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Ana Sofı́a Medina-Larqué Institute of Nutrition and
Functional Foods, Quebec, QC, Canada; School of
Nutrition, Paul-Comtois Building, Laval University,
Quebec, QC, Canada

Talita Biude Mendes Laboratory of Developmental
Biology, Department of Morphology and Genetics,
Federal University of Sao Paulo, Brazil

Vitale Miceli Department of Research, IRCCS-ISMETT
(Istituto Mediterraneo per i Trapianti e Terapie ad alta
specializzazione), Palermo, Italy
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Aleksandra Uskoković Institute for Biological Research,
National Institute of Republic of Serbia, University of
Belgrade, Belgrade, Serbia

Vanessa Vendramini Laboratory of Developmental
Biology, Department of Morphology and Genetics,
Federal University of Sao Paulo, Brazil
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Preface

In the past few decades there have been major
advances in our understanding of the etiology of dis-
ease and its causative mechanisms. Increasingly it is
becoming evident that free radicals are contributory
agents: either to initiate or propagate pathologies or to
create an overall cellular and metabolic imbalance.
Furthermore, a reduced intake of dietary antioxidants
can also lead to an increased risk of specific diseases.
On the other hand, there is abundant evidence that
naturally occurring antioxidants can be used to pre-
vent, ameliorate, or impede such disease risks. The sci-
ence of oxidative stress and free radical biology is
rapidly advancing and new approaches include exam-
ining the roles of genetics and molecular biology.

However, most textbooks on dietary antioxidants do
not have material on the fundamental biology of free
radicals, especially their molecular and cellular effects
on pathology. They also fail to include material on the
nutrients and foods that contain antioxidative activity.
In contrast, most books on free radicals and disease have
little or no text on the usage of natural antioxidants.

In the present volume Diabetes: Oxidative Stress and
Dietary Antioxidants, Second Edition, holistic information
is imparted within a structured format of three main
sections.

Section I: Oxidative Stress and Diabetes
Section II: Antioxidants and Diabetes
Section III: Techniques and Resources
Section I: Oxidative Stress and Diabetes covers the

basic biology of oxidative stress from molecular biol-
ogy to physiological pathology. In Section II:
Antioxidants and Diabetes we describe agents and their

actions. The caveat of these chapters in Section II is that
there needs to be further in-depth analysis of these
components in terms of safety and efficacy as some
material is exploratory or preclinical. A cautionary and
critical approach is needed. Nevertheless, the material
in Section II can provide the framework for further in-
depth analysis or studies. This would be via well-
designed clinical trials or via the analysis of pathways,
mechanisms, and components in order to devise new
therapeutic strategies. Section III: Techniques and
Resources provides a practical source of information.
Both preclinical and clinical studies are embraced using
an evidence-based approach. However, the science of
oxidative stress is not described in isolation but in con-
cert with other processes such as apoptosis, cell signal-
ing, and receptor-mediated responses. This approach
recognizes that diseases are often multifactorial and oxi-
dative stress is a single component of this.

Diabetes: Oxidative Stress and Dietary Antioxidants,
Second Edition is designed for dietitians and nutrition-
ists, food scientists, as well as healthcare workers and
research scientists. In this book the target audience
also includes diabetologists, biochemists and food
scientists, clinicians, basic science researchers, medical
students, healthcare industry workers, endocrinolo-
gists, family medicine physicians, diabetes nurse prac-
titioners, and drug developers. Contributions are from
leading national and international experts including
those from world-renowned institutions.

Professor Victor R. Preedy,
King’s College London
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Diabetic enteric neuropathy: imbalance
between oxidative and antioxidative

mechanisms
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List of abbreviations

ENS enteric nervous system
HO heme oxygenase
IR immunoreactive
nNOS neuronal nitric oxide synthase
NO nitric oxide
ROS reactive oxygen species
STZ streptozotocin

Structure, function, and diabetic state of the
enteric nervous system

The gastrointestinal tract differs from all other
organs in that it has an intrinsic nervous system
known as the enteric nervous system (ENS).1 The ENS
has compound functions: controlling the movement of
the gastrointestinal tract and gastric acid secretion, reg-
ulating movement of fluid across the epithelium and
local blood flow, modifying nutrient absorption, inter-
acting with the endocrine and immune systems of the
gastrointestinal tract, and maintaining the integrity of
the epithelial barrier between the intestinal lumen and
tissues within the gut wall.2

Enteric neurons, along with the enteric glia cells, are
arranged in networks of enteric ganglia connected by
interganglionic strands.3 The enteric ganglia are orga-
nized into two main plexuses in the intestinal wall.
The myenteric plexus is between the outer longitudinal
and circular muscle layers and extends the full length
of the digestive tract from the esophagus to the

rectum. The main function of the myenteric plexus is
the regulation of the gastrointestinal motility. The sub-
mucous plexus is prominent only in the small and
large intestines. Submucous ganglia reside in the sub-
mucosa tissue layer—in small animals in one layer, in
larger animals in two layers. This plexus regulates
absorption, blood flow, secretion in the gut wall, and
fluid movement between the lumen and the intestinal
epithelia.4,5

The total number of enteric neurons in humans is
200�600 million, which is approximately equal to the
number of neurons in the spinal cord.5 Enteric neurons
are highly varied in their morphological, neurochemi-
cal, and functional properties (Fig. 3.1). Intrinsic pri-
mary afferent neurons, interneurons, and motor
neurons are all present in the ENS and form local neu-
ral circuits in the gastrointestinal tract.4,5 The ENS can
work autonomously: it communicates bidirectionally
with the central nervous system and the other two
divisions of the peripheral nervous system—the sym-
pathetic and parasympathetic divisions. This bidirec-
tional connection between the ENS and central
nervous system is known as the gut�brain axis.6

The enteric glia cells closely associated with the neu-
rons resemble the astrocytes of the central nervous sys-
tem rather than Schwann cells. In enteric neurons,
similarly to the neurons of the central nervous system,
several neurotransmitters and neuromodulators are
present. Nonadrenergic-noncholinergic neurotransmis-
sion, via vasoactive intestinal polypeptide, nitric oxide
(NO), and substance P, plays a significant role in the
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peristaltic reflex of the gastrointestinal tract.4,7 In nitrer-
gic enteric neurons, NO is produced by the neuronal
NO synthase (nNOS) enzyme. The ratio of nitrergic
neurons to the total number of neurons is moderate in
the submucous plexus, while it is higher in the myen-
teric ganglia and varies between 25% and 50% in the
different gut regions and species4,8 (Fig. 3.2).

Numerous reports in the literature have suggested
that nitrergic myenteric neurons are especially suscep-
tible to neuropathy in different pathological states like
alcoholism,9 mitochondrial dysfunction,10 ischemia,11

or diabetes.12�15

The review of Cellek et al. discusses two phases of
nitrergic enteric neuropathy.15 The first phase, with the
loss of nNOS in the neurons and nitrergic dysfunction,
is reversible on insulin replacement. The second phase
is characterized by neuronal apoptosis and is irrevers-
ible on insulin replacement. In the past decade it has
become clear that the development of the diabetic
nitrergic neuropathy is more complicated than sug-
gested earlier15 and differs from segment to segment
along the gastrointestinal tract.13

The imbalance between prooxidant mechanisms
and antioxidant defenses contributes to the oxidative

FIGURE 3.1 Photomicrographs of neuronal nitric oxide synthase (A) neurofilament 200 (B) immunostained myenteric neurons in a
whole-mount preparation from the colon of a control rat. Figure C shows the merged pictures. Scale bars: 50 μm.
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stress in a diabetic state. Elevated oxidative stress is
the result of hyperglycemia-induced increased reac-
tive oxygen species (ROS) generation and the
impairment of endogenous defenses promoting the
pathogenesis of diabetes. Oxidative stress appears to
be crucial in diabetes-related enteric neuropathy and
gastrointestinal complications. Oxidative stress not
only activates different cellular pathways, but also
initiates and amplifies neuroinflammation due to the
production of proinflammatory cytokines.16 Antioxidants
have different mechanisms to ameliorate nerve dysfunc-
tion in diabetes by acting directly against oxidative
damage.17

Gut region-specific oxidative environment and
antioxidant capacity under physiological

conditions

It is well-known that the different parts of the gas-
trointestinal tract are anatomically and functionally
different. This regionality of the intestinal structure
and function develops under strict genetic control18,19

and may contribute to the unique features of the
enteric neurons under physiological or pathological
conditions in different gut segments.

During food consumption, in addition to a range of
antioxidants, oxidative agents also enter the body, so
the intestine fulfills a critical role in the regulation and
maintenance of the antioxidant-prooxidant balance.20,21

The appropriate antioxidant defense allows cells to
survive in an oxygenated environment. Therefore the

redox status of the different gut segments is extremely
important in health and in many metabolic diseases.22

In the duodenum, an adequate antioxidative envi-
ronment ensures the normal metabolism of cells. In
this particular gut segment in the chicken, high con-
centrations of vitamin E were present in the mucosa
which decreased toward the ileum and colon.23

Similarly, the highest concentrations of carotenoids
were observed in duodenal mucosa, with much lower
levels in the ileum and colon.23 The total antioxidant
activity, as well as the superoxide dismutase and cata-
lase activity, was also higher in the rat small intestinal
mucosa than in the colon.24 Glutathione, which is con-
sidered to be an active antioxidant, was found in high
concentration in the duodenum.25 In addition, the high
level of heme oxygenase 1 (HO1) and HO2 expression
in tissue homogenates of the duodenum (originated
from the smooth muscle layers and the myenteric
plexus) and the high percentage (88%) of HO1-
expressing myenteric ganglia in the duodenum, also
pointed to a protective basal microenvironment.14

Microsomal HO activity was also the highest in the
duodenal mucosa, where the absorption of hemoglobin
iron is more effective than in the caudal intestinal seg-
ments.26 Furthermore a number of Lactobacillus species
as probiotic strains were observed in high relative
abundance in duodenal microbiota originated from
luminal content.27�29 These findings suggest that as a
result of explicit antioxidant capacity of duodenum,
the cells located there have greater tolerance and pro-
tection against oxidative stress.

Under physiological conditions the expression of
the HO proteins is extremely low in the myenteric gan-
glia of the ileum; only half of the ileal ganglia con-
tained HO1�immunoreactive (IR) neurons and from
these ganglia only 16% contained nNOS�HO1 coloca-
lized neurons. Furthermore, the number of HO�IR or
nNOS�HO�IR cells was also lowest in the ileum com-
pared to other gut segments.14 In correlation with this,
others revealed that only 10% of neurons in the rat
ileum30 are nNOS�HO2�IR and that HO1 protein
expression is hardly detectable in the ileal mucosa.
Moreover, it is proved that HO1�IR and HO2�IR neu-
rons are present in very small amounts in the submu-
cous plexus of the small intestine.31 The slight
expression of these antioxidants may contribute to sig-
nificantly lower protection against different pathologi-
cal stimuli in the ileum.

The region-specific excess of bacteria in the gut
determines the oxygen supply of the small and large
intestine22,32,33 resulting a deep anaerobic state in the
distal segments.28 For example, in the distal ileum and
the colon, the presence of “nonpathogenic” anaerobic
bacteria Veillonella sp. has great dominance.27 It is also
supposed that in the colon, where the baseline redox

FIGURE 3.2 Photomicrograph of neuronal nitric oxide synthase�
immunostained myenteric neurons in a whole-mount preparation
from the duodenum of a control rat. The number of nitrergic neu-
rons in notable in the myenteric plexus. The main function of the
nitrergic myenteric neurons is the regulation of the gastrointestinal
motility. Scale bar: 100 μm.
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status is far from optimal, the physiological expression
of HO1 and HO2 is the most pronounced in the
colonic myenteric ganglia.14,34 As a preconditioning
factor, the HO enzymes are also abundant in the sub-
mucous neurons of the colon.31,34 Other results also
showed32 that the colon generates more ROS than does
the small intestine, and this prooxidant environment
may contribute to greater cancer susceptibility.32

Diabetes-related changes in the expression of
oxidants and antioxidants in the enteric ganglia

of different gut segments

We have demonstrated that nitrergic myenteric neu-
rons located in different gut segments display different
susceptibilities to diabetic damage (Fig. 3.3) and insulin
treatment.13,35 These findings emphasize the importance
of the neuronal microenvironment along the gastrointesti-
nal tract in the pathogenesis of diabetic nitrergic neuropa-
thy and urge investigation of the underlying molecular
mechanisms, like region-specific intestinal ROS accumu-
lation and endogenous antioxidant distribution.

Recent studies14,36 have demonstrated evidence for
gut region-specific accumulation of ROS, and have
also shown that enhanced oxidative stress leads to
regionally distinct activation of endogenous antioxi-
dants in the different intestinal segments of rats with
streptozotocin (STZ)-induced diabetes (Fig. 3.4).

Duodenum

In our study, in the duodenum of type 1 diabetic
rats, the number of nitrergic myenteric neurons
decreased, while the total neuronal number was not
altered, suggesting that only the neurochemical
character of the cells changed and no apoptosis
occurred.13 Coincidentally, there were no significant
changes in the production of a powerful oxidant, per-
oxynitrite, whereas the mRNA level of the free radi-
cal scavenger metallothionein-2 increased B300-fold
in this particular gut segment. Additionally, 2.5�3-
fold elevated glutathione levels were revealed in the
duodenal tissues of diabetics, which may protect cel-
lular proteins against oxidation, directly detoxify
ROS, and play a remarkable role to maintain the opti-
mal thiol/redox balance.36 Moreover, the highest
level of HO1 and HO2 expression in tissue homoge-
nates of control duodenum also emphasizes a highly
protective microenvironment in this intestinal seg-
ment.14 It is assumed that due to the adequate oxidative
environment, the nitrergic neurons receive greater pro-
tection and can better tolerate hyperglycemia-related
oxidative stress in the duodenum. In this gut segment,
besides a decrease in the number of nNOS neurons,
the number of nNOS�HO colocalized myenteric neu-
rons was not altered significantly. This suggests that

FIGURE 3.3 Density of total and nitrergic neurons in the two
enteric plexuses and different intestinal regions of diabetic rats. The
number of total and nitrergic neurons varied differently in the sub-
mucous and myenteric plexuses (SP and MP) of diabetics. The total
number of submucous neurons was not affected in the different gut
segments, while with the exception of the duodenal ganglia, the
number of nitrergic neurons was increased significantly in the ileum
and colon by diabetes. In the myenteric ganglia, a gut region-specific
decrease in total and nitrergic neuronal density was demonstrated.
Summarized from Bódi et al. (2017)31 and Izbéki et al. (2008).13

HuC/D is a pan-neuronal marker of enteric neurons; nNOS-
neuronal nitric oxide synthase.

FIGURE 3.4 Expression of endogenous heme oxygenase 1 and 2
in the two enteric plexuses and different intestinal regions of diabetic
rats. In diabetics, the number of heme oxygenase (HO) 1 and HO2-
immunoreactive neurons did not change significantly in the submu-
cous plexus (SP) of different intestinal segments compare to controls.
However, in the myenteric plexus (MP) of diabetic rats, the number
of HO1- and HO2-positive neurons, as well as the number of those
neurons in which the HO is colocalized with neuronal nitric oxide
synthase (HO1-nNOS and HO2-nNOS) increased significantly in
the ileum and colon, but not in the duodenum. Summarized from
Bódi et al. (2017)31 and Chandrakumar et al. (2017).14

28 3. Diabetic enteric neuropathy: imbalance between oxidative and antioxidative mechanisms

I. Oxidative stress and diabetes



HO-containing nitrergic neurons are less affected by
diabetic damage.14

Previous studies have shown that diabetic impair-
ments of the intestinal microbiota contribute to the
imbalance between the accumulation of reactive radicals
and endogenous antioxidant defenses.37�39 In our study
with STZ-induced diabetic rats, using next-generation
DNA sequencing, the duodenal microbiota did not dis-
play the development of a disadvantageous environ-
ment. Moreover, in the microbial community of the
diabetic duodenum, 49% of the total reads were due to
the order Lactobacillales (including almost all members
of the genus Lactobacillus), relative to 31% in healthy
controls.28 The increased number of lactic acid bacteria
strains, the key players of probiotics, results in
enhanced antioxidant capacity in different ways (e.g.,
these probiotics produce antioxidant metabolites, regu-
late different signaling pathways, downregulate activi-
ties of ROS-producing enzymes, or improve the
absorption of antioxidants and reduce postprandial
lipid concentrations).29,40 It has also been observed that
consumption of these probiotics presented higher activ-
ity of superoxide dismutase and glutathione peroxidase
in diabetic patients relative to controls.41

The appropriate intracellular glutathione level is
important to maintain a proper intestinal Ca21 absorp-
tion.42,43 It appears that the duodenum is the main site
of that because the lowest pH of the gut with decreasing
absorption rate to distal part.44 In mice on a high-fat
diet, increased oxidative stress and redox imbalance was
revealed in the duodenum, resulting in the inhibition of
calcium absorption and related gene expression.45

Similarly, in STZ-induced diabetic rats, it was also dem-
onstrated that intestinal oxidative stress at early stages
of diabetes leads to an inhibited Ca21 absorption.
However, time-dependent adaptive mechanisms contrib-
ute to normalizing the intestinal Ca21 absorption, as
well as the duodenal redox state.43,46

Ileum

In the diabetic ileum, not only did the density of
nitrergic myenteric neurons decrease, but so did the
total number of neurons.13,35,47 In this particular gut
segment, the markers of oxidative stress caused by
constant hyperglycemia were markedly expressed. The
level of malondialdehyde, an end product of lipid per-
oxidation, was almost doubled, while the levels of
antioxidant molecules, such as superoxide dismutase,
catalase, and glutathione, were significantly lower in
ileal tissue homogenates of diabetic rats compared to
controls.48 Similarly, significantly increased lipid per-
oxidation and protein oxidation was observed in
another study using diabetic rats.49

Shotton and Lincoln50 have demonstrated an
increased cell body size of nNOS�IR neurons in diabe-
tes, while HO2�IR neurons were not affected.
Moreover, the double-labeling studies revealed that
the diabetes-related alteration in size of perikarya was
confined to those nNOS�IR neurons that did not con-
tain HO2; those nitrergic neurons were protected
against diabetic effects, in which nNOS and HO2 were
colocalized. Interestingly, compared to the extremely
low presence of the HO proteins in controls, all of the
ileal ganglia included HO1�IR neurons and more than
60% of them were also IR for nNOS in diabetic rats.
The greatest increase in the ratio of nNOS�HO2�IR
ganglia was also shown in the ileum of diabetics14

compared to other intestinal regions. Furthermore,
both the HO1- and the nNOS�HO1�IR neuronal num-
ber was enhanced sevenfold, and the number of
nNOS�HO2�IR neurons increased sixfold in the dia-
betic ileum14 compared to controls. This data supports
that many of the nitrergic neurons start to produce HO
enzymes and suggests that those nNOS-positive neu-
rons which are not colocalized with HOs will be
injured by diabetes.

Based on these findings, the highest increase in
expression of the endogenous HO system and the colo-
calization of HO1 and HO2 with nNOS in myenteric
neurons was observed in the ileum of diabetics, which
highlights the outstanding concern of this intestinal seg-
ment in diabetes-related damage. This remarkable dia-
betic involvement of the ileum was also predicted in our
earlier study.28 We demonstrated that only the diabetic
ileal feces samples exhibited a massive (more than 30%)
Klebsiella invasion.28 Accumulation of these pathogens
results in gut inflammation, leaky epithelium and easy
paths for bacteria through the intestinal tissues, develop-
ing a pathological microenvironment and impairment of
gut immunity.51 It is assumed that diabetes-related
explicit changes in the microbial composition of the
ileum28 may contribute to the elevated mucosal immune
response and the greatest induction of endogenous HO
defenses in this segment. It was also reported that intes-
tinal HO1 is induced by the enteric microbiota and regu-
lates macrophage activity,52 which emphasizes even
further the importance of a disturbed enteric microbiota
in the determination of intestinal redox status. Ileal
microbiota dysbiosis is responsible for the glucagon-like
peptide-1 resistance, and therefore obstructs glucagon-
like peptide-1-induced NO production by enteric neu-
rons and induces enteric neuropathy in diabetic mice.53

Colon

In the colon of diabetic rats, both the nitrergic and
the total neuronal number decreased significantly.13,35
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In correlation with this myenteric cell loss, peroxyni-
trite production was doubled. Superoxide dismutase
activity decreased, whereas glutathione level, cata-
lase activity, and metallothionein-2 expression were
not significantly changed in the large intestine of
diabetic animals.36 The level of metallothionein-1
mRNA was increased sevenfold in the colon. In the
colon of diabetics, the presence of severe necrosis
was also confirmed by electron microscopy.36 These
data further suggest that the distal part of the gut is
the most vulnerable segment to oxidative stress
(Fig. 3.5A).

The proportion of nNOS�IR neurons colocalizing
with HO1 exhibited a threefold increase (72% vs.
23%) and the ratio of nNOS�IR neurons colocalizing
with HO2 was also enhanced (68% vs. 44%) in the
colon of diabetics.14 Besides a 22% decrease in the
nNOS neuronal number, a more than 50% increase
was demonstrated in the number of nNOS�HO1�IR
neurons, while the number of nNOS�HO2�IR neu-
rons did not alter significantly compared to con-
trols. This suggests that HO-containing nitrergic
neurons enjoy higher protection, while those that do
not contain HO are heavily affected by diabetic
damage.

Bacterial dysbiosis was also demonstrated in the
large intestinal segment of diabetics in our study.28

Regarding the microbial composition of the diabetic
colon, the major representatives belonged to the genus
Klebsiella. The relative abundance of 6% of this genus
was significantly less than that reported in the diabetic
ileum, but still noteworthy compared to the controls.28

This observed increase in the level of the pathogen
Klebsiella could be associated with intestinal inflamma-
tion and enteric neuropathy.

Submucous ganglia

The involvement of different myenteric neuronal
populations in diabetic oxidative injuries has been
thoroughly investigated in human and animal models.
However, the responsiveness of submucous neurons to
diabetic damage and the state of their antioxidant
defenses is poorly studied. It has been recently demon-
strated that the total number of submucous neurons
was not affected by diabetes in different segments of
the small and large intestine.31,54 These findings sug-
gest greater resistance of submucous neurons against
hyperglycemia-induced oxidative stress31,55 (Fig. 3.5B).
The density of the nitrergic submucous population did
not vary in the different intestinal segments.31,56 In the
duodenal submucous ganglia, the number of nitrergic
neurons was not affected by diabetic state. However,
in the ileum and colon, it increased significantly, pre-
sumingly due to modifications of neurochemical cod-
ing as an answer to diabetic oxidative damage
(Fig. 3.3). Increased immunoreactivity in vasoactive
intestinal polypeptide-positive neurons in the submu-
cous plexus has also been revealed in diabetes.57

Treatment with different antioxidant agents, like ascor-
bic acid or quercetin proved to be neuroprotective
against these diabetes-related alterations.55,57 The dis-
tribution of HO1�IR and HO2�IR submucous neurons
were more pronounced in the large intestine (about
50%) than in the small intestinal segments (0%�5%) in
healthy controls. Chronic hyperglycemia did not result
in any significant changes in HO-immunoreactivity in
these segments, while these neurons had intestinal
region-dependent responsiveness to immediate insulin
treatment.31 As colocalization of nNOS�HO2 in sub-
mucous neurons was observed in other studies,34,58

drawing attention to its protective capacity, the endog-
enous HOs may contribute to the elevated number of
nitrergic submucous neurons in the distal part of the
gut, which requires further studies.

Conclusion and perspectives

Considering the above-mentioned results, the imbal-
ance between oxidative and antioxidative mechanisms
in diabetes intensely contributes to enteric neuropathy
in the gastrointestinal tract. It is also important to
emphasize that the two enteric plexuses are affected
by the hyperglycemia-related oxidative stress differ-
ently and in a strictly gut region-specific manner
(Fig. 3.6).

Further highlighting the importance of oxidative
and antioxidative imbalance, other studies show that
oxidative stress plays a pivotal role in pathological
states where the gastrointestinal tract is injured, like

FIGURE 3.5 Vulnerability of the gut and enteric plexuses to
diabetes-related oxidative stress. The distal part of the gut is more
vulnerable than the proximal to diabetic oxidative stress (A). While
myenteric neurons are more susceptible to diabetic damage, the
submucous ganglia have greater resistance against hyperglycemia-
induced oxidative stress (B). p-plexus.
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gut inflammation, aging,7 gastrointestinal mucosal dis-
ease,59 or alcoholism.60

Recent data have elucidated that the gut microbiota
is a key contributor to the pathophysiological effects of
the gut�brain axis.6 Therefore the imbalance between
oxidative elements and antioxidant defenses not only
has an important local effect in the gastrointestinal
tract, but also has a unique function in the develop-
ment of neurodegenerative or neuropsychological
disorders.

Summary points

• Nitrergic myenteric neurons in different gut
segments display different susceptibilities to
diabetic damage and to insulin treatment,
emphasizing the importance of the neuronal
microenvironment in the pathogenesis of diabetic
neuropathy.

• Shifts in the balance between the production and
scavenging of free radicals lead to region-specific
oxidative stress in the gut, which in turn contribute
to enteric neuropathy in diabetes.

• Both the accumulation of reactive oxygen species
and the activation of endogenous antioxidants show
distinct regional differences in diabetes.

• The distal part of the small intestine shows greater
changes to oxidative stress than the proximal part.

• Nitrergic neurons that contain heme oxygenase enjoy
higher protection while those that do not contain heme
oxygenase are heavily affected by oxidative damage.

• Microbial dysbiosis demonstrated in the distal part
of the gut may contribute to inducing endogenous
heme oxygenase defense mechanisms in the ileum
and colon.
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