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Rats sniff out pulmonary
tuberculosis from sputum:
a diagnostic accuracy
meta-analysis

Reem Kanaan?, Nelli Farkas?3, Péter Hegyi>**¢, Alexandra So6s®’, David Hegyi?,
Katalin Németh?, Orsolya Horvath?, Judit Tenk3, Alexandra Miké3, Andrea Szentesi*¢,
Marta Balaské?, Zsolt Szakacs*®, Andrea Vasas®®, Dezsé Csupor®® & Zoltan Gyongyi™

In Sub-Saharan Africa, African giant pouched rats (Cricetomys gambianus) are trained to identify TB
patients by smelling sputum. We conducted a systematic review and meta-analysis of the data to see
if this novel method is comparable to traditional laboratory screening and detection methods like
Ziehl-Neelsen stain-based assays (ZN) and bacterial culture. The search and data processing strategy
is registered at PROSPERO (CRD42019123629). Medline via PubMed, EMBASE, Web of Science,

and Cochrane Library databases were systematically searched for the keywords “pouched rat” and
“tuberculosis”. Data from 53,181 samples obtained from 24,600 patients were extracted from seven
studies. Using sample-wise detection, the sensitivity of the studies was 86.7% [95% Cl 80.4-91.2%)],
while the specificity was 88.4% [95% Cl 79.7-93.7%]. For patient-wise detection, the sensitivity was
81.3% [95% Cl 64.0-91.4%], while the specificity was 73.4% [95% Cl 62.8-81.9%]. Good and excellent
classification was assessed by hierarchical summary receiver-operating characteristic analysis for
patient-wise and sample-wise detections, respectively. Our study is the first systematic review and
meta-analysis of the above relatively inexpensive and rapid screening method. The results indicate
that African giant pouched rats can discriminate healthy controls from TB individuals by sniffing
sputum with even a higher accuracy than a single ZN screening.

Tuberculosis (TB) is the world’s leading cause of death by an infectious disease despite the 90-year and 60-year
availability of vaccine and drug therapy, respectively'. World Health Organization (WHO), published an esti-
mated 10.0 million (range 9.0-11.1 million) new cases of TB, an estimated 1.2 million (range 1.1-1.3 million) TB
deaths among HIV-negative people, and a further 251 000 deaths (range 223,000-281,000) among HIV-positive
people in 20182

Mycobacterium tuberculosis is the main causative agent of TB and primarily infects the lungs®. However,
extrapulmonary TB, which occurs by lymphatic or blood spread of Mycobacteria at the time of primary infection,
can affect other organs such as the pleura, lymph nodes, genitourinary tract, abdomen, skin, bones, joints, and
meninges®~. Following exposure to M. tuberculosis, most individuals remain disease-free but may carry a latent
TB infection (LTBI), the main reservoir for tuberculosis reactivation. A minority of LTBI individuals [5-15%]
will progress to active TB”. TB progression is enhanced dramatically for people co-infected with HIVS. United
States guidelines recommend screening for LTBI in all HIV-infected patients’. Patients with immune diseases and
patients receiving biological therapy also have enhanced TB progression compared to the general population'?.
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Treatment of TB requires multiple drugs for several months. The extended drug regimens are demanding
on the health care systems, particularly in low- and middle-income countries, where the disease burden often
far surpasses local resources’.

Developing a fast and affordable tool with reasonable sensitivity and specificity for TB screening, prognosis,
and detection of drug resistance is a challenge'!. Currently, several laboratory-based methods exist including the
Ziehl-Neelsen stain-based, direct microscopy (ZN), the Xpert MTB/RIF assay, the lipoarabinomannan antigen
test, nucleic acid amplification tests, mass spectroscopy, surface-enhanced Raman spectroscopy, detection of
TB-specific volatile organic compounds (VOCs) or metabolites, microfluidics, and electrochemical approaches'2.
Each of these methods has merits and shortcomings. No test provides all the information required for diagnosis
and treatment monitoring"’.

In Sub-Saharan Africa, the continent with a high TB-burden, researchers are applying a new TB detection tool
using African giant pouched rats (Cricetomys gambianus) to identify TB patients. By smelling patient sputum,
they presumably recognise TB-specific VOCs profile. VOCs are organic chemicals with a high vapour pressure
at room temperature, resulting in the evaporation or sublimation of molecules into the air'*. Inhalation of these
molecules stimulates the olfactory receptor neurons to transmit signals to the olfactory cortex of the brain'.
Odour perception results in task-dependent sniffing patterns in the context of odour-guided behaviour'. This
method seems to be cost-effective and reliable. To our knowledge, there is no meta-analysis of the method pub-
lished to date; therefore, we present a systematic review and meta-analysis regarding the sensitivity and specificity
of using African giant pouched rats as an additional tool to detect pulmonary TB.

Material and methods

Search strategy and selection process. Our systematic review and meta-analysis followed the proto-
col registered at PROSPERO (CRD42019123629). Criteria from “Interpreting results and drawing conclusions.
Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 0.9” and the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA-P) protocols were considered!®!”. PRISMA
checklist is enclosed (Supplementary Table S1).

Medline via PubMed (www.ncbi.nlm.nih.gov/pubmed), EMBASE (www.embase.com), Web of Science Core
Databases (Web of Science, Thomson Reuters; www.webofknowledge.com), and Cochrane Central Register
of Controlled Trials (Cochrane Library, Wiley; www.cochranelibrary.com) databases were searched without
restrictions. The keywords used for the searches were “tuberculosis” and “pouched rats” The database search
was concluded on 5 September 2019. The search results were exported to EndNote. The inclusion criteria were
based on the method of validation and the type of sampling (sample-wise or patient-wise), and the presence
or calculability of data for sensitivity and specificity. Sample-wise data identified samples that were positive or
negative, while patient-wise data identified patients with or without TB. Studies that failed to mention the exact
sample size or did not report quantitative data were excluded.

Two reviewers independently retrieved information from the databases and screened references of relevant
research articles, reviews, and additional data sources for relevant publications. A third reviewer was consulted
if required for a consensus. After removing duplicate records from the search results, candidates were selected
by reading the titles, abstracts or full texts of the retrieved records. Potential articles were analysed, and non-
relevant studies were excluded. Authors, year of publication, sample size, significance, country of study, and other
available data about the study design and participants were registered for the meta-analysis.

Quality of included studies. Assessment of methodological quality (risk of bias) was performed by two
authors based on the Mays and Pope model'®. A third reviewer was consulted if required for a consensus. The
included studies involved answering questions concerning the clarity of research, blindness, representative and
adequate sampling, control of confounding variables, research design suitable to answer the research question,
ethical clearance, reporting of overall sensitivity percentage, reporting of overall specificity percentage, and
reporting of limitations.

Data analysis. Statistical analysis was performed with Stata v15.1 software using the MIDAS and METANDI
modules. In the present meta-analysis, we generated 2 x 2 tables from the data of selected papers (Supplemen-
tary Table S2). Patient-wise and sample-wise subgroups were analysed. Heterogeneity was assessed using the I?
measure and the corresponding 2 test, with p <0.1 indicating significant heterogeneity. I* values of 25%, 50%,
and 75% were estimated as low, moderate, and high, respectively. First, we collected sensitivity and specificity
data from the studies. Second, we either calculated or extracted true-positive values, false-positive values, false-
negative values, and true-negative values (Supplementary Table S3). Third, by plotting the true-positive rate
(TPR) (sensitivity) against the false-positive rate (FPR) (1 — specificity) at various threshold settings, hierarchical
summary ROC curve was created, using the two-level mixed logistic regression modell’®. Estimation of sensitiv-
ity and specificity points on the curve was done at the 95% confidence interval. The diagnostic odds ratio (DOR)
was computed at a 95% confidence interval as well. According to the AUC (area under the curve) value, the test
was classified as follows: 0.5-0.6 failed, 0.6-0.7 poor, 0.7-0.8 fair, 0.8-0.9 good, and > 0.9 excellent®. Deeks’ Fun-
nel Plot Asymmetry test was performed to reveal possible publication bias.

Results

Identification of eligible studies. For our systematic review and meta-analysis, we examined Medline
via PubMed, EMBASE, Web of Science, and Cochrane Library databases resulting in 84 records: 20, 25, 39, and
0 publications, respectively. Of the 84 publications, the removal of duplicates resulted in 46 publications from
which another 22 publications were excluded by examining the title, and an additional eight were excluded by
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Figure 1. Study selection. PRISMA 2019 flow diagram. Database searches identified 84 records. Of the overall
obtained studies, 38 were duplicates. From the 46 remaining studies, 30 were excluded either by examining the
title or by examining the abstract. Of the remaining 16 studies, full-text examination resulted in identifying
seven publications that are eligible for meta-analysis inclusion criteria.

examining the abstract. From the remaining 16 studies, seven publications®!~%

criteria as shown using the PRISMA method (Fig. 1).

met the meta-analysis inclusion

Characteristics of included studies. A total of 24,600 human subjects and 53,181 samples were screened
between the seven studies (Table 1). All seven studies collected sputum samples in Direct Observation Treat-
ment Short Course (DOTS) centres in Dar el Salaam, Tanzania. Technicians at DOTS centres prepared micro-
scopic slides from sputum samples. After stained using the ZN method, the samples were evaluated by light
microscopy. Remaining sputum was frozen and sent to Anti-Persoonsmijnen Ontmijnende Product Ontwik-
keling (APOPO) for rat assessment”. Trained African pouched rats sniffed heat-inactivated sputum samples.
They showed positive samples by holding their head at the well of sample container. A second ZN microscopic
analysis at APOPO re-examined any sample reported as TB-negative by a DOTS centre but TB-positive by two
or more rats®’. The accuracy of detection by rats was calculated after the second ZN analysis.

Analysis of results. The validation method for the six studies with patient-wise data was as follows: three
of studies used the ZN method (Mahoney?’, Reither® and Poling”. Mgode et al.* used the ZN method and
cultures. Two studies, Reither > and Mulder %, used only cultures. Mulder et al.* additionally used Xpert MTB/
RIE The SROC curve for the diagnostic performance of rats compared to ZN alone, ZN and culture, culture
alone, and Xpert MTB/RIF revealed that the sensitivity of patient-wise analysis was 81.3% [95% CI 64.0-91.4%]
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Standard Number of Number of
First author Year | Country Study design Sample type method subjects samples
Mahoney AM, | 2011 | Tanzania second-line Patient-wise, Ziehl-Neelsen, -1}, 5, 26,665
screening Sample-wise FM microscopy
Mgode GE 2012 | Tanzania second—lme Patient-wise Zlehl—Nee} sen, 284
screening culture; mixed
Reither K, 2015 | Tanzania prospective Patient-wise Ziehl-Neelsen, 246
cohort culture
Weetjens BJ, 2009 | Tanzania second'—lme Sample-wise Ziehl-Neelsen, 2,597
screening culture
Poling, A 2010 | Tanzania second-line Patient-wise, Ziehl-Neelsen | 10,523 23,101
screening sample-wise
. paired accuracy e culture, Xpert,
Mulder C, 2017 | Tanzania study Patient-wise LED EM 771
. second-line Patient-wise, Ziehl-Neelsen,
Edwards TL, 2016 | Mozambique screening sample-wise LED EM 447 818

Table 1. Samples, subjects, and methods used for comparison with the rat-sniffing method. LED FM, Light-
emitting diode fluorescence microscopy; Xpert, MTB/RIF test that detects Mycobacterium tuberculosis complex
(MTBC) and resistance to rifampicin (RIF) on the GeneXpert multi-disease platform.

and the specificity was 73.4% [95% CI 62.8-81.9%] (Fig. 2). Analysing positive (true positive) and negative
(true negative) likelihood ratios, the LR +and LR —were 3.05 [95% CI 1.92-4.86] and 0.10 [95% CI 0.06-0.17],
respectively. The DOR equalled 12.0 [95% CI 3.58-39.9] (Fig. 3), indicating statistical significance. Thus, rats
discriminated properly between sputa of healthy and TB-infected individuals. However, significant heterogene-
ity was calculated at sensitivity and specificity with values of ?*=99.17% [95% CI 98.94-99.39%], p <0.001, and
1=99.74% [95% CI 99.69-99.78%], p <0.001 respectively.

For sample-wise data, the method of validation used by Mahoney?®, Weetjens?!, Poling?’, and Edwards® was
ZN. Edwards® used LED FM, while Weetjens?! used cultures. Together, the six sample-wise studies revealed
rat screening sensitivity of 86.7% [95% CI 80.4-91.2%] and specificity of 88.4% [95% CI 79.7-93.7%]. Total
LR +and LR- were 7.47 [95% CI 4.05-13.8] and 0.15 [95% CI 0.1-0.23], respectively (Fig. 4). DOR was 49.8
[95% CI 19.5-127], indicating that the test discriminated properly between positive and negative samples (Fig. 5).
Values of sensitivity and specificitiy were 12=97.71% [95% CI 96.77-98.66%], p < 0.001 and I*=99.82% [95% CI
99.79-99.85%], p <0.001 respectively. These data indicate a considerable heterogeneity.

Assessment of risk of publication bias. After examining the seven studies for possible risk of pub-
lication bias by the criteria listed in Fig. 6, (with particular emphasis on clarity of the research question and
experimental design), we concluded that they are all high-quality studies. All studies were properly blinded.
Moreover, all studies reported sensitivity and specificity relative to culturing, ZN, LED FM, or Xpert MTB/RIF
assays. The studies also reported limitations and obtained ethical clearance. On the other hand, HIV status of
subjects was not distinguishable in any of the included studies. Furthermore, rats’ discrimination ability between
sputum containing Mycobacterium species versus those containing non-mycobacterial species of the respiratory
tract was determined only in one study, Mgode et al.2. We combined these two facts under the category “failure
to control the confounding factors” Nonetheless, this meta-analysis shows that trained giant African pouched
rats can use scent to discriminate sputum of TB individuals from that of healthy subjects at a high accuracy.
Deeks’ Funnel Plot Asymmetry test resulted pvalue=0.09 and pvalue=0.97, for patient-wise and sample-wise
data respectively. The test indicated significant publication bias in patient-wise studies, but no publication bias
was detected in sample-wise studies (Supplementary Figures S1 and S2).

Discussion

Africa has the highest TB-burden in the world, 30% of TB patients have HIV compared to 1.3% in the Eastern
Mediterranean region. Additionally, Africa bears 75% of just over one million TB/HIV co-infection incidences
that arise each year globally®. Therefore, a diagnostic test that is simple, economical, fast, and able to gener-
ate results at the point-of-care is needed to test large segments of the population. Rapid diagnosis results in
enhanced adherence to and effectiveness of treatment, avoids long-term complications, and reduces the inci-
dence of the disease transmission?®. DOTS centres in Tanzania and Mozambique trained African giant pouched
rats to distinguish sputum samples between TB patients and healthy individuals®. Rats in the laboratory were
capable of screening 140 sputum samples in 40 min®!, providing one of the fastest methods available at the cost
of approximately 1 USD per sample compared with 1.5 USD, 12-17 USD and 20 USD for smear microscopy,
culturing and Xpert, respectively®.

A comparison of rat-positive and rat-negative sputa with M. tuberculosis versus non-mycobacterial species
sputa revealed that sputa detected from M. catarrhalis, S. pneumoniae, Candida sp., Enterococcus sp., Staphylococ-
cus succinus, and another Staphylococcus sp. are significantly different from that of M. tuberculosis.

The statistically significant difference in the distribution of rat-positive and rat-negative sputa with M.
tuberculosis and non-tuberculous species shows that trained rats did not make false-detections with these
microorganisms®.
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Figure 2. Sensitivity (A) and specificity (B) of individual studies are displayed by squares. The overall values
are displayed by rhombus. Error bars indicate confidence interval of 95% [95% CI]. The reference method was
Ziehl-Neelsen stain-based, direct microscopy, except for other method is indicated in brackets.

Scientific Reports|  (2021) 11:1877 |

https://doi.org/10.1038/s41598-021-81086-x

natureresearch



www.nature.com/scientificreports/

B
Studyld : SPECIFICITY (95% CI)
|
|
I
|
|
Mulder et al., 2017 (Xpert) . : 0.55[0.51 - 0.59]
|
|
Mulder et al., 2017 B 0.58 [0.53 - 0.62]
|
|
Reither et al., 2015 (culture) e 0.80[0.73 - 0.87]
|
|
|
Mgode et al., 2012 - 0.72[0.66 - 0.78]
|
|
Poling et al., 2010 | . 0.91[0.90 - 0.91]
|
|
Reither et al., 2015 L 0.78[0.71 - 0.84]

Mahoney et al., 2010 . 0.69[0.68 - 0.69]

COMBINED <> 0.73[0.63 - 0.82]

Q =2267.28, df =6.00, p = 0.00

12 =99.74[99.69 - 99.78]

0.5 0.9
SPECIFICITY

Figure 2. (continued)

Historically, the rat’s olfactory system has been considered primitive. Until recently, cognitive neuroscien-
tists have disregarded odour-guided behaviour®!. Now we know that the olfactory system has projections to the
prefrontal cortex, entorhinal cortex and hippocampus in the brain®!. These connections carry the acquisition of
simple and higher-order instrumental jobs, as well as a memory. It seems that animals with an enhanced percep-
tive sense of smell are equipped to “think with their noses™!. A study seeking to understand the molecular basis
for prey identifying its predator found that olfactory-derived defensive mechanism in the prey (like rodents)
gave them a strong evolutionary advantage for survival. For example, an examination of 38 mammalian species
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Figure 3. The size of circles indicates the number of patients in a single study. The dark red square shows the
sensitivity and specificity summary. The dashed line indicates the 95% confidence region. A meta-analysis of all
seven studies revealed that the summary of sensitivity was 81.3% [95% CI 64.0-91.4%] and the specificity was
73.4% [95% CI 62.8-81.9%]. The diagnostic odds ratio was 12.0 [95% CI 3.58-39.9]. According to the AUC 0.82
[95% CI: 0.79-0.86] value, the test was classified as good. HSROC, hierarchical summary receiver-operating
characteristic; AUC, area under the curve.

by quantitative HPLC analysis indicated that many carnivores produced > 3000-fold more 2-phenylethylamine
than herbivores. Thus, rodents avoid a 2-phenylethylamine odour source in their natural habitat®.

VOC:s of active pulmonary tuberculosis derived from the infectious organism may contain biomarkers for
the disease®. For example, methyl phenylacetate, methyl p-anisate, methyl nicotinate, and o-phenylanisole were
predominant in M. tuberculosis and Mycobacterium bovis cultures grown in vitro*. Other cultured M. tuberculo-
sis-specific volatiles include 1-methyl-naphthalene, 3-heptanone, methyl-cyclododecane, 2,2,4,6,6-pentamethyl-
heptane, 1-methyl-4-(1-methylethyl)-benzene, and 1,4-dimethyl-cyclohexane. These distinctive volatile markers
may be the basis for odour detection by rats’>. Among the VOCs released by M. tuberculosis is 2-phenylethanol
(PEA) the biosynthetic route of which is via 2-phenylethylamine pathway®. The headspace of cultures of M.
bovis and Mycobacterium smegmatis grown on Lowenstein-Jensen supplemented with glycerol were examined
by ultra-rapid gas chromatograph with a surface acoustic wave sensor (zNose) and revealed the presence of
2-phenylethanol®’. We hypothesise that the giant African pouched rats recognise 2-phenylethylamine produced
by M. tuberculosis along with other disease-specific associated VOC markers. This hypothesis highlights the need
for additional studies to identify the exact volatile compounds detected by rats.

One of the limitations is the considerable heterogeneity for both sample-wise and patient-wise experimen-
tal set-ups. The other limitation is that all studies examined were carried out by the same group of scientists
belonging to APOPO. While this does not necessarily compromise the quality of the conducted research, it does
highlight the importance of having other research teams test the rat-sniffing method, especially in high TB/HIV
prevalence areas. In additional TB detection studies, it would be advantageous to publish separate statistical
analyses of the performance of rats on non-tuberculosis samples and HIV status. The other shortcoming of the
rat-sniffing method is that it does not meet current WHO-recommended standards and is not a replacement
for smear microscopy or Xpert MTB/RIF methods. Instead, the rat-sniffing method could serve as a screen for
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Figure 4. Sensitivity (A) and specificity (B) of individual studies are displayed by squares. The overall values
are displayed by rhombus. Error bars indicate confidence interval of 95% [95% CI]. The reference method was
Ziehl-Neelsen stain-based, direct microscopy, except for other method is indicated in brackets.
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Figure 4. (continued)

identifying probable TB patients in high-throughput circumstances where the use of other technologies would
be too expensive. From the point of view of global acceptance of TB detection performed by rats, it would be
necessary to broaden the geographical area tested.
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Figure 5. Diagnostic performance of screening using rats compared to ZN microscopic analysis, LED FM,

and culture. The size of circles indicates the number of patients in a single study. The dark red square shows

the sensitivity and specificity summary. The dashed line indicates the 95% confidence region. Meta-analysis
summary of the six studies (five circles are seen, because two studies are exactly overlapping) shows that the
sensitivity of rat screening was 86.7% [95% CI 80.4-91.2%] and specificity was 88.4% [95% CI 79.7-93.7%)]. The
summary for positive LR +and LR —was 7.47 [95% CI 4.05-13.8] and 0.15 [95% CI 0.1-0.23], respectively. The
diagnostic odds ratio was 49.8 [95% CI 19.5-127]. According to the AUC 0.93 [95% CI: 0.91-0.95] value the test
was classified as excellent. HSROGC, hierarchical summary receiver-operating characteristic; AUC, area under
the curve.

At APOPO, rat-positive samples were re-evaluated using the standard ZN method for confirmation; results
show that the accuracy of using rats is as good as using ZN as the primary method for detecting TB. We fre-
quently calculated sensitivity and specificity values of rats over 100% for TB when considering only the first ZN
test, without further ZN confirmation. The “over 100%” needs to be explained. Normally it is impossible, but
there can be a strange situation, when the reference method has lower accuracy. What are the real positive and
real negative? Let us describe the sequence of detection in the analysed publications. Initially, TB patients were
determined by ZN positivity. Then rats identified some new positive samples or patients in the ZN control group.
These rat positives were re-evaluated by ZN. The final evaluation regarded every ZN-positive test as patients or
patient samples; even if they were identified in the second-round ZN evaluation. The unusual “over 100%” was
calculated for the rats, when the first ZN was regarded the reference but real positives and real negatives for the
rats were calculated considering the second ZN detection. While these results cannot be interpreted, they do
show that the accuracy of rats may be better than a single ZN evaluation for identifying TB.

Using giant African pouched rats for large-scale screening and diagnosis is advantageous for countries with
low economic status and high incidences of tuberculosis due to it being a relatively cheap and rapid method.
Nota bene, a rat can identify a hundreds of samples in less than 20 min. While this task lasts 4 days for a trained
microscopist technician®®. Our systematic review and meta-analysis validated the African pouched rat-sniffing
method as a first-line screening tool for TB.
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Figure 6. The quality of each study was assessed by answering questions concerning the clarity of research,
blindedness, representative and adequate samples, control of confounding variables, research design suitable
to answer the research question, ethical clearance, reporting overall sensitivity percentage, reporting overall

specificity percentage, and reporting limitations. The presence of non-mycobacterial species in addition to
failure to report HIV status were deemed confounding factors. Green = yes; yellow = unclear; red = no.
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