and without the
proposed fuzzy adaptive strategy, respectively. The fourth rows depict both the instantaneous external
acceleration (blue curves) executed by the 6 DOF test bench and average dynamic acceleration (red
curves) determined by Equation (26). Similarly, the blue curve of the fifth row of each figure shows
the instantaneous magnetic perturbation generated by Equation (34), whereas the red curve indicates
the average magnetic field difference calculated by Equation (27). Finally, the sixth row depicts both
the instantaneous angular rate magnitude (blue curves) and the oscillation frequency of the sensor
frame (red curves) determined by Equation (25). The last three rows illustrate that the employed



Sensors 2020, 20, 803 21 of 29

measurement methods in the adaptive strategy provided useful information related to the external
acceleration, vibration, and magnetic disturbance magnitudes.

The noticable performance improvement provided by the fuzzy-adaptive strategy is highlighted
both by the figures and the results included in Table 2. The curves corresponding to the FAEKF output
fit to the true Euler angles to a satisfactory degree, both in frequencies and amplitudes; even when
extreme external perturbations were present. The effects of these disturbances drastically decreased
the performance of the standard EKF. For example, Figure 8 highlights that, at approximately 50 s,
an increased external acceleration and magnetic perturbation influenced the attitude estimation over
a 15 s long period. During this period, the effects of these disturbances were effectively suppressed
by the FAEKF; the adaptation laws enabled it to achieve satisfactory filter accuracy and convergence.
It is also shown that, without the fuzzy-adaptive strategy, an unsatisfactory EKF performance was
provided (Euler angles indicated with yellow curves). A similar outcome can be observed in Figure 9;
namely, the external acceleration and magnetic perturbation effects in the high vibrating environment
contributed to a significant decrease in the EKF estimation quality (e.g., see the yellow curves at ~140 s).
However, it is also shown that the adaptation laws enabled cancellation of these effects, even under
diverse dynamic conditions. Under static conditions, both EKF and FAEKF provided approximately
the same performance levels; these results are highlighted in Figures 10 and 11. As low-frequency
oscillations along with no magnetic perturbation nor external acceleration enabled the accelerometer-
and magnetometer-based attitude realization (TRIAD output) to be characterized with high accuracy,
the EKF could therefore provide satisfactory estimation quality based on the implemented state-space
model. In these static cases, the adaptive strategy does not modify the noise variances, as the
well-chosen ratio between the covariance parameters yields a satisfactory estimation quality.

The filter performance was quantified with the mean squared error (MSE) and standard deviation
(STD) of the attitude estimation error. These results were calculated for each measurement (M1, M2,
and M3) and are summarized in Table 2. Based on the results, a significant improvement in the
overall filter performance can be observed. In each measurement case, the yaw angle estimation
was characterized by the smallest errors, while slightly less robust outputs were provided for the
roll and pitch angle estimation. This outcome was expected in our configuration and is related to
the TRIAD algorithm’s characteristics. Namely, the impact of magnetometer readings relative to
the vertical axis is eliminated in ŝ2 and r̂2 (see Equations (11) and (12)), therefore the pitch and roll
angles were determined based on only the accelerometer measurements [23]. As the accelerometer
measurements were disturbed much more heavily (via both the measurement noise and frequent
external accelerations) than the magnetometer readings, therefore the disturbances influenced slightly
more the roll and pitch estimation performance of the filter. Based on both the figures and Table 2,
it can be concluded that a superior estimation convergence was achieved with the introduced adaptive
strategy, thereby validating the performance of the proposed FAEKF approach. Nevertheless, some
potential improvements are left open for investigation in future studies:

1. Employing a more robust deterministic approach to determine the quaternion from accelerometer
and magnetometer observations in the measurement update state of the EKF.

2. Partitioning the fuzzy inputs and outputs into additional fuzzy sets, thereby implementing a
more advanced fuzzy inference system.

3. Tuning the shapes of the applied fuzzy sets, the ranges of input and output variables, and the
weights of the IF-THEN rules with the aid of optimization.

4. Varying the window size in the determination of external disturbance magnitudes, thereby
providing more accurate measures for the adaptation laws.

5. Extending the state space model with external acceleration and magnetic perturbation models,
where the driving Gaussian variables vary according to the external disturbance magnitudes.

6. Applying an additional output in the fuzzy inference system which weights the process noise
covariance matrix.
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Figure 8. First time slot from the measurements.

Throughout the results, it was demonstrated that the developed methods in the adaptive strategy
provided relevant information of the environment in which attitude estimation was performed. The
obtained external disturbance magnitudes enabled us to form an inference mechanism that effectively
manipulated the noise variances on-the-fly, thereby providing superior filter performance. As external
accelerations, magnetic perturbations, and vibration are common disturbance sources in motorized
mechatronic systems, the proposed method can be advantegously applied in such mechatronic systems.
The paper also demonstrated the benefits of fuzzy logic, as it provided an expert-oriented approach
to implementing complex relations with the help of simple heuristic IF-THEN rules. The proposed
adaptation laws can be universally applied for the online tuning of any filter structure. Moreover,
both the measurement methods and fuzzy inference mechanism can be intelligently employed in
adaptive control solutions for mechatronic systems performing motions in unknown and/or disturbed
environments (e.g., wheeled/legged robots moving on uneven terrain or UAVs maneuvering in
windy environments).
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Table 2. Mean squared error (MSE) and standard deviation (STD) results of the investigated filters.

Condition roll (φ) pitch (θ) yaw (ψ)
MSE (rad2) STD (rad) MSE (rad2) STD (rad) MSE (rad2) STD (rad)

M1 FAEKF 0.0010 0.0301 0.0026 0.0421 0.0004 0.0188
EKF 0.0037 0.0605 0.0127 0.0927 0.0099 0.0688

M2 FAEKF 0.0020 0.0433 0.0040 0.0536 0.0007 0.0261
EKF 0.0089 0.0937 0.0252 0.1261 0.0085 0.0916

M3 FAEKF 0.0050 0.0695 0.0056 0.0548 0.0016 0.0405
EKF 0.0046 0.0669 0.0102 0.0650 0.0089 0.0944
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Figure 9. Second time slot from the measurements.
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ĥ
e
x
t
(n
u
)

68 70 72 74 76 78 80 82 84 86 88 90 92
0

30

60

Time (sec)

‖Ω
‖
(r
a
d
/
s)

68 70 72 74 76 78 80 82 84 86 88 90 92
0

4

8
f̂
(H

z)

Figure 10. Third time slot from the measurements.
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Figure 11. Fourth time slot from the measurements.

6. Conclusions

This paper proposed a novel qAEKF structure, FAEKF, in which both new measurement
techniques were developed for the calculation of external disturbance magnitudes and novel adaptation
laws were implemented with fuzzy logic. The EKF core incorporated a 7-dimensional state-space
model for the estimation of both the quaternion and gyroscope bias vector. Three external disturbance
measurement methods were fused to characterize the dynamic and/or perturbed environment in which
attitude estimation was being performed. Namely, the external acceleration and magnetic disturbance
magnitudes were represented with accumulated measures, which provided broad information of
the instantaneous system circumstances. Moreover, the instantaneous oscillation frequency of the
sensor frame was obtained as a measure of vibration magnitude. A sophisticated fuzzy inference
machine was designed, which formed the relationship between these external disturbance magnitudes
and the EKF parameters. The implemented fuzzy system incorporated simple heuristic IF-THEN
rules, in order to consistently modify the noise variance values of the filter, thus providing accurate
and robust attitude results. A novel test environment was designed for experimental validation of
the proposed techniques, in which a 6 DOF test bench both executed various dynamic motions and
measured the true Euler angles along with the raw MARG data. The tuning of EKF parameters was
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performed with the aid of the PSO algorithm. The experimental results showed that the proposed
adaptive structure effectively suppresses the effects of external disturbances, thereby enabling the
FAEKF to provide reliable attitude estimation results, even in extreme dynamic and/or perturbed
situations. The proposed adaptive (dynamic-dependent) feature makes the FAEKF a suitable candidate
for attitude estimation in mechatronic systems operating in variable conditions. Future work will
involve the performance evaluation of the filter during the control of our Szabad(ka)-II hexapod robot
in a disturbed environment.
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