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Abstract: Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial
demyelinating disease of the central nervous system. MS is characterized by a wide range of
motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia.
The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence
on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative
and antioxidative enzyme activities and the presence of degradation products. This review article
discusses the components of redox homeostasis, including reactive chemical species, oxidative
enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover
frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such
as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive,
as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor
erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway.
The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial
phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in
search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the
battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation
products helps to evaluate the redox status of MS patients to expedite the building of personalized
treatment plans for the sake of a better quality of life.

Keywords: oxidative stress; redox; antioxidant; multiple sclerosis; biomarker; neurodegenerative
disease; personalized medicine

1. Introduction

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the brain and spinal
cord, which over 2.2 million people worldwide suffer from; it affects primarily young adults from
20 to 40 years of age. After one to two decades, many MS patients enter a progressive phase of the
disease. As survival rates have improved, MS patients suffer throughout the adult life. Years lived
with disability begin to increase steeply early in the second decade of life and disability-adjusted life
years peak in the sixth decade of life [1]. MS encompasses a wide range of symptoms from motor
and autonomic dysfunctions to psychobehavioral disturbances, including gait difficulties, paresthesia,
spasticity, vision problems, dizziness and vertigo, incontinence, constipation, sexual disturbances,
pain, cognitive and emotional changes, anxiety, and depression [2–5]. Increased risk of depression
and painful conditions in chronic illnesses are likely to be mediated by the kynurenine pathway of
tryptophan metabolism [6,7].

Several genetic susceptibilities, environmental factors, and the aging process have been
proposed to alter the risk of developing MS, but the underlying cause of the disease remains
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unknown [8,9]. The most typical pathomechanisms involved in MS are simultaneous inflammatory
and neurodegenerative processes [10,11]. Main pathological findings of MS include the blood-brain
barrier disruption, multifocal inflammation, demyelination, oligodendrocyte loss, reactive gliosis,
and axonal degeneration [12]. Multifocal immune-mediated destruction of myelin and oligodendrocytes
leading to progressive axonal loss is a main cause of neurological deficits in MS [13–15].

The diagnosis of MS is confirmed by the presence of two or more multifocal inflammatory or
demyelinating attacks in the central nervous system (CNS) with objective clinical evidence, a single
attack with magnetic resonance imaging (MRI)-detected lesions, and positive cerebrospinal fluid
(CSF) analysis, or insidious neurological progression with positive brain MRI or CSF analysis [16].
The symptomatic course classifies MS into four subtypes. Approximately 85% of MS patients
have alternating episodes of neurological disability and recovery that last for many years, termed
relapsing-remitting MS (RRMS). Almost 90% of RRMS patients progress to steady neurological decline
within 25 years, termed secondary progressive MS (SPMS). Nearly 10% of MS patients suffer from
steady deterioration of neurological functions without recovery, termed primary progressive MS
(PPMS). As few as 5% of MS patients present progressive neurological deficits with acute attacks with
or without recovery, termed progressive-relapsing MS (PRMS) [17]. However, PRMS is no longer
considered a subtype of MS and is now grouped into PPMS with active disease of new symptoms
or changes in the MRI scan [18]. In addition, clinically isolated syndrome (CIS) is a single episode
of monofocal or multifocal neurological deficits that lasts at least 24 h. CIS is one of the courses of
MS disease [12].

As in other neurodegenerative diseases, MS is a clinically classified disease of CNS in which
multifactorial factors, including genetic, environmental, socioeconomic, cultural, personal lifestyle,
and aging play an initial role to form a causative complex, eventually converging into similar
pathognomonic clinical pictures [4]. Inflammatory and demyelinating attacks are unique manifestations
in MS, but different pathomechanisms govern the distinguished clinical courses in each subtype of MS.

Currently there is no cure for MS. Disease-modifying therapy is the mainstay of MS treatment.
Immunomodulators, immunosuppressors, and cytotoxic agents are main groups of medicine.
Immunomodulators, such as interferon (IFN)-beta (β), glatiramer acetate (GA), and siponimod are used
for CIS. Short courses of high-dose corticosteroid methylprednisolone alleviate acute flare-ups of RRMS,
indicating that an inflammatory process predominates in RRMS and relapse prevention of RRMS [19,20].
Siponimod is indicated for RRMS [20]. For active RRMS monoclonal antibodies alemtuzumab and
ocrelizumab, and immunomodulator dimethyl fumarate, fingolimod, and teriflunomide are prescribed
besides IFN-β and GA. For highly active RRMS, cytotoxic agents cladribine and mitoxantrone are
indicated, besides immunomodulatory fingolimod, and monoclonal antibodies, natalizumab and
ocrelizumab. PPMS and SPMS are characterized by a neurodegenerative process leading to neural
death [18]. An immunosuppressive monoclonal antibody ocrelizumab is indicated for treatment of
PPMS [21] and diroximel fumarate, siponimod, and ofatumumab were recently licensed for treatment
of SPMS [20,22,23] (Table 1).
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Table 1. Licensed disease-modifying drugs in multiple sclerosis [19–26].

Class Drugs Indications

Immunomodulators

Interferon beta (IFN-β) CIS
Active RRMS

Methylprednisolone Acute flare-ups RRMS
Relapse prevention

Glatiramer acetate (GA) CIS
Active RRMS

Dimethyl fumarate Active RRMS

Diroximel fumarate
CIS

RRMS
Active SPMS

Fingolimod Active RRMS
High-active RRMS

Teriflunomide Active RRMS

Siponimod
CIS

RRMS
SPMS

Immunosuppressors

Alemtuzumab Active RRMS

Natalizumab High-active RRMS

Ocrelizumab
Active RRMS

High-active RRMS
PPMS

Ofatumumab
CIS

RRMS
Active SPMS

Cytotoxic Agents
Cladribine High-active RRMS

Mitoxantrone High-active RRMS

Either causative, accompanying, or resultant events of inflammation and neurodegeneration,
disturbance of reduction-oxidation (redox) metabolism have been observed and play a crucial
role in pathogenesis of MS [27–29]. The serum proteomics revealed that ceruloplasmin, clusterin,
apolipoprotein E, and complement C3 were up-regulated in RRMS patients, compared to healthy
controls. Vitamin D-binding protein showed a progressive trend of oxidation and the increased
oxidation of apolipoprotein A-IV in progression from remission to relapse of MS [30]. CSF samples of
patients in the remission stage of RRMS showed higher purine oxidation product uric acid, reduced
antioxidant, and increased intrathecal synthesis of IgG [31]. The observations suggest the presence of
redox metabolism disturbance and involvement of inflammatory process in RRMS. Furthermore, higher
serum alpha (α)-tocopherol levels were associated with reduced T1 gadolinium (Gd+)-enhancing
lesions and subsequent T2 lesions in MRI of RRMS patients on IFN-β. Antioxidant glutathione (GSH)
mapping showed lower GSH concentrations in the frontoparietal region of patients suffering from
PPMS and SPMS than RRMS and no significant difference between those of RRMS and controls. Thus,
the oxidative stress in CNS was linked to neurodegeneration in progressive types of MS [32].

This review article reviewed participants of redox homeostasis, including reactive chemical
species, oxidative and antioxidative enzymes, and resulting degradation products, all of which serve
as evidence of biochemical assaults and tissue injuries under redox disequilibrium. Literature research
was carried out using PubMed/MEDLINE and Google Scholar, using appropriate search terms, such as:
“reactive oxygen species”, “oxidative stress”, “redox”, “biomarker”, “neurodegenerative disease”,
“inflammation”, “neurodegeneration”, and/or “multiple sclerosis”. Meta-analyses, systematic reviews,



Biomedicines 2020, 8, 406 4 of 35

expert reviews, case-control studies, and cohort studies were included in this review. Selection
criteria and a risk of bias assessment are described in Tables A1 and A2 of Appendix A. Alterations
of redox components in MS in general, phase-, and treatment-specific components were reviewed
in search of a potential diagnostic, prognostic, predictive, and/or therapeutic redox biomarker.
Finally, monitoring different redox components, including oxidative enzymes, antioxidative enzymes,
and degradation products during the disease progression helps to evaluate the redox status of MS
patients, thus expediting the building of the most appropriate personalized treatment plans for
MS patients [33].

2. Oxidative Stress

A redox reaction is a type of chemical reaction that involves the transfer of electrons between
two molecules. A pair of electrons transfers from a nucleophile to an electrophile, forming a new
covalent bond. The redox reaction is common and vital to the basic function of life such as cellular
respiration, in which sugar is oxidized to release energy, which is stored in ATP. Redox metabolisms
constitute multiple metabolic pathways involved in the series of redox chemical reactions indispensable
for sustaining life and, at same time, engaged in removal of electrophilic oxidative species and
other harmful nucleophiles. The dynamic activities range from a single electron transfer, enzyme
reaction, chemical reaction cascade, to signaling in cells, tissues, organ systems, and whole organismal
levels [34]. Oxidative stress is a state caused by an imbalance between the relative levels of production
of reactive oxidizing metabolites and their elimination by the enzymatic or non-enzymatic antioxidant
system. The oxidative state is induced by oxidative stressors either derived from xenobiotics or
produced from the activities of oxidative enzymes and essential cellular constituents [35] (Figure 1a).
Oxidative stressors are linked to the aging process, neurologic disease, and psychiatric disorders
including Alzheimer’s disease (AD), Parkinson’s disease (PD), MS, amyotrophic lateral sclerosis (ALS),
and depression [36–40].
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Figure 1. Redox homeostasis and antioxidant supplementation. (a) Oxidative stressors comprise of
external and internal stressors, exerting oxidative chemical reactions in organism. Oxidation is an
indispensable bioenergetic process to sustain life. (b) Reductive stressors are products of antioxidative
enzymes that generate antioxidants in response to regular oxidation activity and increased oxidative
stress. (c) Antioxidant supplementation attempts to shift the biphasic response from adverse to
beneficial phase to maintain nucleophilic tone. This mechanism is called parahormesis.



Biomedicines 2020, 8, 406 5 of 35

2.1. Endogenous Oxidative Stressors: Oxidative Enzymes and Reactive Species

Endogenous oxidative stressors are produced from cellular activities of cytosolic xanthine
dehydrogenase (XDH), membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, inflammatory lipoxygenase (LOX), and cyclooxygenase (COX), phagocytic myeloperoxidase
(MPO) in respiratory burst, a second messenger nitrogen oxide (NO)-producing nitric oxide synthetase
(NOS), mitochondrial and lysosomal electron transfer chain (ETC) enzymes, among others. Transition
metals such as iron (Fe2+) and copper (Cu+) also play a crucial role in the formation of oxidative
stressors via the Fenton reaction [41].

2.1.1. Oxidative Enzymes Generating Reactive Oxygen Species

Reactive oxygen species (ROS) include several free radicals, such as superoxide (O2
−•) and

hydroxyl radical (OH•) and nonradical molecules such as hydrogen peroxide (H2O2) and organic
hydroperoxide (ROOH) (Table 2). ROS are produced in endogenously in the cytosol, the plasma
membrane, the membranes of mitochondria and endoplasmic reticulum, peroxisomes, and phagocytic
cells [42,43] (Figure 2). ROS is difficult for direct measurement in biological tissues due to its highly
reactivity and short life.Biomedicines 2020, 8, x FOR PEER REVIEW 6 of 34 
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Figure 2. Reactive chemical species. Reactive chemical species comprise of not only reactive oxygen
species and reactive nitrogen species, but also reactive sulfur, carbonyl, halogen, and selenium species.
Sulfur reacts with oxygen or nitrogen to form reactive thiol or nitrosothiol species, respectively.
All reactive chemical species react in concert during regular cellular activity but may cause oxidative
stress to damage cellular components such as proteins, lipids, and nucleic acids.



Biomedicines 2020, 8, 406 6 of 35

Table 2. Reactive chemical species. During regular cellular activity living cells generate numerous
reactive chemical species containing oxygen, nitrogen, sulfur, carbonyl, halogen, or selenium. Reactive
sulfur species can contain thiols or nitrothiols. Free radicals possess at least one unpaired electron that
makes highly reactive and short-lived. Nonradicals are oxidizing chemicals or easily converted to free
radicals. Superoxide, reactive sulfur species, or reactive selenium species can be reducing agents as
reactive nucleophilic species.

Reactive Chemical Species

Reactive Oxygen Species (ROS)

Free Radicals
Superoxide anion (O2

−•), Hydroxyl radical (OH•), Alkoxyl radical (RO•), Peroxyl
radical (ROO•)

Nonradicals
Hydrogen peroxide (H2O2), Organic hydroperoxide (ROOH), Organic peroxide (ROOR),

Singlet oxygen (O2
1∆g), Ozone (O3)

Reactive Nitrogen Species (RNS)

Free Radicals
Nitric oxide radical (NO•), Nitrogen dioxide radical (NO2

•)

Nonradicals
Nitrite (NO2

−), Nitrate (NO3
−), Nitroxyl anion (NO−), Nitrosyl cation (NO+),

Peroxynitrite (ONOO−), Peroxynitrate (O2NOO−), Nitrosoperoxycarbonate (ONOOCO2
−),

Dinitrogen trioxide (N2O3), Dinitrogen tetraoxide (N2O4), Nitryl chloride (NClO2)

Reactive Sulfur Species (RSN)

Free Radicals
Thiyl radical (RS•), Peroxysulphenyl radical (RSOO•)

Nonradicals
Hydrogen sulfide (H2S), Thiolate anion (RS−), Thiol (RSH), Hydropersulfide (RSSH),

Disulfide (RSSR), Hydropolysulfide (RSSnH), Dialkyl polysulfide (RSSnR), Polysulfide
(H2Sx), Sulfenate (RSO−), Sulfinate (RSO2

−), Sulfonate (RSO3
−), Thiosulmonate (S2O3

2−),
Sulfite (RS2O3

2−), Sulfate (SO4
2 −), Thiosulfinate (C6H10OS2), S-nitrosothiols (RSNOs),

Nitrosopersulfide (SSNO−), Dinitrosylated sulfite adduct (SULFI/NO)

Reactive Carbonyl Species (RCS)

Nonradicals
Acetaldehyde (CH3CHO), Acrolein (Proponel+: C3H4O), Methylglyoxal

4-Hydroxy-nonenal (C9H16O2), 3-Deoxyglucosone (C6H10O5), Glyoxal (C2H2O2),
Methylgyoxal (C3H4O2), Electronically excited triplet carbonyls (3L=O*)

Reactive Halogen Species (RHS)

Free Radicals
Atomic chlorine (Cl•), Atomic bromine (Br•)

Nonradicals
Hypochlorite (OCl−), Chloramines (RNHCl), Hypobromite (OBr−), Hypoiodite (IO−),

Hypohalogenite (XO−; X = F, Cl, Br, or I)

Reactive Selenium Species (RSeS)
Nonradicals

Selenite (O3Se−2), Selenate (SeO4
2−), Selenocysteine (C3H7NO2Se),

Selenomethionine (C5H11NO2Se)

Reactive Nucleophilic Species

Free Radicals
Superoxide anion (O2

−•)

Nonradicals
Hydrogen sulfide (H2S), Thiolate (RS−), Hydropersulfide (RSS−), Disulfide (RSSR),

Selenite (O3Se−2), Selenate (SeO4
2−), Selenocysteine (C3H7NO2Se),

Selenomethionine (C5H11NO2Se)

In the cytosol, ROS can be generated by soluble intercellular components, such as catecholamines,
hydroquinones, flavins, and thiols (RSHs) that undergo reduction reactions [44]. The cytosolic enzyme
XDH normally catalyzes xanthine, NAD+, and water (H2O) to urate, reduced form of NAD+, NADH,
and hydrogen ion (H+). Reversible oxidation of cysteine residues or irreversible Ca2+-stimulated
proteolysis converts XDH to xanthine oxidase (XO) that transfers electrons to molecular oxygen (O2),
producing superoxide (O2

−•) during xanthine or hypoxanthine oxidation [45]. The serum levels of
uric acid, a major endogenous antioxidant was measured in patients with PPMM, RRMM, and SPMM.
The uric acid levels were significantly lower in active MS than inactive MS, and the uric acid levels
were independently correlated with gender, disease activity and duration of the disease [46] (Table 3).
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Table 3. Oxidative stress biomarkers of multiple sclerosis. The redox status can be monitored by the
activities of oxidative and antioxidative enzymes and the presence of degradation products derived
from cellular components. ↑: increase, ↓: decrease, -: unknown.

Classes Types
Human Samples

Reference
Blood CSF

Reactive Species Reactive Nitrogen Species ↑ ↑ [47]

Oxidative Enzymes

Xanthine Dehydrogenase (XDH) ↓ - [46]
Nicotinamide Adenine Dinucleotide Phosphate

(NADPH) Oxidase mixed - [48]

Superoxide Dismutase (SOD) ↑ ↓ [49–52]
Inducible Nitric Oxide Synthase (iNOS) ↑ ↑ [18,53–55]

Myeloperoxidase (MPO) mixed - [48]

Antioxidative Enzymes and
Transcriptional Factors

Glutathione Peroxidase (GPx) ↑(relapse)
↓(remission) ↓ [56–61]

Glutathione Reductase (GSR) - ↑ [61,62]
Catalase ↓ - [61,62]

Xanthine oxidase (XO)-Uric Acid ↓ - [46]
Nuclear Factor Erythroid 2-Related Factor (Nrf2) ↑ - [52]

Peroxisome proliferator-activated receptors (PPARs) - ↑ [63]
Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC-1α) ↓ - [64]

Degradation
Products and
End Products

Protein

Protein carbonyls ↑ - [65–71]
3-nitrotyrosin (3-NO-Tyr) ↑ - [68–70,72]
Protein glutathionylation - ↑ [73]

Dityrosine ↑ - [74]
Advanced oxidation protein products (AOPPs) ↑ - [49,74,75]

Advanced glycation end products (AGEs) ↑ ↑ [74,75]

Amino acids Asymmetric dimethylarginine (ADMA) ↓ - [76]

Lipid

F2-isoprostane (F2-isoP) ↑ ↑ [77–81]
Malondialdehyde (MDA) mixed ↑ [61,82–85]

4-hydroxynonenal (4-HNE) - ↑ [86]
Hydroxyoctadecadienoic acid (HODE) ↑ ↑ [87]

Oxysterol mixed ↑ [88]

DNA 8-dihydro-2′deoxyguanosine (8-oxodG) ↑ - [56]

The plasma membrane is a network of phospholipid bilayer and integral proteins which protects
the cellular organelles from the outer environment and is responsible for several cellular functions,
such as cell adhesion, ion transport, cell signaling, and phagocytosis. The main ROS of the plasma
membrane is a superoxide (O2

−•) produced by the membrane-bound enzyme nicotinamide adenine
dinucleotide phosphate oxidase (NOX), which is composed of two membrane proteins, three cytosolic
proteins, and a small GTP-binding protein [89,90]. The expression of NOX isoform NOX5 was
significantly increased, but the expression NOX4 was significantly decreased in serum of RRMS
patients, suggesting that differential NOX isoform expression contributes to OS-associated vascular
changes in MS [48]. ROS is also produced by COX and LOX, which convert arachidonic acid to
prostaglandins, thromboxanes, and leukotrienes. Phospholipase A2 generates ROS during arachidonic
acid oxidation [91]. In the presence of transition metal ions, such as Fe2+ and Cu+, hydrogen peroxide
(H2O2), organic hydroperoxide (ROOH), and organic peroxide (ROOR) produce hydroxyl (OH•),
alkoxyl (RO•), and peroxyl radical (ROO•), respectively [92] (Table 3).

Superoxide dismutase (SOD) catalyzes the disproportionation of two superoxide (O2
−•) into

molecular oxygen (O2) and hydrogen peroxide (H2O2). These enzymes are present in almost all
aerobic cells and in extracellular fluids. SODs contain metal ion cofactors that, depending on the
isozyme, can be copper, zinc, manganese, or iron [93,94]. There are three isozymes in humans. Dimeric
copper- and zinc-coordinated SOD1 is in the cytoplasm; tetrameric manganese-coordinated SOD2
is confined to the mitochondria; tetrameric copper- and zinc-coordinated SOD3 is extracellular [95].
The mitochondrial ROS production takes place at four protein complexes, ubiquinone, and cytochrome
c of the ETC, embedded in the inner membrane of the mitochondria [96]. The Complexes I/III/IV utilize
NADH as the substrate, while Complexes II/III/IV use succinic acid. The complex II is also glycerol
3-phosphate dependent. The primary mitochondrial ROS is superoxide (O2

−•) that is converted by
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mitochondrial SOD into hydrogen peroxide (H2O2), which can be turned into hydroxyl (OH•) via
the Fenton reaction [97]. The Complex I and III release superoxide (O2

−•) into the mitochondrial
matrix where it can damage the mitochondrial DNA, while the Complex III also releases superoxide
(O2

−•) into the intermembrane space where it is accessible to the cytosol [98]. Reduced levels
of antioxidant α-tocopherol was observed in the blood of patients with Leber’s hereditary optic
neuropathy, which is caused by mitochondrial mutation of the Complex I, suggesting that oxidative
load was elevated and antioxidant capacity was compromised [99]. Other mitochondrial enzymes
that contribute to hydrogen peroxide (H2O2) production are monoamine oxidases, dihydroorotate
dehydrogenase, α-glycerophosphate dehydrogenase, and α-ketoglutarate dehydrogenase (α-KGDH)
complex. Succinate dehydrogenase also generates ROS [100].

Significantly higher mean activity of SOD in erythrocyte lysates was reported in RRMS than
controls. Interestingly, the SOD activity of CIS was higher than that of RRMS [101]. The erythrocyte SOD
activity can be a diagnostic biomarker of CIS and RRMS. The SOD activity was significantly lower in the
erythrocyte lysates of RRSM patients upon relapse than controls but increased following the intravenous
administration of corticosteroid methylprednisolone and remained higher during remission period than
controls. The SOD is a potent predictive and therapeutic biomarker. The serum/plasma samples also
showed significantly higher mean SOD activity in RRMS compared to control groups [82]. However,
platelet SOD1 and SOD2 activity was unchanged in MS patients [49]. Intriguingly, SOD activity was
significantly low in CSF of CIS and RRMS patients, despite the significantly high activity of plasma
SOD. Furthermore, there were negative correlations between the erythrocyte SOD activity and disease
duration and expanded disability status scale (EDSS) in CIS and RRMS, between the erythrocyte SOD
activity and Gd+ enhancement lesion volume in CIS patients [50]. These findings suggest the SOD
activity as a possible diagnostic and prognostic marker (Tables 3 and 4).

The peripheral blood mononuclear cells (PBMCs) SOD1 proteins and mRNA expression were
significantly lower in RRMS patients than controls and became significantly more elevated following
IFN-β1b treatment than the baseline [51]. These studies suggest SOD as a potential therapeutic
biomarker (Table 4). However, the erythrocyte SOD activity remained unchanged following the
treatment of natalizumab, a humanized monoclonal antibody against the cell adhesion molecule
α4-integrin. But levels of carbonylated protein and oxidized guanosine were reduced [52].

In the inner membrane of mitochondria and the endoplasmic reticulum, a heme-containing
monooxygenase cytochrome P450 (CYP) enzymes are responsible for oxidizing steroids, cholesterols,
and fatty acids. The CYPs forms ROS superoxide (O2

−•) and hydrogen peroxide (ROOH) by substrate
cycling [102]. Protonation of hydrogen peroxide (ROOH) forms hydrogen peroxide (H2O2) which,
furthermore, cleaves into hydroxy radicals (OH•). The redox cycling produces free radical semiquinone
from quinoid substrates [103]. In the mitochondrial transport chain, flavoprotein reductase forms ROS
by direct reduction of O2 and via the mediation of quinones. [104]. Superoxide (O2

−•) is produced by
XO in the reperfusion phase of ischemia, LOX, COX, and NADPH-dependent oxidase [105]. In the
endoplasmic reticulum NADH cytochrome b5 reductase can leak electrons to molecular oxygen (O2)
to generate superoxide (O2

−•) during the NADPH-dependent oxidation of xenobiotics [106].
Most enzymes in the peroxisomes produce ROS during the catalysis of fatty acid α- and β-oxidation,

amino acid and glyoxylate metabolism, and synthesis of lipidic compounds. A large fraction of
hydrogen peroxide (H2O2) generated inside peroxisomes was observed to penetrate the peroxisomal
membrane and diffuse to the surrounding media [107]. The peroxide can diffuse through the channel
formed by the peroxisomal membrane protein Pxmp2 and hydrogen peroxide (H2O2) generated
by the peroxisomal urate oxidase can release through crystalloid core tubules into the cytosol [108].
Meanwhile, peroxisomes also possess protective mechanisms to counteract oxidative stress and
maintain redox balance. Reduction in peroxisomal gene and protein expression was observed in MS
gray matter [109].
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Table 4. Possible redox biomarkers in multiple sclerosis. Reactive chemical species, oxidative enzymes,
antioxidants, antioxidative enzymes, degradation products, and end products are potential biomarkers
for multiple sclerosis (MS). Diagnostic biomarkers allow early detection and secondary prevention;
prognostic biomarkers suggest the likely clinical course; predictive biomarkers predict the response
of MS patients to a specific therapy; and therapeutic biomarkers indicate a target for therapy. CIS:
clinically isolated syndrome, PPMS: primary progressive MS; RRMS: relapsing-remitting MS, SPMS:
secondary progressive MS, mixedMM: mixed population of MS.

Class Components
Biomarkers

Diagnostic Prognostic Predictive Therapeutic

Reactive
Chemical Species

Total nitrite (NO2
−)/nitrite (NO3

−)
value (tNOx)

PPMS, RRMS,
Relapse, SPMS RRMS - -

S-nitrosothiol RRMS, SPMS Spinal injury - -

Oxidative
Enzymes

Superoxide dismutase (SOD) CIS, RRMS CIS, RRMS RRMS RRMS
Myeloperoxidase (MPO) RRMS RRMS - -

Inducible nitric oxide synthase (iNOS) RRMS - - -

Antioxidants and
Antioxidative

Enzymes

Xanthine oxidase (XO)-Uric acid PPMM, RRMM,
SPMM - - -

Selenium RRMS - - -
Glutathione reductase (GSR) mixedMM MixedMM - -

Catalase CIS, RRMS RRMS - -
Thioredoxin-Peroxiredoxin (TRX-PRDX) MS - - -

Nuclear factor erythroid 2-related
factor (Nrf2) RRMS - RRMS -

Peroxisome proliferator-activated
receptors (PPARs) RRMS - - -

Peroxisome proliferator-activated
receptor gamma coactivator

1-alpha (PGC-1α)
PPMS, SPMS - - -

Degradation
Products and
End Products

Protein carbonyls RRMS, SPMS RRMS, SPMS RRMS -
3-nitrotyrosine

(3-NO-Tyr) RRMS, SPMS - RRMS -

Glutathionylation Acute attack - - -
Dityrosine RRSM - - -

Advanced oxidation protein
products (AOPPs) CIS, RRMS RRMS RRMS -

Advanced glycation end products (AGEs) RRMS - - -
Asymmetric dimethylarginine

(ADMA) RRMS, SPMS - - -

F2-isoprostane
(F2-isoP) RRMS, SPMS SPMS - -

Malondialdehyde (MDA) RRMS RRMS RRMS -
4-hydroxynonenal

(4-HNE) PPMS, RRMS, SPMS - - -

Hydroxyoctadecadienoic acid (HODE) CIS, RRMS - - -
Oxocholesterols MixedMS SPMS - -

Oxidized low-density
lipoprotein (oxLDL) RRMS, SPMS - - -

8-OH2dG RRMS - - -

The lysosomal ETC plays a central role to support the positive proton gradient to maintain an
optimal pH of the acid hydrolases [110]. The ETC is made up of a flavin-adenine dinucleotide, a b-type
cytochrome and ubiquinone with the donor NADH and ending to acceptor molecular oxygen (O2),
transferring three electrons. Superoxide (O2

−•) is possibly produced in the acidic environment which
favors dismutation of hydrogen peroxide (H2O2) into hydroxy radical (OH•) by ferrous iron [111].
Furthermore, ozone (O3) and ozone-like oxidants are generated from singlet oxygen (O2

1∆g) catalyzed
by antibody or amino acid. Ozone (O3) reacts with superoxide anion (O2

−•) to form hydrogen peroxide
(H2O2) in the presence of Fe+2 [112].

2.1.2. Oxidative Enzymes Generating Reactive Nitrogen Species

Reactive nitrogen species (RNS) are a group of nitrogen-congaing molecules including free radicals,
nitric oxide (NO), and nitrogen dioxide (NO2). Free radicals are nitric oxide (NO•) and nitrogen
dioxide (NO2

•) radicals, while nonradicals are nitrite (NO2
−) and nitrate (NO3

−), among others
(Table 2). RNS are derived from nitric oxide (NO) and superoxide anion (O2

−•) produced by nitric oxide
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synthetase 2 (NOS2), NADPH oxidase, XO, LOX, and COX, among others [113,114]. At physiological
concentrations, a gaseous molecule nitric oxide (NO) is a second messenger involved in blood pressure
regulation, smooth muscle relaxation, defense mechanisms, immune regulation, and neurotransmission
contributing the function of memory and learning [47].

Cross-sectional studies show that the levels of nitric oxide metabolites nitrite (NO2
−) and nitrite

(NO3
−), measured as a total value (tNOx), are significantly higher in plasma or serum of patients with

RRMS [83,115]. A longitudinal study revealed that higher serum tNOx is significantly correlated with
relapsing rate, suggesting prognostic biomarker of NOS [116]. Many studies of CSF samples reported
significantly higher levels of tNOx in RRMS and PPMS, compared to healthy controls [117,118]. A study
observed significantly higher levels of CSF tNOx in RRMS than SPMS, suggesting an inflammatory role
of RNS [119]. Significantly higher levels of CSF tNOx were reported in patients with acute relapsing
phase of RRMS than those with stable remitting phase of RRMS [120,121] (Tables 3 and 4).

In cGMP-dependent pathways, nitric oxide radical (NO•) generated by endothelial NOS in
endothelium, brain, and heart relaxes blood vessels and maintains normal blood pressure, while nitric
oxide radicals (NO•) produced by neuronal NOS serve as a neurotransmitter to regulate blood pressure
in the brain. Inducible NOS (iNOS) in macrophages and smooth muscle cells gives rise to nitric oxide
radicals (NO•) as in reaction to bacterial lipopolysaccharides and/or cytokines [122].

Nitric oxide radical (NO•) is produced from the metabolism of L-arginine by NOS that converts
L-arginine into L-citrulline and nitric oxide radical (NO•) by a 5-electron oxidation of a guanidine
nitrogen of L-arginine [123]. In mitochondria nitric oxide radicals (NO•) react with respiratory
Complex III to inhibit electron transfer and facilitate superoxide anion (O2

•−) production. The nitric
oxide radicals (NO•) also compete with molecular oxygen (O2) for the binding site at the binuclear
center of cytochrome c oxidoreductase, inducing a reversible inhibition of cytochrome c oxidase.
Nitric oxide (NO) neutralizes ROS [45]. However, RNS react with oxygen molecules (O2) and
ROS, giving rise to a variety of nitrogen oxides (NOs), such as nitrogen dioxide radical (NO2

•),
nitrogen dioxide (NO2), dinitrogen trioxide (N2O3), peroxynitrite (ONOO−), nitrite (NO2

−), and nitrate
(NO3

−). Higher concentrations of nitric oxide (NO) become toxic by forming nitrosothiols which
oxidize tyrosine, cysteine, methionine, and GSH. In mitochondria, nitric oxide radicals (NO•) inhibit
Complex I by S-nitrosation [124]. Together with other RNS, this contributes the damage of cell
membranes, proteins, and lipid membrane leading to the degradation of mitochondria, lysosomes,
and DNA. The chain of events culminates in the inhibition of immune response and production of
carcinogenic nitrosamines [125]. Nitric oxide (NO) is also involved in metal homeostasis including Fe,
Cu, and Zn [126].

Highly toxic peroxynitrite (ONOO−) is formed by the reaction of nitric oxide (NO) and superoxide
anions (O2

−•), leading to the production of more reactive compounds that oxidize methionine and
tyrosine residues of proteins, lipids, and DNA. Reacting with superoxide anion (O2

−•), nitric oxide
radicals (NO•) form peroxynitrite which causes reversible inhibition of cellular respiration in the
mitochondria [127]. In peroxisomes nitric oxide radicals (NO•) react with superoxide anions (O2

−•)
produced by XO to form peroxynitrite and hydrogen peroxides [111]. In addition, insulin resistance
favors peroxintrite formation [128].

In response to bacterial lipopolysaccharides and inflammatory stimuli, iNOS generates nitric
oxide (NO) that protects tissue hypoxia and serves as a neurotransmitter. However, overexpression
iNOS, increase of nitric oxide (NO), and subsequent inflammation have been implicated in
pathophysiology of neurodegenerative diseases including MS [47]. Calmodulin mediates the
oxidative stress and inflammasome activation involving calmodulin-binding proteins, calcineurin,
and calcium/calmodulin-dependent kinase II. Calmodulin inhibitors improved cognitive functions in an
animal model of vascular dementia [129]. The iNOS activity is upregulated in acute MS plaques [19,53].
Increased activity and expression of iNOS in lymphocytes were found in active relapsing phase
of RRMS [54]. CSF iNOS expression was shown in MS patients and mean CSF NOS activity was
significantly higher, compared to controls [55] (Table 3).
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2.1.3. Reactive Sulfur Species

Reactive sulfur species (RSS) are sulfur-based redox-active compounds able to oxidize or reduce
biomolecules under physiological conditions, often formed by thiols (RSHs) and disulfides (RSSHs).
RSS include cysteine and methionine, GSH, trypanothione, and mycothiol [130] (Table 2).

Thiyl radicals (RS•), very reactive oxidants produced in the active site of enzymes such as the
ribonucleotide reductase can react with nitric oxide radicals (NO•) [131]. Thiolate ions (RS−) are better
nucleophiles than alkoxides because sulfur is more polarizable than oxygen [132]. Thiol (RSH) is a
metal ligand [133]. Hydrogen sulfide (H2S) is produced from from L-cysteine by cistationine-γ-lyase.
Hydrogen sulfide (H2S) increases the activity of N-methyl-D-aspartate receptor and β-adrenergic
receptors through a cAMP-dependent protein kinase and activates NOS and the hemoxygenase favoring
the formation of Nitric oxide (NO) and carbon monoxide (CO) from heme metabolism [134]. Hydrogen
sulfide (H2S) is a metal ligand that reacts with other biological electrophilic sulfur species such as
hydropersulfide (RSSR) and sulfenic acid (RSOH) [135]. Cysteine residues in GSH were found to be
readily oxidized by superoxide anions (O2

−•) to form singlet oxygen (O2
1∆g), glutathione disulfide

(GSSG), and glutathione sulfonate (GSO3
−) in a reaction involved with peroxysulphenyl radical (RSOO•).

This mechanism may apply to cysteine residues in proteins [136]. Hydroxyl radicals (OH•) may also
initiate the conversion of amino acids to peroxyl radicals [92]. Another reaction catalyzed by XO is the
decomposition of S-nitrosothiols (RSNO), a RNS, to nitric oxide (NO), which reacts with a superoxide
(O2
−•) anion to form peroxynitrite (ONOO−) under aerobic conditions [137]. Hydropersulfide (RSSH)

is a nucleophile, as well as electrophilic molecule that is readily reduced to extremely potent reductant
thiol (RSH). Disulfide (RSSR) is electrophilic RSS that can be reduced to thiol (RSH). Hydropolysulfide
(RSSnH) and dialkyl polysulfide (RSSnR) are like hydropersulfide (RSSH) [135]. RSS can interact with
ROS, generating sulfur oxides such as peroxysulphenyl radical (RSOO•), sulfenate (RSO−), sulfinate
(RSO2

−), sulfonate (RSO3
−), thiosulmonate (S2O3

2−), and SO4
2 − [138]. Sulfenate (RSO−) reacts with

other thiols to give disulfides, RSSR. RSS can also interact with RNS, leading to the formation of
S-N hybrid molecules, such as thiazate (NSO−), thionitrite (SNO−) isomers, S-nitrosothiols (RSNOs),
nitrosopersulfide (SSNO−), and the dinitrosylated sulfite adduct, SULFI/NO. S-nitrosothiols (RSNOs)
can be reduced to thiol (RSH) and nitroxyl (HNO) [139]. XO catalyzes S-nitrosothiols (RSNOs) to nitric
oxide (NO), which reacts with a superoxide (O2

−•) anion to form peroxynitrite (ONOO−) under aerobic
conditions [123]. The properties of thiazate (NSO−), thionitrite (SNO−) isomers, nitrosopersulfide
(SSNO−) and polysulfides dinitrososulfites (Sulfi/NO), are to be determined and they appear to be a
source of nitric oxide (NO) and nitroxyl (HNO) [140–142] (Table 2).

An antioxidant N-acetyl cysteine administration was reported to improve cognitive functions in
patients in MS and N-acetyl cysteine supplement is under clinical trial for the treatment of fatigue
in MS patients [143,144]. The levels of methionine reported mixed results. The plasma methionine
levels were significantly reduced in RRMS and dietary methionine supplement was proposed for the
treatment [145]. The level of methionine sulfoxide was elevated more than two-fold in CSF of MM
patients and the reduction of dietary methionine was reported to slow the onset and progression of
MM [146,147]. The levels of GSH in MS have not reached a consensus [147–149]. Trypanothione and
mycothiol have not been investigated in MS. The serum S-nitrosothiol levels were increased in RRMS
and SPMS, and selectively correlated with spinal cord injury and, thus, a high level of S-nitrosothiol is
proposed to be a potential prognostic biomarker for spinal cord injury in MS [150] (Tables 3 and 4).

2.1.4. Reactive Carbonyl/Halogen/Selenium Species

Reactive carbonyl species (RCS) are metabolically generated highly reactive molecules with
aldehydes and electronically excited (3L=O*) triplet carbonyls, known for their harmful reactions to
nucleic acids, proteins, and lipids [92]. In addition, RCS are considered to participate in electrophilic
signaling of adaptive cell response and post-transcriptional protein modification [151]. RCS are
classified into α,β-unsaturated aldehydes; keto-aldehyde and di-aldehydes. In the presence of catalase
and bicarbonate, XO was found to produce the strong one-electron oxidant carbonate radical anion
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from oxidation with acetaldehyde. The carbonate radical was likely produced in one of the enzyme’s
redox centers with a peroxymonocarbonate intermediate [45]. Self-reaction of lipid peroxyl radical
(LOO•) produced by the oxidation of polyunsaturated fatty acids (PUFAs) by hydroxyl radical (HO•)
generates electronically excited triplet carbonyls (3L=O*) yielding to singlet oxygen (O2

1∆g) [89]
(Table 2). RCS react with amines and thiols leading to advanced glycation end products (AGEs),
biomarkers of ageing and degenerative diseases [152].

MPO, a lysosomal heme-containing enzyme present in granulocytes and monocytes catalyzes the
conversion of hydrogen peroxide (H2O2) and chloride anion (Cl−) to hypochlorous acid (HClO) during
the respiratory burst. An adipocyte producing hormone leptin stimulates the oxidative burst [153].
MPO also oxidizes tyrosine to tyrosyl radical [154]. MPO mediates protein nitrosylation, forming
3-chlorotyrosine (3-Cl-Tyr) and dityrosine crosslinks [155,156] (Table 2).

Studies on MPO activity reported mixed results. The mean MPO activity of peripheral leukocyte
was observed reduced in a mixed population of MS patients, compared to controls [157]. Significantly
higher serum MPO activity was measured in opticospinal phenotype (OSMS) of RRMS at relapse and
remission and in conventional phenotype of RRMS at remission, compared to controls. A positive
correlation was associated between Kurtzke’s EDSS and MPO activity at remission of OSMS [158]
(Table 4). The mean MPO activity of peripheral leukocytes was found higher, but statistically not
significant in RRMS, compared to controls [56] (Table 3). No study regarding CSF MPO activity in
MS was found. Selenium is an essential micronutrient with similar chemical and physical properties
to sulfur, but more easily oxidized and kinetically more labile than sulfur. Selenium is a component
of proteinogenic selenocysteine, naturally occurring selenomethionine and selenoproteins, such as
glutathione peroxidase (GPx), thioredoxin reductase (TRXR), and selenoprotein P [57]. Reactive
selenium species (RSeS) are selenium-containing inorganic and organic compounds including selenite
(O3Se−2), selenocysteine (C3H7NO2Se), and selenomethionine (C5H11NO2Se) [58] (Table 2). Selenium
have both beneficial and harmful actions. At low concentration it works as an antioxidant, inhibiting
lipid peroxidation and detoxifying ROS as a component of GPx and TRXR, while at high concentration
it becomes a toxic pro-oxidant, generating ROS, inducing lipid oxidation and forming cross-linking
in thioproteins [159] (Table 2). The serum selenium levels were measured significantly lower in MS
patients, compared to controls, suggesting antioxidant capacity is impaired in MS [160] (Table 3).

2.1.5. Exogenous Oxidative Factors

Oxidative stressors are generated in reaction to exogenous stimuli such as pollutants, food and
alcohol, cigarette smoke, heavy metals, chemotherapy, drug and xenobiotics, or radiation. Aging
becomes more susceptible to their insults. Organic solvents, organic compounds such as quinone,
pesticides and heavy metals including lead, arsenic, mercury, chromium, and cadmium are common
sources of oxidative stressors [41]. Ultraviolet and infrared-B radiations generate oxygen radicals
endogenously [161] (Figure 1a). The levels of serum arsenic, malondialdehyde (MDA), and lactate were
elevated and ferric-reducing activity of plasma was reduced RRMS patients and the levels of serum
lithium were significantly lower and the levels of nitric oxide (NO) were higher in RRMS patients,
compared to healthy controls, suggesting environmental factors seem to play a role in pathogenesis of
MS [162,163].

3. Reductive Stress

3.1. Reactive Nucleophilic Species

Endogenous reductive stressors include nucleophilic free radical, inorganic, and organic molecules
and antioxidative enzyme. (Figure 1b). Superoxide (O2

−•) anion is one of the reactive nucleophilic
species and a powerful reducing agent under physiological conditions, which initiates reaction cascades
generating another ROS, such as hydrogen peroxide (H2O2) and sulfur dioxide (SO2) derivatives.
Hydrogen sulfide (H2S), thiolate (RS−), hydropersulfide (RSS−), and disulfide (RSSR) are reactive
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nucleophilic species that can participate in nucleophilic substitution in vivo [133]. Selenium is
more nucleophilic than sulfur due to its greater electron density. The selenol (RSeH) portion of
selenocysteine (C3H7NO2Se) is ionized at physiological pH, making it more nucleophilic against
oxidative species [164,165] (Table 2).

3.2. Antioxidative Enzymes

Reductive stress is induced by excessive levels of reductive stressors that results from an elevation
in GSH/GSSG ratio, NAD+/NADH, NADP+/NADPH and/or or overexpression of antioxidative
enzymatic systems such as the GSH system, catalase, thioredoxin-peroxiredoxin (TRX-PRDX)
system, α-ketoglutarate dehydrogenase (GPDH), and glycerol phosphate dehydrogenase [166,167].
The reductive stressors deplete reactive oxidative species and are harmful as oxidative stressors and
implicated in pathological processes in AD, PD, and sporadic motor neuron disease, among others [168].

The GSH system consists of GSH, the enzymes for synthesis and recycling including
gamma-glutamate cysteine ligase, glutathione synthetase, glutathione reductase (GSR), and gamma
glutamyl transpeptidase, and the enzymes for metabolism and antioxidation including glutathione
S-transferase and GPx [169]. The GPx is an enzyme containing four selenium-cofactors that catalyzes
the reduction of hydrogen peroxide (H2O2) to water molecule (H2O) and organic hydroperoxide
(ROOH) to alcohol (ROH) by converting reduced monomeric GSH to GSSG. Glutathione s-transferases
show high activity with lipid peroxides [170]. Eight isozymes are in the cytosol, membrane, and plasma,
protecting the organisms from oxidative stress [171].

Most studies on peripheral blood GPx activity reported nonsignificant results in a mixed population
of MS [56,59,172–174]. However, lower mean GPx activity of erythrocyte lysates in remission and
higher mean GPx were reported in acute relapse of RRMS [60]. GPx activity in CSF was found lower
in MS patients [61]. The GSR activity of lymphocyte and granulocyte lysates were not significantly
different in MS, compared to controls. However, a significant correlation of GPx and GRx was observed
in controls, but not in MS [62]. Mean GRx activity of CSF was found significantly higher in MS
patients [61] (Tables 3 and 4).

Catalases a tetrameric heme- or manganese-containing dismutase that catalyzes the conversion of
two hydrogen peroxide (H2O2) molecules to water (H2O) in the presence of small amount of hydrogen
peroxide. The cofactor is oxidized by one molecule of hydrogen peroxide and then regenerated
by transferring the bound oxygen to a second molecule of substrate. The enzyme is located in the
peroxisomes, the cytosol of erythrocytes, and the mitochondria, removing harmful hydrogen peroxides
to prevent cellular and tissue damage [175].

Studies on the catalase activity of peripheral blood samples reported equivocal results in MS.
The catalase activity of granulocyte lysates was found lower in MS patients, compared to controls [176].
The activities of CSF and plasma catalase were found increased in CIS and RRMS patients, compared to
healthy controls, and MS patients with lower EDSS had higher plasma and CSF catalase activities [84]
(Tables 3 and 4).

In TRX-PRDX system PRDXs catalyze the reduction of H2O2 to H2O. H2O2 oxidizes the peroxidatic
cysteine of PRDXs to protein sulfenic acid (PSOH), which can react with the thiol (SH) group of the
resolving cysteine to yield the formation of an inter-(typical) or intramolecular (atypical) disulfide bond.
TRX/TRXR system mediates the reduction of the PRDX disulfide bond. TRX reduced state is maintained
by the flavoenzyme TRXR in the presence of NADPH. When H2O2 exceeds the normal levels, PRDXs
are overoxidized from PSOH to protein sulfinic acids (PSO2H). The latter can be reduced back to the
native form of the enzyme by sulfiredoxin (SRX) in the presence of ATP. However, further oxidation of
PRDXs to PSO3H is irreversible [177].

Serum Trx1 was significantly increased in the newly diagnosed MS patients, compared to controls.
TRX1 and APEX1 mRNA expressions were significantly higher in the newly diagnosed MS patients,
patients under INF-β treatment, and patients who received immunosuppressant azathioprine or
betamethasone, compared to healthy controls [178]. PRDX2 mRNA is upregulated and PRDX2
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expression is higher in MS lesions white matter of autopsy tissue of patients its expression level is
positively correlated with the degree of inflammation and oxidative stress [179] (Tables 3 and 4).

α-KGDH is a mitochondrial enzyme in Krebs cycle, which catalyzes α-ketoglutarate, coenzyme A
and NAD+ to succinyl-CoA, NADH and CO2, transferring an electron to the respiratory chain [180].
KGNH activity is sensitive to redox status. H2O2 reversibly inhibits KGNH by glutathionylation of
lipoic acid cofactor, resulting reducing electron supply to the respiratory chain. A lipid peroxidation
product 4-hydroxy-2-nonenal (4-HNE) reacts with lipoic acid cofactor, inhibiting α-KGDH activity [181].
The pyruvate tolerance test showed higher activity of α-KGDH in serum of MS patients [182]. However,
reduced expression and activity of mitochondrial α-KGDH was observed in demyelinated axons that
correlated with signs of axonal dysfunction (Table 3) [183].

α-GPDH catalyzes the reversible redox conversion of dihydroxyacetone phosphate to sn-glycerol
3-phosphate, linking carbohydrate and lipid metabolism. A loss of α-GPDH in oligodendrocytes
were observed in chronic plaques of MS patients, suggesting the presence of antioxidant capacity
impairment [63] (Table 3).

Nrf2 is a transcriptional factor of the antioxidative enzyme genes including catalase, GPx, GRx,
glutathione S-transferase, and SOD. In response to oxidative stress, the Kelch-like ECH-associated
protein 1 (KEAP1) inhibits the ubiquitin-proteasome system in the cytosol and facilitates the
translocation of Nrf2 into the nucleus to bind to the cis-acting enhancer sequence of the promotor
region, the antioxidant response elements [184,185]. Activation of the Nrf2-Keap1 pathway has been
observed in various types of cancers, accompanied with reduced antioxidant capacity and elevated
oxidative stress and inflammation [186]. The cytoplasmic and nucleic Nrf2 protein expression of
PBMC was increased and correlated with clinical improvement in MS patients on 14-month course of
natalizumab, an α4 integrin receptor blocker [110] (Tables 3 and 4).

Other transcriptional factors involved in energy metabolism have been investigated. Peroxisome
proliferator-activated receptors (PPARs) are a transcriptional factor of the gene regulating energy
metabolism including glucose metabolism, fatty acid oxidation, thermogenesis, lipid metabolism,
and anti-inflammatory response [187]. PPARs have attracted growing attention as promising targets
of many diseases such as diabetes and hyperlipidemia [188]. An isoform PPAR-gamma (PPAR-γ)
was elevated in CSF samples of MS, compared to controls [64]. Peroxisome proliferator-activated
receptor gamma coactivator 1-α (PGC-1α) 4 integrin receptor blocker is a transcriptional coactivator
that regulates the genes involved in energy metabolism. Reduced PGC-1α expression was associated
with mitochondria changes and correlated with neural loss in MS [189] (Tables 3 and 4).

3.3. Exogenous and Endogenous Antioxidants

A daily diet rich in naturally occurring polyphenolic antioxidants, such as flavonoids and phenolic
acids are regularly recommended for disease prevention and antioxidant supplements, such as
vitamin C, vitamin E, N-acetyl cysteine, L-carnitine and folic acid are frequently employed as a
complementary therapy for various diseases [190,191]. Those preventive and therapeutic measures
are based on the pathogenesis of diseases which are induced and developed under oxidative cellular
environment. Furthermore, plant polyphenols were reported to alleviate oxidative stress and enhance
neuroprotection [192]. Olive leaf-derived polyphenols are strong antioxidants and their therapeutic
use are of particular interest against oxidant-induced diseases including cancer and neurodegenerative
diseases [193–195]. The Mediterranean diet can present a biphasic dose-response curve toward hormetic
stimuli, preventing low-grade inflammation and inflammageing [196,197]. There is a growing interest
in supplementation of nonessential compounds that trigger the redox feedback loop activating the
nucleophilic response, parahormesis (Figure 1c) [198].

N-Methyl-D-aspartic acid receptor antagonist memantine and memantine-ferulic acid conjugate
improved oxidative stress in patients with AD [199]. A meta-analysis of randomized controlled trials
showed that an exogenous antioxidant N-acetylcysteine supplement improved cognitive function
in patients with schizophrenia [200]. Traditional Chinese medicine curcumin is an antioxidant and
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anti-inflammatory molecule that relieves pain and stress at least partly through the kynurenine
metabolic pathway of tryptophan metabolism [201]. The kynurenine pathway produces endogenous
oxidative and antioxidative metabolites. Single nucleotide polymorphism of the first rate-limiting
enzyme indoleamine 2,3-dioxygenase 1 was associated with inflammation and depressive symptoms
and influenced the age onset of neurodegenerative diseases [202]. The elevated levels of an oxidative
metabolite 3-hydroxykynurenine and an antioxidative kynurenic acid were linked to depressive
symptom of patients with stroke [203]. Meanwhile, administration of kynurenic acid induced
antidepressant-like effects in animal model of depression [204].

However, unmonitored chronic antioxidant supplementation imposes reductive stress,
the counterpart of oxidative stress. The reductive stress-induced inflammation is observed in
hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis,
AD, and metabolic syndrome [168]. In adipose tissue a long-term antioxidant supplementation caused
a paradoxical increase in oxidative stress which was associated with mitochondrial dysfunction [205].
Leptin secreted from adipose tissue serves as an inflammatory mediator and subsequent development
of leptin resistance make obese individuals more susceptible to autoimmune disease including MS [206]
(Figure 1c).

Vitamin supplements are recommended for the treatment of MS, as nutritional deficits are
frequently observed in patients with MS [207]. MS induced by reductive stress has not been reported,
but it deserves to monitor redox status in MS patients.

4. Degradation Products under Oxidative Stress

4.1. Proteins

Protein carbonyls are degradation products of reactions between reactive species and proteins,
resulting in a loss of function or aggregation. Quantification with 2,4-Dinitrophenylhydrazine products
showed increased carbonylation in plasma and serum of RRMS patients [65–67]. The plasma carbonyl
levels were elevated in SPMS and correlated with the EDSS and the Beck Depression Inventory [208].
The levels of carbonyl groups were elevated in serum of patients with RRMS and lowered in the group
of RRMS patients treated with INF-β [74]. The levels of CSF carbonyl proteins measured were elevated
in RRMS and progressive MS [209,210] (Tables 3 and 4).

A highly active RNS reacts with tyrosine residues of proteins to form nitrotyrosines, leading to the
alternation of protein conformation function. The main product of tyrosine oxidation is 3-nitrotyrosine
(3-NO-Tyr), formed by the substitution of a hydrogen by a nitro group in the phenolic ring of the
tyrosine residues. The content of 3-NO-Tyr is assessed by western blotting, high-performance liquid
chromatography (HPLC), gas chromatography-mass spectrometry (GC/MS), and enzyme-linked
immunosorbent assay (ELISA) [72]. Mean 3-NO-Tyr was observed significantly higher in plasma
and serum of RRMS and SPMS patients and significantly higher 3-NO-Tyr was found in SPMS than
RRMS [66,68,69]. Decreased mean 3-NO-Tyr was reported following a relapse and corticosteroid
treatment [70]. In the serum of MS patients, 3-NO-Tyr was found significantly lower following INF-β1b
treatment [71]. Following GA treatment, 3-NO-Tyr was found significantly reduced in peripheral
leukocytes [69] (Tables 3 and 4).

Protein glutathionylation is a redox-dependent posttranslational modification that results
in the formation of a mixed disulfide between GSH and the thiol group of a protein cysteine
residue [211]. Protein glutathionylation is observed in response to oxidative or nitrosative stress
and is redox-dependent, being readily reversible under reducing conditions. Extracellular SOD,
α1-antitrypsin and phospholipid transfer protein were found glutathionylated at cysteine residues in
CSF of MS Patients, witnessing the footprints of oxidative assault of MS [210].

Oxidative environments generate oxidized tyrosine orthologues such as o-tyrosine, m-tyrosine,
nitrotyrosine, and dityrosine. Dityrosine was elevated in serum of RRMS patients [73,74]. Advanced
oxidation protein products (AOPPs) are uremic toxins produced in reaction of plasma proteins with
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chlorinated oxidants such as chloramines and hypochlorous acid (HClO) [212]. The levels of AOPPs
were significantly higher in plasma of MM patients [213]. The levels of AOPPs were significantly
higher in plasma and CSF of CIS and RRMS patients than healthy controls, and the AOPPs levels were
significantly higher CIS than RRMS. Furthermore, the levels of AOPPs were significantly higher in
patients with higher EDSS scores than lower ones [50]. The AOPPs levels were decreased in serum of
RRMS patients treated with IFN-β [74] (Tables 3 and 4).

AGEs are a group of glycotoxins produced in reaction of free amino groups of proteins, lipids,
or nucleic acids and carbonyl groups of reducing sugars. The AGEs can accumulate in tissues and
body fluids, resulting in protein malfunctions, reactive chemical production, and inflammation [214].
The levels of AGEs were significantly elevated in serum of RRMS patients, but no significant change
was observed after IFN-β treatment [74]. The concentrations of AGEs were significantly higher in
brain samples of MS patients, compared to nondemented counterparts. The levels of free AGEs were
correlated in CSF and plasma samples of MS patients, but not protein-bound AGEs [75] (Tables 3 and 4).

4.2. Amino Acids

Asymmetric dimethylarginine (ADMA) is a L-arginine analogue produced in the cytoplasm in
the process of protein modification. The formation of ADMA is dependent on oxidative stress status.
ADMA is elevated by native or oxidized LDL and interferes with L-arginine in the production of nitric
oxide (NO) [215]. Significantly higher ADMA concentrations were observed in serum and CSF of
patients with RRMS and SPMS, while levels of arginine, L-homoarginine, nitrate, nitrite, ADMA did
not differ between patients with MS and healthy controls [76] (Tables 3 and 4).

4.3. Lipid Membrane and Lipoproteins

Lipids in biological membrane are major target of OS. Peroxidation of lipid membrane is initiated
by ROS, including superoxide anion (O2

−•), hydroxyl radical (OH•), hydrogen peroxide (H2O2),
and singlet oxygen (O2

1∆g); and by RNS, including nitric oxide radical (NO•), peroxynitrite (ONOO−),
and nitrite (NO2

−) stealing electron from PUFAs, such as arachidonic (20:4) and docosahexaenoic acid
(22:6) [216]. The abstraction of bis-allylic hydrogen of PUFA leads to the formation of arachidonic
acid hydroperoxyl radical (ROO•) and hydroperoxide (ROOH) in a chain reaction manner [45].
A portion of arachidonic acid peroxides and peroxy radicals generate endoperoxides rather than
hydroperoxide (ROOH). The endoperoxides undergoes subsequent formation of a range of bioactive
intermediates, such as F2-isoprostanes (F2-isoPs), MDA and 4-HNE. Hexanoyl-lysine (HEL) adduct is
a lipid peroxidation by-product which is formed by the oxidation of omega-6 unsaturated fatty acid,
such as linoleic acid [217]. Hydroxyoctadecadienoic acid (HODE) is derived from the oxidation of
linoleates, the most abundant PUFAs in vivo [73,211]. Meanwhile, a cyclic sugar compound inositol is
a major antioxidant component of the lipid membrane, which scavenges reactive species [54].

Studies on blood F2-isoPs levels reported increases in MS, especially in RRMS and SPMS subtypes
compared to controls [77,78]. A study on CSF F2-isoPs levels presented three times higher in patients
with MS than ones with other neurologic diseases [79]. The levels of F2-isoPs were moderately
correlated with the degree of disability, suggesting a role as a prognostic marker [80]. MDA is highly
reactive aldehyde generated by the reaction between reactive species and polyunsaturated lipids to
form adducts with protein or DNA [81]. Studies on blood or serum MDA reported higher levels in MS
patients [83,166]. The blood MDA levels were significantly higher in RRMS than controls or CIS, higher
in RRMS than in remission, and higher in remission than controls. MDA levels were elevated at relapse,
while lowered at day 5 of corticosteroid treatment [82,149]. Studies quantifying CSF MDA consistently
reported higher levels in CIS and RRMS than controls [61,82,85,177]. There are positive correlations
between MDA levels of plasma and CSF, and MDA levels in plasma/CSF and EDSS [84]. The levels
of 4-HNE were elevated in the CSF of PPMS, RRMS, and SPMS patients, particularly in PPMS [86].
No study regarding HEL in MS was found in literature search. The serum 13-HODE was identified as
a part of metabolomic signatures associated with more severe disease such as non-relapse-free MS
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or MS with higher EDSS [87]. The levels of 9-HODE and 13-HODE were significantly increased in
CSF of CIS and RRMS patients, compared to healthy controls, but baseline levels of HODE did not
differ between patients with signs of disease activity during up to four years of follow-up and patients
without MS [218] (Tables 3 and 4).

Cholesterol oxidization products oxysterols were studied. Levels of plasma oxysterols increased
in progressive MS patients and oxysterol levels were positively correlated with apolipoprotein C-II and
apolipoprotein E. Furthermore, oxysterol and apolipoprotein changes were associated with conversion
to SPMS [88]. Increased levels of oxidized low-density lipoprotein (oxLDL) in the serum and higher
serum levels of autoantibodies against oxLDL were reported in MS patients [219,220]. Although studies
on HDL levels in MS patients reported mixed results, lowered HDL antioxidant function in MS patients
was observed, suggesting the involvement of lipoprotein function MS pathogenesis [219–222]. In mixed
population of MS, decreased serum 24S-hydroxycholesterol and 27-hydroxycholesterol and increased
CSF lathosterol, compared to healthy controls [223] (Tables 3 and 4).

4.4. Nucleic Acid

The biomarkers of oxidative damage of nucleic acids—8-Hydroxy-2′-deoxyguanosine (8-OH2dG)
and 8-hydroxyguanosine (8-OHG)—can be assessed by ELISA, as well as by direct methods, such as
HPLC and GC/MS [224,225]. Elevated levels of 8-OH2dG were reported in the blood of RRMS patients.
DNA oxidation products were proposed as diagnostic biomarkers for MS [152] (Tables 3 and 4).

5. Conclusion and Future Perspectives

Redox biomarkers are classified by original cellular components and enzyme mechanisms of
action in redox homeostasis. Redox status can be assessed by the measurement of reactive chemical
species, oxidative or antioxidative enzyme activity, and degradation products derived from proteins,
amino acids, lipid membrane, and nucleic acids. Measurement of reactive chemical species and
oxidative enzyme activities assesses intensity of oxidative stress, while measurement of antioxidative
activity analyses compensatory capacity. Fine measurement of the various redox components may
reveal diagnostic, prognostic, or predicative value to differentiate the disease status and progression
(Figure 3).

The levels of nitric oxide (NO) metabolites, S-nitrosothiol, and the activities of oxidative enzymes
including SOD, MPO, and iNOS have been found significantly different to patients with MS, compared to
healthy controls. The levels of antioxidants including uric acid and selenium, activities of antioxidative
enzymes including GSR, catalase, and TRX-PRDX, and concentrations of transcriptional factors Nrf2,
PPARs, and PGC-1α have been found significantly changed in MS patients. The protein degradation
products including protein carbonyls, 3-NO-Tyr, glutathionylation, AOPPs, and AGEs, an amino
acid by-product ADMA, the lipid and cholesterol degradation products including F2-isoP, MDA,
4-HNE, HODE, oxocholesterols, and oxLDL, and the nucleic acid degradation product 8-OH2dG
significantly increased in samples of MS patients. Thus, the oxidative enzymes, antioxidative enzymes,
and redox degradation products have been identified as promising biomarkers for the diagnosis of MS.
Furthermore, SOD, 3-NO-Tyr, and MDA are sensitive to subtypes of MS, CIS and RRMS, RRMS and
SPMS, RRMS and remission, respectively. tNOx, S-nitrosothiol, SOD, MPO, GSR, catalase, protein
carbonyls, AOPPs, F2-isoP, MDA, and oxycholesterols were correlated with EDSS and thus they are
potential prognostic biomarkers for MS. SOD, Nrf2, protein carbonyls, 3-NO-Tyr, AOPPs, and MDA
were observed sensitive to the treatment of MS, being possible predictive biomarkers. Finally, SOD is a
possible drug target of MS as a therapeutic marker (Table 3).
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In addition to biomarkers described above, the search for novel biomarkers has become a growing
interest in neurodegenerative diseases. A micro RNA (miRNA) is a short non-coding RNA molecule
consisting of approximately 22 nucleotides, which functions in posttranscriptional gene silencing.
miRNAs have been linked to pathogenesis of various diseases including cancer, autoimmune diseases,
and neurodegenerative disease such as PD [226]. Dysregulated interactions of miRNAs have been
reported in mild cognitive impairment and AD. The associated genes were related to regulation of
ageing and mitochondria [227]. Dysregulations of various miRNAs have been observed in AD, PD,
Huntington’s disease, and ALS and thus miRNAs were proposed to be potential diagnostic and
therapeutic biomarkers of neurodegenerative diseases [228]. The link between environmental factors
and miRNA dysregulations in MS was discussed [229]. Furthermore, miRNAs in blood and CSF
samples of patients with MS as diagnostic and prognostic biomarkers have been reviewed recently [230].

Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous non-long terminal repeat
retrotransposon that creates genomic insertions through an RNA intermediate. The increased number
of germline and somatic LINE-1s have been linked to the risk and progression of cancer as well as
neurodegenerative and psychiatric diseases. An increased burden of highly active retrotranposition
competent LINE-1s have been associated with the risk and progression of PD and LINE-1s were
proposed as possible therapeutic biomarkers that can be targeted by reverse transcriptase [231].
Furthermore, LINE-1s was considered involved in irregular immune response and participate in
pathogenesis of MS [232].
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A search for demographic correlation between single nucleotide polymorphisms and MS has
been under extensive study. Inflammation-mediating chemokine receptor V ∆32 deletion was not
found correlated with MS [233]. Large-scale genome projects such as genome-wide association
(GWA) studies generated polygenic risk scores for prediction of risk and progression of multifactorial
neurodegenerative diseases. Large-scale pathway specific-genetic risk profiling expedited redox-related
biological pathways to identify causal genes and potential therapeutic targets [234]. One of future
challenges is a search for correlations with uncatalogued structural variants in MS.

Considering the dynamics of redox homeostasis, the amounts of reactive species, activities of
oxidative and antioxidative enzymes, and concentrations of degradation products presumably differ
during the progression of MS. The early phase presents an elevation of oxidative enzyme activity
and a subsequent elevation of the activity of counteracting antioxidative enzymes with unchanged
levels of degradation products. As the activity of antioxidative enzymes becomes compromised due
to increasing oxidative stress, the amount of degradation products gradually increases, while the
antioxidative enzyme activities slowly wane and fatigue. Eventually, the antioxidative response
exhausts with elevated activities of oxidative enzymes and elevated levels of degradation products
(Figure 4). Further studies and exploration into novel biomarkers are expected in search of a robust
battery of biomarkers indicative to the redox status, in order to realize a fine calibration of major redox
components that helps identify the disturbance of redox homeostasis, restore the nucleophilic tone
and the most importantly build the best personalized treatment of MS for the sake of better quality
of life [235].
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Figure 4. Dynamics of redox components in disease progression. (A) – (red line): reactive chemical
species and activities of oxidative enzymes increase gradually. – (orange line): the degradation
products increase accordingly upon exhaustion of antioxidative enzymes’ activities. – (green
line): antioxidative enzymes offset the effects of oxidative enzymes in the early phase, however;
the antioxidative activities decline and, finally, fatigue in the later phase, resulting in the exacerbation
of inflammation and cellular damage. (B) Biomarkers of three redox components may present different
values. (a) The levels of oxidative enzyme slightly increase, but the degradation markers stay in a
normal range. The antioxidative markers also slightly increase. (b) The oxidative markers further
elevate, and the degradation markers start slightly increasing. The antioxidative markers also stay
elevated. (c) The oxidative enzyme markers increase, but antioxidative markers return to normal
range. The degradation product markers further elevate. (d) The oxidative markers greatly increase,
but the antioxidative markers decline. The degradation products markers greatly elevate.
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Abbreviations

α alpha
AD Alzheimer’s disease
ADMA asymmetric dimethylarginine
AGEs advanced glycation end products
ALS amyotrophic lateral sclerosis
AOPPs advanced oxidation protein products
β beta
CIS clinically isolated syndrome
CNS central nervous system
COX cyclooxygenase
CSF cerebrospinal fluid
CYP cytochrome P450
EDSS expanded disability status scale
ELISA enzyme-linked immunosorbent assay
ETC electron transfer chain
F2-isoPs F2-isoprostanes
GC/MS gas chromatography-mass spectrometry
Gd+ gadolinium
GPx glutathione peroxidase
GSH glutathione
GSSH glutathione disulfide
GA glatiramer
GPDH ketoglutarat dehydrogenase
GSR glutathione reductase
GWA genome-wide association
HEL hexanoyl-lysine
4-HNE 4-hydroxynonenal
HODE hydroxyoctadecadienoic acid
HPLC high-performance liquid chromatography
iNOS inducible Nitric Oxide Synthase
IFN Interferon
KEAP1 Kelch-like ECH-associated protein 1
KGDH ketoglutarate dehydrogenase
LINE-1 Long Interspersed Nuclear Element-1
LOX lipoxygenase
MDA malondialdehyde
miRNA micro RNA
MPO myeloperoxidase
MRI magnetic resonance imaging
MS multiple sclerosis
NAD+ nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NOS nitric oxide synthetase
3-NO-Tyr 3-nitrotyrosine
NOX nicotinamide adenine dinucleotide phosphate oxidase
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Nrf2 nuclear factor erythroid 2-related factor
8-OH2dG 8-Hydroxy-2′-deoxyguanosine
8-OHG 8-hydroxyguanosine
OSMS opticospinal phenotype of relapsing-remitting multiple sclerosis
oxLDL oxidized low-density lipoprotein
PD Parkinson’s disease
PGC-1 peroxisome proliferator-activated receptor gamma coactivator 1
PPARs peroxisome proliferator-activated receptors
PUFAs polyunsaturated fatty acids
RCS reactive carbonyl species
redox reduction-oxidation
RHS reactive halogen species
RNS reactive nitrogen species
ROS reactive oxygen species
PPMS primary progressive multiple sclerosis
PRMS progressive-relapsing multiple sclerosis
RRMS relapsing-remitting multiple sclerosis
RSS reactive sulfur species
RSeS reactive selenium species
SOD superoxide dismutase
SPMS secondary progressive multiple sclerosis
tNOx total value nitric oxide
TRX-PRDX thioredoxin-peroxiredoxin
TRXR thioredoxin reductase
XDH xanthine dehydrogenase
XO xanthine oxidase

Appendix A

Assessment of the Methodological Quality

The methodological quality was assessed for each redox biomarker in multiple sclerosis.

Table A1. Classes and biomarkers, and risk of bias assessment included in this review.

Classes Types Risk of Bias

Reactive Species Reactive Nitrogen Species Unclear

Oxidative Enzymes

Xanthine Dehydrogenase (XDH) Unclear
Nicotinamide Adenine Dinucleotide Phosphate

(NADPH) Oxidase Unclear

Superoxide Dismutase (SOD) High risk
Inducible Nitric Oxide Synthase (iNOS) High risk

Myeloperoxidase (MPO) Unclear

Antioxidative Enzymes and
Transcriptional Factors

Glutathione Peroxidase (GPx) Low risk
Glutathione Reductase (GSR) High risk

Catalase High risk
Xanthine oxidase (XO)-Uric Acid Unclear

Nuclear Factor Erythroid 2-Related Factor (Nrf2) Unclear
Peroxisome proliferator-activated receptors (PPARs) Unclear
Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC-1α) Unclear
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Table A1. Cont.

Classes Types Risk of Bias

Degradation Products and
End Products

Protein

Protein carbonyls Low risk
3-nitrotyrosin (3-NO-Tyr) High risk
Protein glutathionylation Unclear

Dityrosine Unclear
Advanced oxidation

protein
products (AOPPs)

High risk

Advanced glycation end
products (AGEs) High risk

Amino acids Asymmetric
dimethylarginine (ADMA) Unclear

Lipid

F2-isoprostane (F2-isoP) Low risk
Malondialdehyde (MDA) Low risk
4-hydroxynonenal (4-HNE) Unclear
Hydroxyoctadecadienoic

acid (HODE) Unclear

Oxysterol Unclear

DNA 8-dihydro-2′deoxyguanosine
(8-oxodG) Unclear

Table A2. Risk of bias was assessed according to the criteria of availability of meta-analysis or systematic
review, study types, and with or without conflicting results, to judge evidence levels of high risk, low
risk, or unclear.

Risk of Bias Criteria

High risk No meta-analysis or systematic review, fewer than five case–control and/or cohort
studies, or presence of only expert review

Low risk Presence of at least one meta-analysis or systematic review, without conflicting results

Unclear Presence of only case–control study or cohort study, meta-analysis with conflicting
results, or case–control studies with conflicting results
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