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ABSTRACT One of the first attempts at the automation of test case reduction was the minimizing delta
debugging algorithm, widely known as ddmin. Despite its age, it is still an unavoidable cornerstone of this
field of research. One criticism against ddmin is that it can take too long to reach the granularity where it
can perform actual reduction. Therefore, in this paper, ddmin is generalized with respect to the granularity
by introducing a new split factor parameter, leading to the formalization of a parametric algorithm variant.
The complexity analysis of this parametric variant reveals that the theoretical worst and best-case behavior
of ddmin can be improved. Moreover, the results of experiments with the generalized algorithm show that
the reduction can be sped up significantly by choosing the right split factor: up to 84% of the test steps can
be eliminated in practice.

INDEX TERMS Delta debugging, granularity, split factor, test case reduction.

I. INTRODUCTION
When a fault is first triggered in a software, the test case
that triggers it is rarely concise. This holds true even when
the software is used ‘properly’ and the bug is ‘just hit’, but
it becomes increasingly true for scenarios where the test
cases are automatically and randomly generated, e.g., for
fuzzing [1]. Trimming down a verbose failure-inducing test
case to a minimal subset that is still interesting – i.e., which
reproduces the original issue – can be a long and tedious
process. So, it is no wonder that attempts have been made
at its automation.

One of the first attempts was Zeller’s minimizing delta
debugging algorithm, widely known as ddmin. Although the
first paper on delta debugging [2] is over twenty years old,
its age does not change the fact that it is still an unavoid-
able reference in the field of automated test case reduction.
Many researchers have experimented with different reduction
techniques, trying to improve performance [3], [4], aiming for
smaller results, or specializing in various input domains [5],
[6] – but ddmin was always there in the past two decades,
either as a basis to build an improved approach upon [3] or
as a baseline to compare improvements against [7]. Both its
intuitive approach and its theoretical well-foundedness may
have led to it becoming such a cornerstone of this field of
research.
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One criticism that is sometimes raised against ddmin is that
although it is intuitive (i.e., it follows the steps a human tester
would take for test case reduction), it can be very expensive
in practice [8] (i.e., for the automated approach) because it
can take too many steps to reach the granularity where it
becomes possible to perform actual reduction (more on that
in Section II). Fortunately, thanks to the well-formalized defi-
nition of the algorithm, it is possible to thoroughly investigate
this issue.

Therefore, in this paper, we investigate the original ddmin
algorithm and generalize it with respect to the granularity it
uses, by introducing a new split factor parameter. With the
help of this generalization, we seek answers to the following
research questions:

(RQ1) What components of the original formalization of
the ddmin algorithm are essential to its theoretical
guarantees?

(RQ2) Is the original formalization the fastest to give
results, or are there other parameterizations that can
be faster?

(RQ3) Does the original formalization give the smallest
result, or are there other parameterizations that can
yield a smaller output?

(RQ4) Is there a best parameterization for size or for per-
formance?

The rest of this paper is structured as follows: Section II
discusses the original minimizing delta debugging algorithm
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Algorithm 1 Zeller and Hildebrandt’s
Let test and c7 be given such that test(∅) = 3 ∧ test(c7) = 7 hold.
The goal is to find c′7 = ddmin(c7) such that c′7 ⊆ c7, test(c′7) = 7, and c′7 is 1-minimal.
The minimizing Delta Debugging algorithm ddmin(c) is

ddmin(c7) = ddmin2(c7, 2) where

ddmin2(c′7, n) =


ddmin2(1i, 2) if ∃i ∈ {1, . . . , n} · test(1i) = 7 (‘‘reduce to subset’’)
ddmin2(∇i,max(n− 1, 2)) else if ∃i ∈ {1, . . . , n} · test(∇i) = 7 (‘‘reduce to complement’’)
ddmin2(c′7,min(|c′7|, 2n)) else if n < |c′7| (‘‘increase granularity’’)
c′7 otherwise (‘‘done’’).

where ∇i = c′7 −1i, c′7 = 11 ∪12 ∪ . . . ∪1n, all 1i are pairwise disjoint, and ∀1i · |1i| ≈ |c′7|/n holds.
The recursion invariant (and thus precondition) for ddmin2 is test(c′7) = 7 ∧ n ≤ |c′7|.

to give the necessary background information in order to
make this paper self-contained. Section III analyzes the origi-
nal algorithm, generalizes it with the help of a new split factor
parameter, and gives the theoretical complexity analysis of
the generalized algorithm. Section IV presents the details
and the practical results of the experiments conducted with
the generalized algorithm, and tries to give answers to the
research questions raised above. Section V overviews the
related literature, and finally, Section VI concludes the paper
with a summary and with directions for future work.

II. BACKGROUND
To give the necessary background information in order to
make this paper self-contained, Zeller and Hildebrandt’s lat-
est formulation of the minimizing delta debugging algo-
rithm (ddmin) [9] is given verbatim in Algorithm 1. (For an
overview of other works that are related to test case reduction,
but not directly connected to the scope of this paper, the reader
is referred to Section V.)

The algorithm takes an initial configuration (c7) and a
testing function (test) as parameters. The configuration, a set,
represents the failure-inducing test case that needs to be
minimized and the elements it is composed of. The test-
ing function is used to determine about any subset of the
initial configuration whether it induces the same failure
(by returning 7, i.e., fail outcome) or not (by returning 3,
i.e., pass outcome). (Additionally, the original definition of
testing functions allowed for a third type of outcome as well,
? or unresolved, but that outcome type is irrelevant to the
algorithm.)

The algorithm assumes that the size of the initial con-
figuration is greater than two (otherwise there would be no
minimization necessary), and so it splits up the configuration
into two parts. In other words, it starts with the granularity
of two (which is kept track of as parameter n of the helper
function ddmin2). Then, at all granularities, the algorithm
tries several steps to make progress. First, hoping for a
faster progression, the algorithm tests each subset (1i) of
the configuration, for whether any partition resulting from
the splitting at the current granularity reproduces the failure.
If there is a failing subset, then the rest of the configuration
is discarded and the algorithm starts over at the granularity

of two (i.e., it splits the failing subset in two halves again
and starts their testing). When this ‘‘reduce to subset’’ step
is not successful, the algorithm moves on to the ‘‘reduce to
complement’’ step and tests each complement (∇i = c′7−1i).
If any of them reproduces the failure, the algorithm starts over
again for the failing complement, but this time it only reduces
the granularity by one in order to keep the existing splitting.
If none of the reduction steps can make progress, the algo-
rithm tries to increase the granularity to work with smaller
subsets (which also means larger complements that have a
better chance to reproduce the failure). As long as the size
of the configuration allows, the increase of granularity is by
the factor of two, which can also be interpreted as the further
splitting of the current subsets into halves. However, if the
granularity cannot be increased further because all subsets
already contain a single element of the initial configuration,
the algorithm stops.

An important property of ddmin is that when it stops,
it is guaranteed to have reached a (local) minimum. More
precisely, it is proven that its result is 1-minimal according
to Definition 1 below.
Definition 1 (n-Minimal Test Case): A test case c ⊆ c7 is

n-minimal if ∀c′ ⊂ c · |c| − |c′| ≤ n⇒
(
test(c′) 6= 7

)
holds.

Consequently, c is 1-minimal if ∀δi ∈ c · test (c− {δi}) 6= 7
holds.

I.e., no single element can be removed from the result of
ddmin without losing its ability to reproduce the failure.

III. GENERALIZING THE SPLIT FACTOR
As the discussion in the previous section shows, the mini-
mizing delta debugging algorithm (ddmin) tries to balance
between performance and theoretical guarantees. To speed
up the progress of reduction, it splits up configurations into
halves, quarters, and so on, before reaching the finest granu-
larity, and it also tries to reduce to these subsets before reduc-
ing to complements. However, it is easy to recognize that
1-minimality can be guaranteed by much simpler algorithms
as well. All that is actually required is reduction to comple-
ments at the finest granularity. In Algorithm 2, the simplest
algorithm that can yield 1-minimal results is shown, onemin,
worded in the likeness of ddmin.
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Algorithm 2 Trivial 1-Minimizing
Let test and c7 be given such that test(∅) = 3 ∧ test(c7) = 7 hold.
The goal is to find c′7 = onemin(c7) such that c′7 ⊆ c7, test(c′7) = 7, and c′7 is 1-minimal.
The trivial 1-minimizing algorithm onemin(c) is

onemin(c7) =

{
onemin(∇i) if ∃i ∈ {1, . . . , n} · test(∇i) = 7 (‘‘reduce to complement’’)
c7 otherwise (‘‘done’’).

where n = |c7|, ∇i = c7 −1i, c7 = 11 ∪12 ∪ . . . ∪1n, all 1i are pairwise disjoint, and ∀1i · |1i| = 1 holds.
The recursion invariant (and thus precondition) for onemin is test(c7) = 7.

Algorithm 3 Minimizing Delta Debugging With Generalized Split Factor
Let test and c7 be given such that test(∅) = 3 ∧ test(c7) = 7 hold. Let ν ≥ 2.
The goal is to find c′7 = ddminν(c7) such that c′7 ⊆ c7, test(c′7) = 7, and c′7 is 1-minimal.
The minimizing Delta Debugging algorithm with generalized split factor ddminν(c) is

ddminν(c7) = ddminν2(c7,min(|c7|, ν)) where

ddminν2(c
′
7, n) =


ddminν2(1i,min(|1i|, ν)) if ∃i ∈ {1, . . . , n} · test(1i) = 7 (‘‘reduce to subset’’)
ddminν2(∇i,min(|∇i|, µν(n− 1))) else if ∃i ∈ {1, . . . , n} · test(∇i) = 7 (‘‘reduce to complement’’)
ddminν2(c

′
7,min(|c′7|, νn)) else if n < |c′7| (‘‘increase granularity’’)

c′7 otherwise (‘‘done’’).

whereµν(n) =

{
n if n > 1
ν otherwise

, and∇i = c′7−1i, c′7 = 11∪12∪. . .∪1n, all1i are pairwise disjoint, and ∀1i ·|1i| ≈ |c′7|/n

holds.
The recursion invariant (and thus precondition) for ddminν2 is test(c

′
7) = 7 ∧ n ≤ |c′7|.

Obviously, there is a wide range of possible algorithm
variants between onemin and ddmin. In a previous work [4],
we have already experimented with discarding the ‘‘reduce
to subset’’ step of ddmin. In this paper, the granularity of
the algorithm is in focus, or more precisely, how the initial
granularity is determined and how it is increased later on.
The original minimizing delta debugging algorithm always
uses the factor of two: at the start of the algorithm, n is set
to two, then whenever a ‘‘reduce to subset’’ step succeeds,
n becomes two again, and finally, when granularity has to
be increased, n is doubled. However, this ‘‘magic number’’
of 2 is not mandatory for the proper behavior of the algorithm.
It was used at the inception of ddmin because it was presumed
that it will make the algorithm efficient and it will help fast(er)
progress towards the 1-minimal result.

However, it is exactly this assumption that raises questions,
but has not been thoroughly analyzed yet. To facilitate the
analysis, this work proposes to generalize ddmin by replacing
the hard-coded constant of 2 with a parametric split factor.
In Algorithm 3, this parametric variant of ddmin is given,
denoted as ddminν , where ν (lowercase Greek Nu) stands for
the number that determines the initial value as well as the
growth factor of n.

It is easy to see that with ν = 2 (the smallest possible
value for ν), the parametric variant becomes equivalent to
the original ddmin algorithm. On the other hand, as ν gets
larger, the initial granularity becomes finer, and as soon as
it grows beyond the size of the configuration, the subsets of

the initial configuration become singletons and the ‘‘increase
granularity’’ step effectively vanishes. If we also opt to skip
the ‘‘reduce to subset’’ step, as discussed in [4], we get the
equivalent of onemin.

As this new parameter ν can be used to describe both
ddmin and the simplest onemin, as well as many intermedi-
ate variants (all of which guarantee the 1-minimality of the
result), ddminν can be considered a good generalization of
the original algorithm.

Now that it has been formally defined, the complexity
analysis of ddminν can be performed.
Worst-case complexity: First, the worst case starts with

every test having a non-failing result until we have a maxi-
mum granularity of n = |c7|. This results in a re-invocation
of ddminν2 with a growing number of subsets (where the
multiplication factor is ν), until |1i| = 1 holds. The number
of tests to be carried out is 2ν + 2ν2 + 2ν3 + · · · + 2|c7| =

2( |c7|

ν0
+
|c7|

ν1
+
|c7|

ν2
+ . . . ) = 2|c7|

ν
ν−1 . Then, the worst case

is that testing only the last complement ∇n results in a failure
until n = 2 is reached1. This means that ddminν2 is re-invoked
with ddminν2(∇n, n− 1), resulting in |c7| − 1 calls of ddminν2
with 2n tests per call, or 2(|c7| − 1) + 2(|c7| − 2) + · · · +
2 = |c7|

2
− |c7| tests. The overall number of tests is thus

2|c7|
ν
ν−1 + |c7|

2
− |c7| = |c7|

2
+

ν+1
ν−1 |c7|.

1This second phase of the worst case does not depend on the value of ν,
thus this part of the analysis is identical to that given for ddmin [9].
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Best-case complexity: The best case is when there is only
one failure-inducing element δi ∈ c7, all test cases that
include δi cause a failure as well, and testing the first subset
in ddminν2 always fails

2. In this case, the number of tests t is
limited by t ≤ logν(|c7|).

With ν = 2, the formulas above give the worst and
best-case behavior of ddmin, naturally. They also show that
by increasing ν, the theoretical worst and best-case complex-
ities both improve (although in the worst case, only the linear
component decreases, the cubic part is independent from ν).
In practice, however, neither the worst, nor the best case are
likely to occur. The next section will investigate the practical
effect of the split factor on the performance of ddminν .

IV. EXPERIMENTAL RESULTS
To allow experiments with the generalized split factor of the
minimizing delta debugging algorithm (ddmin), Algorithm 3
has been implemented into the Picire project, a syntax-
unaware test case reduction framework written in Python.3

The evaluation platform of the experiments was a computer
equipped with an i5-8250UCPU clocked at 1.6 GHz and with
8 GB RAM. The machine was running Ubuntu 18.04.4 with
Linux kernel 4.15.0. The prototype implementation was exe-
cuted with CPython interpreter version 3.6.9 and the C test
cases were compiled with gcc 7.5.0.

A. TEST INPUTS FROM THE LITERATURE
In the first set of experiments, four test inputs have been
chosen from the literature that have been previously used for
test case reduction benchmarking.

Our first test case (irrational.json) is a JSON file contain-
ing an array of numbers: integers and floats. An artificial
consumer of the input signals error for non-integer elements,
and so the reduction criterion (i.e., the property to keep during
reduction) is to keep the input as a valid JSON file, but also
reproduce the error signal in the consumer. This test case was
used as a motivating example in [10].

The second test case (issue1387.js) is a JavaScript pro-
gram that aborts version 1.0 of the JerryScript lightweight
JavaScript engine.4 The reduction criterion for this test case
is to keep the crashing behavior of the engine. The test case
comes from the public issue tracker of the engine (as #1387)
and has also been showcased in [11].

The third test case (helloworld.c) is a C program that
prints the classic ‘‘Hello world!’’ message among some other
lines. In this case, the reduction criterion is to keep the input
compilable by a C compiler and also keep the ‘‘Hello world!’’
message on the output of the built binary when executed. This
program was an example in [7].

2The original best-case complexity analysis of ddmin [9] misses to recog-
nize that the best case happens when testing the first subset always results in
a failure. Thus, it includes a constant factor of 2 in the upper bound for the
number of tests. However, a more precise analysis of the best case allows for
a tighter limit.

3https://github.com/renatahodovan/picire
4https://github.com/jerryscript-project/jerryscript

TABLE 1. Size of test inputs from the literature.

Finally, our fourth test case (bug.c) is a C source file
that causes an internal compiler error (ICE) in gcc 2.95.2.
For this test case, the reduction criterion is to keep the
failure-inducing code fragment in the source.5 This test case
has appeared in various papers in slightly different forms [9],
[12], the variant that was presented in [3] is used here.

Information about the size of the test cases is given
in Table 1. Thus, if we take lines as the units of configurations,
we have input configurations in the range of 5 to 37, while
with characters as units, the size of input configurations is
between 33 and 740.

To evaluate the effect of the split factor on reduction,
both line-based and character-based reductions have been
performed on all test cases with the split factor following
the Fibonacci sequence ([1, 1, ]2, 3, 5, 8, 13, . . . ) as well as
the sequence of powers of two ([1, ]2, 4, 8, 16, . . . ), from
two until it reached the size of the initial configuration (i.e.,
the number of lines or characters in the test input). More-
over, two different algorithm variants have been executed
for each split factor. In the first variant, both the ‘‘reduce to
subset’’ and ‘‘reduce to complement’’ steps of ddminν2 were
performed in syntactic order (i.e., the syntactically first subset
of the test input was tested first, and then the algorithm iter-
ated over the additional subsets deterministically in sequence,
if necessary), and content-based caching was enabled [10].
The second variant also had caching enabled, but the ‘‘reduce
to subset’’ step was omitted, and the complement tests were
performed in backward syntactic order (i.e., the removal of
the syntactically last subset of the test input was tested first,
since previous experiences have shown that the order inwhich
the elements of a configuration are investigated can affect
performance [4], [13]). In the following paragraphs, we will
refer to these variants as ‘‘with subset tests’’, and ‘‘without
subset tests’’, respectively6.

The combination of all test cases, both possible units of
configuration (line or character), all split factor settings,
and both algorithm variants gave 170 reduction sessions, for
which the raw results are presented in Tables 2 and 3. In both
tables, multiple lines belong to each test case: one line for the

5As gcc 2.95.2 is very hard to put in use on today’s systems, a recent com-
piler is used to ensure that the reduced test case is valid C and substring search
is used to ensure that the code fragment that crashed gcc 2.95.2 remains in
the source.

6Results without caching are not presented, as no implementation of
ddmin actually behaves this way in practice. The reason for this is that
when the ‘‘reduce to complement’’ step is successful, ddmin tends to re-test
the same subsets in the ‘‘reduce to subset’’ step over and over again. To
overcome this performance overhead, even the original work [9] discussed
the possibility of caching the test outcomes to avoid the repeated testing of
recurring configurations.
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TABLE 2. Results of line-based reduction on test inputs from the literature.

results measuredwith each split factor setting. Then, each line
contains two sets of results, one for each algorithm variant,
showing both the number of executed testing steps and the
size of the output configuration. The first lines (with ν = 2)
of the test inputs have been used as baselines (100%) to
compare the results of higher split ratios against. To facilitate
the reading of the tables, improvements are highlighted with
italics and the best improvements with underlines.

Table 2 shows that increasing the split factor could yield
faster results for both algorithm variants while giving the
same number of output lines (i.e., the same output config-
uration size) as the baseline. Furthermore, for three out of
the four test inputs (irrational.json, issue1387.js, and hel-
loworld.c), ν > 2 was at least as fast as ν = 2 in almost
all the cases (the exception being irrational.json at ν = 3),
and the highest split factor was the fastest. For bug.c,
the ‘‘with subset tests’’ algorithm variant could not outper-
form the baseline except at ν ∈ {4, 8, 13}. With the sec-
ond variant, however, when subset tests were not executed,
the results were more similar to the other test cases (but the
best performance was still observed at the split factor of four,
i.e., not at the highest split factor). In summary, for line-based
reduction, the increase of the split factor could save 19–37%
and 11–50% of the test steps of the ‘‘with subset tests’’
and ‘‘without subset tests’’ variants, respectively, in the best
case.

In addition to the results above, there are two additional
observations that can be made based on Table 2. First,
the effect of the split factor on performance is not monotonic
in practice, neither in general, nor for a given test case, nor for

an algorithm variant: as the split factor increases, the number
of executed tests sometimes increases, sometimes decreases.
I.e., even if the theoretical upper and lower bounds of the
number of executed tests decrease with an increasing split
factor, this improvement does not necessarily manifest itself
for every test case. Second, bug.c exemplifies that 1-minimal
configurations are not unique. For that test case, some higher
split factors yielded somewhat larger output configurations –
however, it must be noted that even the larger outputs comply
with the definition of 1-minimality.

The results of character-based reduction, shown in Table 3,
partially align with the line-based results. Most notably, for
both algorithm variants, and for all test cases, some higher
split factor is always faster than the baseline. However, in line
with the observation made above about non-monotonicity in
practice, the fastest execution is not necessarily measured
at the highest split factor, but sometimes at some quite dif-
ferent intermediate values (at ν = 5 with subset tests and
at ν = 3 without subset tests for irrational.json, and at
ν = 32 with subset tests and at ν = 144 without subset
tests for bug.c). It is also true that for both variants, almost
all higher split factors outperformed the baseline (with the
exception of irrational.json at ν = 8, at ν = 21, and at
ν = 32, and issue1387.js at ν = 4). Finally, the character-
based reductions show the non-uniqueness of 1-minimality
more prominently: bug.c is an outlier again, but now in
a positive sense, as it gives a smaller output at ν = 3
than the baseline, showing that the original approach of
ν = 2 is not necessarily the optimal parameterization
either for performance or for size. As a summary of the
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TABLE 3. Results of character-based reduction on test inputs from the literature.

character-based reduction, the parametric split factor helped
to execute 38–47% and 42–51% fewer tests in the ‘‘with sub-
set tests’’ and ‘‘without subset tests’’ variants in the best case,
respectively.

B. TEST INPUTS FROM JavaScript FUZZING
In a second set of experiments, 13 test cases have been
compiled from fuzzing sessions targeting the aforementioned
JerryScript engine. The test inputs (i.e., JavaScript programs)
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TABLE 4. Size of test inputs from JavaScript fuzzing.

were generated by the Grammarinator fuzzer [14] and split
to lines using a code reformatter. The thus created test scripts
crash various development revisions of the engine with heap
buffer overflows, stack buffer overflows, and assertion fail-
ures. The detected bugs have been reported in the issue tracker
of the engine: the first column of Table 4 gives the issue IDs
assigned to the reports (which detail the reproducibility of the
problem by giving the affected engine revision, build steps,
and observed failure, as well as amanuallyminimized version
of the test case).

The size of the non-minimized test cases is also given
in Table 4. In units of lines, the size of the inputs is in the
range of 20 to 232. In terms of characters, the size of the
test cases is between 444 and 6323. (However, this latter
metric is solely given for reference as this second set of
experiments only involves line-based reduction because of
resource constraints.)

The results of the line-based reduction of these 13 test
inputs are shown in Table 5 in a format similar to the one
used in the previous subsection. The only difference is that
results are not given for all split factors because of the large
amount of data (the combination of test cases, split factor
values, and algorithm variants gave 344 reduction sessions).
The results for the lowest and highest split factors are given
for each test input, but intermediate lines are only shown for
the best performing split factors of each algorithm variant
(if there even was a parameterization that was at least as good
as ν = 2 at all).

Again, these results partially align with the results seen
in the previous subsection. For the ‘‘with subset tests’’ and
‘‘without subset tests’’ algorithm variants and for themajority
of these test inputs, there is a split factor greater than two that
can reach the performance or even outperform the baseline
split factor of two. It were only the test inputs of #3299 and
#3433 (for the ‘‘with subset tests’’ variant), and the test input
of #3534 (for the ‘‘without subset tests’’ variant) for which
every tried split factor was slower than the baseline. (Note,
however, that because of the non-monotonic effect of the split
factor on the test steps, there may be better parameteriza-
tions, even for these test inputs. But it was impractical to
try every possible value for ν.) The best value for the split
factor varied heavily, the fewest test steps were observed at

ν ∈ {3, 4, 5, 8, 16, 21, 55, 89, 128} depending on the test
input and the algorithm variant. These tests also show that
a higher split factor can not only decrease the number of
performed test steps, but in some cases, it can also result
in a smaller output than the baseline (exemplified by issues
#3376, #3408, #3506, and #3536, with 80% being the highest
reduction observed). In summary, where improvement was
possible, a higher split factor could save 1–84% and 4–63%
of the test steps of the ‘‘with subset tests’’ and ‘‘without subset
tests’’ algorithm variants.

C. ANSWERS TO THE RESEARCH QUESTIONS
The algorithms in Section III and the experimental results
presented above help us answer the research questions raised
at the beginning of this work.
(RQ1) What components of the original formalization

of the ddmin algorithm are essential to its theoretical
guarantees?

The trivial 1-minimizing algorithm, onemin, shows that,
theoretically, it is only the ‘‘reduce to complement’’ step at
the finest granularity that is essential. Nevertheless, the min-
imizing delta debugging algorithm with the generalized split
factor, ddminν , shows that the granularity-related components
of the formalization can be changed to improve performance
without violating the theoretical guarantees.
(RQ2) Is the original formalization the fastest to give

results, or are there other parameterizations that can be
faster?

From a theoretical perspective, the complexity analysis of
ddminν shows that changing (increasing) the here-introduced
split factor parameter has a positive effect on both the worst
and best-case behavior of the algorithm. From a practical
point of view, the experimental results also show that the split
factor parameter has a positive, although non-monotonic,
effect on the performance of the reduction in the majority
of the cases. In the above described experiments, up to 84%
of the test executions could be eliminated. The experimental
results also confirm our earlier findings [4] that the omission
of the ‘‘reduce to subset’’ step of delta debugging can speed
up the reduction process for most of the test cases.
(RQ3) Does the original formalization give the smallest

result, or are there other parameterizations that can yield a
smaller output?

According to the experimental results, the original formal-
ization often gives the smallest results, but not always. For
some test cases, changing the split factor parameter could
decrease the output size along with the number of test steps.
In one case, a surprisingly high output size reduction was
observed (80%). Note, however, that theoretically all outputs
are 1-minimal.
(RQ4) Is there a best parameterization for size or for

performance?
Because of the non-monotonic effect of the split factor in

practice, the best value for ν is not always the highest possible
value (as possibly suggested by the complexity analysis of
ddminν). At the moment, there seems to be no fixed value or
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TABLE 5. Results of line-based reduction on test inputs from JavaScript fuzzing.

obvious formula that could give the best split factor (size or
performance-wise), yet.

V. RELATED WORK
One of the first and most influential works in the field of test
case reduction is the delta debugging approach (ddmin) intro-
duced by Zeller [2], Zeller and Hildebrandt [12], Hildebrandt
and Zeller [9]. It can be applied to arbitrary inputs without
having any a priori knowledge about the test case format. In
exchange for this flexibility, it generates a large number of
syntactically incorrect test cases that lowers its performance.

Hodován et al. suggested several speed-up improvements to
the original algorithm, like parallelization or configuration
reordering [4], while keeping its guarantee of 1-minimality.
Other approaches used static and dynamic analysis, or slic-
ing to discover semantic relationships in the code under
inspection and reduce the search space where the failure is
located [15], [16].

To lower the number of syntactically broken intermedi-
ate test cases, Miserghi and Su used context-free grammars
to preprocess the test cases [3]. They converted the tex-
tual inputs into a tree representation and applied the ddmin
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algorithm to the levels of the tree. With this approach, called
Hierarchical Delta Debugging (HDD), they could remove
parts that aligned with syntactic unit boundaries. Although
it substantially improved delta debugging both output quality
and performance-wise, it still created syntactically incorrect
test cases as it tried to remove every node even if that caused
syntax errors. As an improvement, Miserghi analyzed the
input grammar to decide which node can be completely
removed and which should be replaced with a minimal, but
syntactically correct string [17]. This change guaranteed the
intermediate test cases to be syntactically correct.

The original HDD approach used traditional context-free
grammars to parse the input, which could produce highly
unbalanced tree representations and cause inefficient reduc-
tion. For this reason, Hodován et al. suggested using extended
context-free grammars (eCFGs) for tree building [18]. With
the help of quantifiers enabled by eCFGs, they got more
balanced tree representations and smaller outputs in less time.
To facilitate the reuse of available non-extended CFG gram-
mars, they applied automatic transformations to parse trees to
balance recursive structures [11]. They also realized that by
analyzing the grammars to help avoid superfluous removals
and by using a new caching approach, they could speed up
reduction even further [10]. Moreover, they experimented
with a variant of HDD, called HDDr or recursive HDD, that
applied ddmin to the children of one node at a time, traversing
the tree either in a depth-first or breadth-first way [13].

Tree-based test case reduction does not necessarily have to
mean subtree removal. Bruno suggested to use hoisting as an
alternative transformation in his framework called SIMP [19],
which was designed to reduce database-related inputs. In
every reduction step, SIMP tried to replace a node with a
compatible descendant. In a follow-up work, they combined
SIMP and delta debugging [5].

Sun et al. combine the above mentioned techniques in their
Perses framework [7]. They are also utilizing quantifiers, but
instead of parse tree transformations they normalize the gram-
mars by rewriting recursive rules to use quantified expres-
sions instead. During reduction, they maintain an ordered
worklist of the pending nodes to be reduced. The ordering of
the worklist follows the number of tokens that a certain node
contains. When reducing, they apply ddmin to the quantified
nodes and hoisting to the non-quantified ones. Pardis [20],
from Gharachorlu et al., is built upon the idea of Perses, but
it uses a different approach to prioritize the ordering of the
worklist.

Herfert et al. [21] also combined subtree removal and
hoisting in their Generalized Tree Reduction (GTR) algo-
rithm, but instead of analyzing a grammar to decide about
the applicability of a certain transformation, they learned this
information from an existing test corpus.

Regehr et al. used delta debugging as one possible
method in their C-Reduce test case reducer tool for C/C++
sources [22]. This system contains various source-to-source
transformator plugins – line-based delta debugging among
others – to mimic the steps that a human would have taken.

They also applied language-specific transformations based
on the semantics obtained by the Clang compiler. Regehr
also experimented with running the plugins of C-Reduce
in parallel, the write-up about this work is available on his
blog [23].

All the above-mentioned works targeted textual failure-
inducing inputs, but test case reduction has a much broader
application area. Scott et al. [24] minimized faulty event
sequences of distributed systems. Brummayer and Biere [25]
used delta debugging in order to minimize failure-inducing
satisfiability modulo theories (SMT) solver formulas. Ham-
moudi et al. [26] adapted delta debugging to be appli-
cable to bug-inducing web application event sequences.
Clapp et al. [27] aimed at reducing faulty Android graphi-
cal user interface (GUI) event sequences with an improved
ddmin variant called ND3MIN. SimplyDroid [28] also tar-
geted Android GUI event minimization, but it represented
input events as a hierarchy tree and applied HDD and two
new variants for reduction. Delta debugging was also used
to reduce unit tests [15], [29] or even unit test suites [30].
Binkley et al. used similar but non-(H)DD-based algorithms
in their observation-based slicing approaches [6], [8].

The efficiency of reduction can be improved with
additional information. The authors of Penumbra [31]
used dynamic tainting to identify failure-relevant inputs.
Wang [32] optimized event trace minimization by specify-
ing constraints on events and failures. Lin et al. [33] used
lightweight user-feedback information to guide the recogni-
tion of suspicious traces.

VI. SUMMARY
In this paper, we have focused on theminimizing delta debug-
ging algorithm (ddmin), which – despite its age – is still one
of the most important works in the field of automated test
case reduction. One criticism that is sometimes raised against
ddmin is that it can take too long for it to reach the granu-
larity where it can perform actual reduction. However, after
investigation, it became clear that there is a parameterization
possibility of ddmin, not yet analyzed or utilized: there is a
split factor built into the algorithm that affects the granularity
used during reduction, which – although originally defined
as the constant value of two – may be varied without losing
the guarantee of 1-minimal results. A parametric algorithm
variant has been formalized, ddminν , and it has been shown
to be able to express multiple existing approaches, e.g., both
the original ddmin and the trivial 1-minimizing algorithm,
onemin. Its complexity analysis has revealed that the theoret-
ical worst and best-case behavior improves with the increase
of the split factor parameter. A large number of reduction
sessions have been conducted, and it has been found that by
choosing the best split factor, the reduction could be sped up
by eliminating up to 84% of the test steps. However, it has
also been found that determining the best value for the split
factor is non-trivial in practice, i.e., there is no known formula
for it for the time being.
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Whether the best-performing split factor can always be
found using a formula or guessed with sufficient accuracy
using some heuristics, is left for a future work. Addition-
ally, the work presented here has raised further research
questions related to algorithms built on top of ddmin. Thus,
we have plans to conduct a similar experiment with hierarchi-
cal delta debugging. It will be interesting to seewhat effect the
split factor can have on tree-structured configurations, which
help to create subset partitions better aligned with the input
structure. Finally, it could also be investigated in follow-up
research whether other test case reduction algorithms not
directly related to ddmin could adopt the concept of a gen-
eralized split factor.
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