
Journal of Parallel and Distributed Computing 148 (2021) 109–124

I
a

b

m
C
m
r
t
i
d

l
p
w
t

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Decentralized learningworks: An empirical comparison of gossip
learning and federated learning✩

stván Hegedűs a, Gábor Danner a, Márk Jelasity a,b,∗

University of Szeged, Szeged, Hungary
MTA SZTE Research Group on Artificial Intelligence, Szeged, Hungary

a r t i c l e i n f o

Article history:
Received 15 October 2019
Received in revised form 8 October 2020
Accepted 18 October 2020
Available online 4 November 2020

Keywords:
Federated learning
Gossip learning
Decentralized machine learning

a b s t r a c t

Machine learning over distributed data stored by many clients has important applications in use cases
where data privacy is a key concern or central data storage is not an option. Recently, federated
learning was proposed to solve this problem. The assumption is that the data itself is not collected
centrally. In a master–worker architecture, the workers perform machine learning over their own data
and the master merely aggregates the resulting models without seeing any raw data, not unlike the
parameter server approach. Gossip learning is a decentralized alternative to federated learning that
does not require an aggregation server or indeed any central component. The natural hypothesis is
that gossip learning is strictly less efficient than federated learning due to relying on a more basic
infrastructure: only message passing and no cloud resources. In this empirical study, we examine this
hypothesis and we present a systematic comparison of the two approaches. The experimental scenarios
include a real churn trace collected over mobile phones, continuous and bursty communication
patterns, different network sizes and different distributions of the training data over the devices. We
also evaluate a number of additional techniques including a compression technique based on sampling,
and token account based flow control for gossip learning. We examine the aggregated cost of machine
learning in both approaches. Surprisingly, the best gossip variants perform comparably to the best
federated learning variants overall, so they offer a fully decentralized alternative to federated learning.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
p
i
e
l
t
n
t
p

t
t
n
w
t
q

1. Introduction

Performing data mining over data collected by edge devices,
ost importantly, mobile phones, is of very high interest [34].
ollecting such data at a central location has become more and
ore problematic in the past years due to novel data protection

ules [1] and in general due to the increasing public awareness
o issues related to data handling. For this reason, there is an
ncreasing interest in methods that leave the raw data on the
evice and process it using distributed aggregation.
Google introduced federated learning to answer this chal-

enge [22,25]. This approach is very similar to the well-known
arameter server architecture for distributed learning [11] where
orker nodes store the raw data. The parameter server maintains
he current model and regularly distributes it to the workers who

✩ This work was supported by the Hungarian Government and the European
Regional Development Fund under the grant number GINOP-2.3.2-15-2016-
00037 (‘‘Internet of Living Things’’), by grant TUDFO/47138-1/2019-ITM of the
Ministry for Innovation and Technology, Hungary, and by the University of
Szeged Open Access Fund, Hungary (Grant Number 4411).
∗ Corresponding author at: University of Szeged, Szeged, Hungary.

E-mail address: jelasity@inf.u-szeged.hu (M. Jelasity).
ttps://doi.org/10.1016/j.jpdc.2020.10.006
743-7315/© 2020 The Author(s). Published by Elsevier Inc. This is an open access a
in turn calculate a gradient update and send it back to the server.
The server then applies all the updates to the central model.
This is repeated until the model converges. In federated learning,
this framework is optimized so as to minimize communication
between the server and the workers. For this reason, the local
update calculation is more thorough, and compression techniques
can be applied when uploading the updates to the server.

In addition to federated learning, gossip learning has also been
roposed to address the same challenge [15,27]. This approach
s fully decentralized, no parameter server is necessary. Nodes
xchange and aggregate models directly. The advantages of gossip
earning are obvious: since no infrastructure is required, and
here is no single point of failure, gossip learning enjoys a sig-
ificantly cheaper scalability and better robustness. A key ques-
ion, however, is how the two approaches compare in terms of
erformance. This is the question we address in this work.
We compare the two approaches in terms of convergence

ime and model quality, assuming that both approaches utilize
he same amount of communication resources in the same sce-
arios. In other words, we are interested in the question of
hether—by communicating the same number of bits in the same
ime-window—the two approaches can achieve the same model
uality. We train linear models using stochastic gradient descent
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2020.10.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.10.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jelasity@inf.u-szeged.hu
https://doi.org/10.1016/j.jpdc.2020.10.006
http://creativecommons.org/licenses/by/4.0/

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

c
S
o
f
a
s

t
t
b
n
l
W
f

p
d
a
t
t
n

e
a
d
i
t

c
t

o
r
i
m
d
c
c
a
d
w
a

e

a

w

(SGD)
based on the logistic regression loss function.

Our experimental methodology involves several scenarios, in-
luding smartphone churn traces collected by the application
tunner [5]. We also vary the communication pattern (continuous
r bursty) and the network size. In addition, we also evaluate dif-
erent assumptions about the label distribution, that is, whether
given worker has a biased or unbiased subset of the training
amples.
To make the comparison as fair as possible, we make sure that

he two approaches differ mainly in their communication pat-
erns. However, the computation of the local update is identical in
oth approaches. Also, we apply subsampling to reduce commu-
ication in both approaches, as introduced in [22] for federated
earning. Here, we adapt the same technique for gossip learning.
e also introduce a token account based flow control mechanism

or gossip learning, for the case of bursty communication.
We note that both approaches offer mechanisms for explicit

rivacy protection, apart from the basic feature of not collecting
ata. In federated learning, Bonawitz et al. [7] describe a secure
ggregation protocol, whereas for gossip learning one can apply
he methods described in [8]. Here, we are concerned only with
he efficiency of the different communication patterns and we do
ot compare security mechanisms.
The result of our comparison is that gossip learning is in gen-

ral comparable to the centrally coordinated federated learning
pproach. This result is rather counter-intuitive and suggests that
ecentralized algorithms should be treated as first class citizens
n the area of distributed machine learning overall, considering
he additional advantages of decentralization.

This paper is a thoroughly revised and extended version of a
onference publication [16]. The novel contributions relative to
his conference publication are:

• A new evaluation scenario involving bursty traffic, in which
nodes communicate in high bandwidth bursts. This is a
very different scenario from continuous communication be-
cause here, it is possible to have fast ‘‘hot potato’’ chains of
messages without increasing average bandwidth.
• The presentation and evaluation of a novel application of a

token based flow control mechanism for gossip learning in
the bursty transfer scenario.
• The introduction of a new subsampling technique based

on partitioned models where each partition has its own
age parameter. We show that this partitioning technique is
beneficial for token-based learning algorithms.
• New experimental scenarios including larger networks, and

an additional variant of compressed federated learning
where the downstream traffic is also compressed using
subsampling.
• A thorough hyperparameter analysis in Section 5.4.

The outline is as follows. Sections 2–4 describe the basics
f logistic regression, gossip learning, and federated learning,
espectively. These sections describe our novel algorithms as well,
ncluding the token account based flow control mechanism, the
odel partitioning technique, and a number of smaller design
ecisions that allow all the evaluated algorithms to use shared
omponents. Section 5 presents our experimental setup that in-
ludes the applied datasets, as well as our system model. We
lso discuss the problem of selecting hyperparameters. Section 6
escribes our experimental results in a large number of scenarios
ith many algorithm variants. Section 7 presents related work

nd Section 8 concludes the paper.

110
2. Machine learning basics

Here, we give a concise summary of the main machine learn-
ing concepts. We are concerned with the classification problem,
where we are given a data set D = {(x1, y1), . . . , (xn, yn)} of n
xamples. An example (x, y) consists of a feature vector x ∈ Rd

and the corresponding class label y ∈ C , where d is the dimension
of the problem and C is the set of class labels.

The problem is to find the parameters w of a function fw :
Rd
→ C that can correctly classify as many examples as possible

in D, as well as outside D (this latter property is called general-
ization). Expressed formally, we wish to minimize an objective
function J(w) in w:

w∗ = argmin
w

J(w) = argmin
w

1
n

n∑
i=1

ℓ(fw(xi), yi)+
λ

2
∥w∥2, (1)

where ℓ() is the loss function (the error of the prediction), ∥w∥2
is the regularization term, and λ is the regularization coefficient.

Stochastic gradient descent (SGD) is a popular approach for
finding w∗. Here, we start with some initial weight vector w0,
nd we apply the following update rule:

t+1 = wt − ηt (λwt +
∂ℓ(fw(xi), yi)

∂w
(wt)). (2)

Here, ηt is called the learning rate. This update rule requires
a single example (xi, yi), and in each update we can choose a
random example.

In this study we use logistic regression as our machine learning
model, where the specific form of the objective function is given
by

J(w, b) =
λ

2
∥w∥2 −

1
n

n∑
i=1

[
yi ln f(w,b)(xi)+ (1− yi)

× ln(1− f(w,b)(xi))
]
, (3)

where yi ∈ {0, 1} and

f(w,b)(xi) = P(yi = 1|xi, w, b) =
1

1+ e(wT x+b)
. (4)

Note that P(yi = 0|xi, w, b) = 1 − P(yi = 1|xi, w, b). In fact,
the loss function above is the log-likelihood of the data under
this probabilistic model. The parameter b is called the bias of the
model.

While our method can be applied to solve any model-fitting
optimization problem, we evaluated it only with logistic regres-
sion. This might seem restrictive, however, the practical applica-
bility of such a simple linear model is greatly extended if one
uses it in the context of transfer learning [31]. The idea is that
arbitrarily complex pre-trained machine learning models are used
as feature extractors, over which a simple (often linear) model is
trained over a given new dataset. In linguistic applications, this
is becoming a very popular approach, often using BERT [12] as
the pre-trained model. This can approximate the performance of
training the entire complex model over the new dataset, while
using much fewer resources.

3. Gossip learning

Gossip Learning is a machine learning approach over fully
distributed data without central control [27]. Here, we assume
that the data set D is horizontally distributed over a set of nodes,
with node k storing its own shard Dk. The task is to collectively
find a machine learning model in such a way that it emulates the
case when the data set is stored centrally.

Let us discuss the basic notions of gossip learning. Each node

k runs Algorithm 1. First, the node initializes its local model

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

1

t
m
u
s

s
i
p
o
g
r
s

o
b
f

s

m

t

T
w
p
t
m
t

3

t

1

o
d

m
t
v
a
W
p
j
i
s

s
(
p
f
t

m
u
u
p
a
o

s
a
w
i
w
o
c
m
S
t

r
p
o
p

3

r
r
a
f

Algorithm 1 Gossip Learning

1: (tk, wk, bk)← (0, 0, 0)
2: loop
3: wait(∆g)
4: p← selectPeer()
5: send sample(tk, wk, bk) to p
6: end loop
7:
8: procedure onReceiveModel(tr , wr , br)
9: (tk, wk, bk)← merge((tk, wk, bk), (tr , wr , br))
0: (tk, wk, bk)← update((tk, wk, bk),Dk)

11: end procedure

(wk, bk) and its age tk. A subset of the model parameters is
then periodically sent to another node in the network. When a
node receives such a parameter sample, it merges it into its own
model and then it performs a local update step. Note that the
rounds are not synchronized, although all the nodes use the same
period ∆g . Any received messages are processed immediately.
Different variants of the algorithm can be produced with different
implementations of the methods sample, merge, and update. In
he simplest case, sample sends the entire model (no sampling),
erge computes the average, and update performs a mini-batch
pdate based on the local data. Later on, we will define more
ophisticated implementations in Section 3.1.
The node selection in line 4 is supported by a so-called peer

ampling service. Applications can utilize a peer sampling service
mplementation to obtain random samples from the set of partici-
ating nodes. The implementations of this service might be based
n several different approaches that include random walks [32],
ossip [19], or even static overlay networks that are created at
andom and repaired when necessary [28]. We will assume a
tatic, connected, random overlay network from now on.
In the following, we shall describe three optimizations of the

riginal gossip learning algorithm, that are interrelated. Very
riefly, the basic ideas behind the three optimizations are the
ollowing:

ampling: Instead of sending the full model to the neighbor,
a node can send only a subset of the parameters. This
technique is often used as a compression mechanism to
save bandwidth.

odel partitioning: Related to sampling, instead of a random
subset, it is also possible to define a fixed partitioning of
the model parameters and to send one of these subsets as
a sample.

oken accounts [10]: We can add flow control as well, that is,
we can speed up the spreading of information through a
self-organizing enhancement of the communication pat-
tern, without increasing the number of messages overall.

hese three techniques are interrelated. For example, if one
ishes to use token accounts along with sampling-based com-
ression, then using the implementation based on model par-
itioning is imperative, as we will see. In fact, that is our main
otivation for discussing model partitioning. Let us now discuss

hese techniques in turn.

.1. Random sampling and model partitioning

As for the method sample, we will use two different implemen-
ations. The first implementation, sampleRandom(t, w, b, s) re-
turns a uniform random subset of the parameters, where
111
Algorithm 2 Partitioned Model Merge
1: S : the number of partitions
2: procedure merge((t, w, b), (tr , wr , br))
3: j← index of received partition ▷ j = i mod S, for any

coordinate i within the sample
4: for coordinate i is included in sample do
5: w[i] ← (t[j] · w[i] + tr [j] · wr [i])/(t[j] + tr [j])
6: end for
7: b← (t[S] · b+ tr [S] · br)/(t[S] + tr [S])
8: t ← max(t, tr) ▷ element-wise maximum, where tr is

defined
9: return (t, w, b)
0: end procedure

s ∈ (0, 1] defines the size of the sample. To be precise, the size
f the sample is given by s · d (randomly rounded) where d is the
imension of vector w.
The other implementation is based on a partitioning of the

odel parameters. Let us elaborate on the idea of model parti-
ioning here. The model is formed by the vector w and the bias
alue b. We partition only w. We define S ≥ 1 partitions, by
ssigning a given vector index i to the partition index (i mod S).
hen sampling is based on this partitioning, we return a given
artition. More precisely, samplePartition(t, w, b, j), where 0 ≤
< S is a partition index, returns partition j. The bias b is always
ncluded in every sample, in both implementations of method
ample.

It is important to stress that the random sampling method
ampleRandom should be applied only without model partitioning
that is, when S = 1). It is possible to define a combination of
artition-based and random sampling, where we could sample
rom a given partition, but we do not explore this possibility in
his study.

Upon receiving a model, the node merges it with its local
odel, and updates it using its local data set Dk. Method merge is
sed to combine the local model with the incoming one. The most
sual choice to implement merge is to take the average of the
arameter vectors [27]. This is supported by theoretical findings
s well, at least in the case of linear models and when there is
nly one round of communication [35].
If there is no partitioning (S = 1) then the implementation

hown as Algorithm 2 computes the average weighted by model
ge. This implementation can deal with subsampled input as
ell, since we consider only those parameters that are actually

ncluded in the sample. When partitioning is applied (that is,
hen S > 1) each partition of the parameter vector has its
wn age parameter. This is crucial especially when we apply flow
ontrol to speed up communication, as we explain later on. This
eans that every model now has a vector of age values t of length
+ 1 where the ages of the partitions are t[0], . . . , t[S − 1] and
he age of the bias is t[S].

Method update is shown in Algorithm 3. This implementation
equires a full model as input but it does take into account the
artitioning of the model in that all the partitions have their
wn dynamic learning rate that is determined by the age of the
artition.

.2. Token gossip learning

In our previous work, we introduced the token account algo-
ithm for improving the efficiency of gossip protocols in a wide
ange of applications [10]. The basic intuition is that the token
ccount algorithm allows chains of messages to form that travel
ast in the network like a ‘‘hot potato’’, even if the budget of

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

1
1
1
1
1

a
h
a
s
f
f
p
h

a
f
g
s
a
p

Algorithm 3 Partitioned Model Update Rule
1: S : the number of partitions
2: d : the dimension of w

3: procedure update((t, w, b),D)
4: for all batch B ⊆ D do ▷ D is split into batches
5: t ← t + |B|·1 ▷ increase all ages by |B|
6: for i ∈ {1, ..., d} do

7: h[i] ← −
η

t[i mod S]

∑
(x,y)∈B

(
∂ℓ(fw,b(x), y)

∂w[i]
(w[i]) +

λw[i])
8: end for
9: g ←−

η

t[S]

∑
(x,y)∈B

(
∂ℓ(fw,b(x), y)

∂b
(b)+ λb)

0: w← w + h
1: b← b+ g
2: end for
3: return (t, w, b)
4: end procedure

Algorithm 4 Partitioned Token Gossip Learning

1: (tk, wk, bk)← (0, 0, 0)
2: ak ← 0
3: loop
4: wait(∆g)
5: j← selectPart() ▷ select a random partition
6: do with probability proactive(ak[j])
7: p← selectPeer()
8: send samplePartition(tk, wk, bk, j) to p
9: else

10: ak[j] ← ak[j] + 1 ▷ we did not spend the token so it
accumulates

11: end do
12: end loop
13:
14: procedure onReceiveModel(tr , wr , br , j)
15: (tk, wk, bk)← merge((tk, wk, bk), (tr , wr , br))
16: (tk, wk, bk)← update((tk, wk, bk),Dk)
17: x← randRound(reactive(ak[j]))
18: ak[j] ← ak[j] − x ▷ we spend x tokens
19: for i← 1 to x do
20: p← selectPeer()
21: send samplePartition(tk, wk, bk, j) to p
22: end for
23: end procedure

each node is limited. This is due to the flow control mechanism
implemented with the help of token accounts that allow these hot
potatoes to avoid waiting for the next cycle at each node. So far,
the token account approach has not been applied to merge-based
gossip learning. Here, we omit the general introduction of the
entire family of token account algorithms and instead we focus
on the novel variant that is applicable in this study, shown as
Algorithm 4.

It is very important that the algorithm uses samplePartition
s an implementation of sampling. Our preliminary experiments
ave shown that random sampling (sampleRand) is not effective
long with the token account technique. This is because if we
ample independently at each hop, we work strongly against the
ormation of long ‘‘hot potato’’ message chains that represent any
ixed model parameter. This is a key insight, and this is why the
artitioned approach is expected to work better. It allows for
ot potato message chains to form based on a single partition.
112
In other words, we can have the benefits of sampling-based
compression and hot potato message passing at the same time.

Accordingly, each partition j at node k now has its own token
ccount ak[j] that stores the number of available tokens. Apart
rom the flow control extension, the algorithm is very similar to
eneral gossip learning. The main difference is that we might also
end messages reactively, that is, as a direct reaction to receiving
model. The only two methods that we need to define are

roactive and reactive. Method proactive returns the probability
of sending a proactive message as a function of the number of
tokens. Method reactive returns the number of reactive messages
to be sent. Here, we used the implementations

proactive(a) =

⎧⎨⎩0 if a < A− 1
a− A+ 1
C − A+ 1

if a ∈ [A− 1, C]
(5)

and reactive(a)= a/A, with parameters A = 10 and C = 20, based
on our previous work [10]. Here, C > 0 is the maximal number
of tokens the account can store. Note that the maximum value of
a is indeed C because initially a = 0 and when a = C , we always
send a proactive message, thus a will not grow further. Parameter
A ∈ {1, . . . , C} plays a role in both reactive and proactive message
sending, and it can be interpreted as the motivation level for
saving tokens. If A = 1, then we spend all our tokens on sending
reactive messages in every call to onReceiveModel and we also
send proactive messages with a positive probability if the account
is not empty. If A = C then we send at most one reactive message,
and we send a proactive message only if the account is full.

With each partition having a separate account, each partition
will perform random walks independently, using its own commu-
nication budget. Of course, the model update is not independent,
it is the same as in partitioned gossip learning. We also track the
age of each partition, as discussed previously in connection with
the merge and update functions. We will argue that even plain
gossip learning can benefit from using partitions, although to a
lesser extent.

If the number of partitions is S = 1, then we get a special case
of the algorithm without any compression (that is, no sampling),
we always send the entire model.

As a final note, let us mention that the methods selectPart and
selectPeer were implemented using sampling without replace-
ment, re-initialized when the pool of available options becomes
empty. This is slightly better than sampling with replacement,
because it results in a lower variance.

4. Federated learning

Federated learning is not a specific algorithm, but more of
a design framework for edge computing. We discuss federated
learning based on the algorithms presented in [22,25]. While we
keep the key design elements, our presentation contains small ad-
justments and modifications to accommodate our contributions
and to allow gossip learning and federated learning to share a
number of key methods.

The pseudocode of the federated learning algorithm is shown
in Algorithms 5 (master) and 6 (worker). The master periodically
sends the current model w to all the workers asynchronously in
parallel and collects the answers from the workers. In this version
of the algorithm, communication is compressed through sampling
the parameter vectors. The rate of sampling might be different in
the case of downstream messages (line 4 of Algorithm 5) and up-
stream messages (line 11 of Algorithm 6). We require that sup ≤
sdown. Although this is not reflected in the pseudocode for pre-
sentation clarity, the sample produced in line 11 of Algorithm 6
is allowed to include only indices that are also included in the

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

1
1

1
1

1
1
1

s
s

∆

m

W
a
t
l

m
m
t
a
a
s
n
p

o
(
o
t
o
i
a
m
d

a
t
u
w
s
T
i
i
o
e
l
p
i
c

5

5

i
i
c
i
t
i
c
9
p
u
m
a
m

p
f
a
c
t
k

d

Algorithm 5 Federated Learning Master
1: (t, w, b)← init()
2: loop
3: for every node k in parallel do ▷ non-blocking (in

separate threads)
4: send sample(t, w, b, sdown) to k
5: receive (nk, hk, gk) from k ▷ nk: #examples at k; hk:

sampled model gradient; gk: bias gradient
6: end for
7: wait(∆f) ▷ the round length
8: n← 1

|K|

∑
k∈K nk ▷ K: nodes that returned a model in

this round
9: t ← t + n

10: h←aggregate({hk : k ∈ K})
1: w← w + h
2: g ← 1

|K|

∑
k∈K gk

3: b← b+ g
4: end loop

Algorithm 6 Federated Learning Worker
1: (tk, wk, bk)← init() ▷ the local model at the worker
2:
3: procedure onReceiveModel(t, w, b) ▷ w: sampled model
4: tk ← t
5: for w[i] ∈ w do ▷ coordinate i is defined in w

6: wk[i] ← w[i]
7: end for
8: bk ← b
9: (tk, wk, bk)← update((tk, wk, bk),Dk) ▷ Dk: the local

database of examples
10: (n, h, g)← (tk − t, wk − w, bk − b) ▷ n: the number of

local examples, h: the gradient update
11: send sample(n, h, g, sup) to master
12: end procedure

Algorithm 7 Variants of the aggregate function

1: procedure aggregate(H)
2: h′ ← 0
3: for i ∈ {1, ..., d} do
4: h′[i] ← 1

s|H|

∑
h∈H:h[i]∈h h[i] ▷ s ∈ (0, 1]: sampling rate

used to create H
5: end for
6: return h′
7: end procedure
8:
9: procedure aggregateImproved(H)
0: h′ ← 0
1: for i ∈ {1, ..., d} do
2: Hi ← {h : h ∈ H ∧ h[i] ∈ h}

13: h′[i] ← 1
|Hi|(1−(1−s)|H|)

∑
h∈Hi

h[i] ▷ skipped if |Hi|= 0
14: end for
15: return h′
16: end procedure

received model. For example, if sup = sdown then the worker
elects exactly those indices that were received in the incoming
ample.
Any answers from workers arriving with a delay larger than

f are simply discarded. After ∆f time units have elapsed, the
aster aggregates the received gradients and updates the model.
113
e also send and maintain the model age t (based on the aver-
ge number of examples used for training) in a similar fashion,
o make it possible to use dynamic learning rates in the local
earning algorithm.

We note that, although in this version of the algorithm the
aster sends the model to every worker, it is possible to use a
ore fine-grained method to select a subset of workers that get

he model in a given round. For example, if the workers have
very limited budget of communication, it might be better to
void talking to each worker in each round. Indeed, we will study
uch a scenario during our experimental evaluation, but we did
ot want to include this option in the pseudocode for clarity of
resentation.
These algorithms are very generic, the key characteristics

f federated learning lie in the details of the update method
line 9 of Algorithm 6) and the aggregation mechanism (line 10
f Algorithm 5). The update method is typically implemented
hrough a minibatch gradient descent algorithm that operates
n the local data, initialized with the received model w. The
mplementation we use here is identical to that of gossip learning,
s given in Algorithm 3. Note that here we do not partition the
odel (that is, S = 1). As for sampling, we use sampleRandom as
escribed in Section 3.1.
Method aggregate is used in Algorithm 5. Its function is to

ggregate the received sampled gradients. Possible implemen-
ations are shown in Algorithm 7. Both implementations are
nbiased estimates of the average gradient. This also implies that
hen there is no actual sampling (that is, we have s = 1) then
imply the average of the gradients is computed by both methods.
he improved version averages each coordinate separately, that
s, it takes the average of only those coordinates that are included
n the sample. This is a more accurate estimate of the true average
f the given coordinate. However, in order to get an unbiased
stimate, we have to divide by the probability that there is at
east one gradient in which the given coordinate is included. This
robability equals 1 − (1 − s)|H|. Note that this probability is
ndependent of the coordinate i, so its effect can be thought of
orrecting the learning rate, especially when |H| is small.

. Experimental setup

.1. Datasets

We used three datasets from the UCI machine learning repos-
tory [13] to test the performance of our algorithms. The first
s the Spambase (SPAM E-mail Database) dataset containing a
ollection of emails. Here, the task is to decide whether an email
s spam or not. The emails are represented by high level fea-
ures, mostly word or character frequencies. The second dataset
s Pendigits (Pen-Based Recognition of Handwritten Digits) that
ontains downsampled images of 4 × 4 pixels of digits from 0 to
. The third is the HAR (Human Activity Recognition Using Smart-
hones) [2] dataset, where human activities (walking, walking
pstairs, walking downstairs, sitting, standing and laying) were
onitored by smartphone sensors (accelerometer, gyroscope and
ngular velocity). High level features were extracted from these
easurement series.
The main properties, such as size or number of features, are

resented in Table 1. In our experiments we standardized the
eature values, that is, we shifted and scaled them so as to have
mean of 0 and a variance of 1. Note that the standardization
an be approximated by the nodes in the network locally if
he approximation of the statistics of the features are fixed and
nown, which can be ensured in a fixed application.
In our simulation experiments, each example in the training

ata was assigned to one node when the number of nodes was

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

c
u
t
i

o
f
s
f
T
p
i
r
t
a
t
o

p
i
l
s
f
b

a
f
s
i
d
f
t
l

8

Table 1
Data set properties.

Spambase Pendigits HAR

Training set size 4140 7494 7352
Test set size 461 3498 2947
Number of features 57 16 561
Number of classes 2 10 6
Class-label distribution ≈ 6:4 ≈ uniform ≈ uniform

100. This means that, for example, with the HAR dataset each
node gets 73.5 examples on average. The examples were assigned
evenly, that is, the number of examples at the nodes differed by
at most one due to the number of samples not being divisible
by 100. When the network size equaled the database size, we
mapped the examples to the nodes so that each node had exactly
one example. We also experimented with a third scenario that
combines the two settings above. That is, the number of exam-
ples per node was the same as in the 100 node scenario, but
the network size equaled the database size. To achieve this, we
replicated the examples, that is, each example was assigned to
multiple nodes.

In the scenarios where a node had more than one example, we
onsidered two different class label distributions. The first one is
niform assignment, which means that we assigned the examples
o nodes at random independently of class label. The second one
s single class assignment when every node has examples only
from a single class. Here, the different class labels are assigned
uniformly to the nodes, and then the examples with a given label
are assigned to one of the nodes with the same label, uniformly.
These two assignment strategies represent the two extremes in
any real application. In a realistic setting the class labels will likely
be biased but much less so than in the case of the single class
assignment scenario.

5.2. System model

In our simulation experiments, we used a fixed random k-out
verlay network, with k = 20. That is, every node had k = 20
ixed random neighbors. As described previously, the network
ize was either 100 or the same as the database size. In the churn-
ree scenario, every node stayed online for the whole experiment.
he churn scenario is based on a real trace gathered from smart-
hones (see Section 5.3 below). We assumed that a message
s successfully delivered if and only if both the sender and the
eceiver remain online during the transfer. We also assume that
he nodes are able to detect which of their neighbors are online
t any given time with a delay that is negligible compared to
he transfer time of a model. Nodes retain their state while being
ffline.
We assumed that the server has unlimited bandwidth. In

ractice, unlimited bandwidth is achieved using elastic cloud
nfrastructure, which obviously has a non-trivial cost in a very
arge system. Gossip learning has no additional cost at all related to
caling. Thus, ignoring the cost of the cloud infrastructure clearly
avors federated learning in our study, so this assumption must
e kept in mind.
We assumed that the worker nodes have identical upload

nd download bandwidths. This needs explanation, because in
ederated learning studies, downstream communication is con-
idered free, citing the fact that the available upload bandwidth
s normally much lower than the download bandwidth. But this
istinction is only relevant if all the nodes are allowed to use their
ull bandwidth completely dedicated to federated learning con-
inuously. This is a highly unlikely scenario, given that federated
earning will not be the only application on most devices. It is
114
much more likely that there will be a cap on the bandwidth usage,
in which light the difference between upstream and downstream
bandwidth fades. For the same reason, we also assumed that all
the worker nodes have the same bandwidth because the band-
width cap mentioned above can be expected to be significantly
lower than the average available bandwidth, so this cap could be
assumed to be uniform.

One could, of course, set a higher cap on downstream traffic.
Our study is relevant also in that scenario, for two reasons. First,
the actual bandwidth values make no qualitative difference if the
network is reliable (there is no churn), they result only in the
scaling of time. That is, scaling our results accordingly provides
the required measurements. Second, in unreliable networks, a
higher downstream bandwidth would result in a similar scaling
of time. In addition, it would result in better convergence as well,
since the downstream messages could be delivered with a strictly
higher probability.

In the churn scenario, we need to fix the amount of time
necessary to transfer a full model. (If the nodes are reliable then
the transfer time is completely irrelevant, since the dynamics of
convergence are identical apart from scaling time.) The transfer
time of a full model was assumed to be 60 · 60 · 24/1000 =
6.4 s, irrespective of the dataset used, in the long transfer time

scenario, and 8.64 s in the short transfer time scenario. This
allowed us to simulate around 1000 and 10,000 iterations over
the course of 24 h, respectively. Note that the actual models in
our simulation are relatively small linear models, so they would
normally require only a fraction of a second to be transferred.
Still, we pretend here that our models are very large. This is
because if the transfer times are very short, the network hardly
changes during the learning process, so effectively we learn over
a static subset of the nodes. Long transfer times, however, make
the problem more challenging because many transfers will fail,
just like in the case of very large machine learning models such
as deep neural networks.

5.3. Smartphone traces

The trace we used was collected by a locally developed openly
available smartphone app called STUNner, as described previ-
ously [5]. In a nutshell, the app monitors and collects information
about charging status, battery level, bandwidth, and NAT type.

We have traces of varying lengths taken from 1191 different
users. We divided these traces into 2-day segments (with a one-
day overlap), resulting in 40,658 segments altogether. With the
help of these segments, we were able to simulate a virtual 48-
hour period by assigning a different segment to each simulated
node. We use only the second 24-hour period for learning; the
first day is used for achieving a token distribution that reflects
an ongoing application. This warm-up period can represent a
previous, unrelated learning task executed on the same platform,
or the sending of empty messages; it does not count towards
the communication costs. For fair comparison, we use the same
period for learning also in the case of algorithms that do not use
tokens.

To ensure our algorithm is phone and user friendly, we defined
a device to be online (available) when it has been on a charger and
connected to the internet for at least a minute, hence we never
use battery power at all. In addition, we also treated those users
as offline who had a bandwidth of less than 1Mb/s.

Fig. 1 illustrates some of the properties of the trace. The plot
on the right illustrates churn via showing, for every hour, what
percentage of the nodes left, or joined the network (at least once),
respectively. We can also see that at any given moment about 20%
of the nodes are online. The average session length is 81.368 min.

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

d
c
a
w
p
t
c
w

Fig. 1. Online session length distribution (left) and dynamic trace properties (right).
Fig. 2. Error of partitioned gossip learning with S = 10 and N = 100 on the Pendigits dataset as a function of η and λ after 10 cycles (left) and after 1000 cycles
(right).
5.4. Hyperparameters

The cycle length parameters ∆g and ∆f were set in two
different ways. In the continuous transfer scenario, the goal was to
make sure that the protocols communicate as much as they can
under the given bandwidth constraint. The gossip cycle length
∆g is thus exactly the transfer time of a full model, that is, all
the nodes send messages continuously. The cycle length ∆f of
federated learning is the round-trip time, that is, the sum of
the upload and download transfer times. When compression is
used, the transfer time is proportionally less as defined by the
compression rate, and this is also reflected in the cycle length
settings.

In the bursty transfer scenario, we assume that we transfer
only during a given percentage of the time, say, 1% of the time. Let
δ denote the transfer time and let p ∈ (0, 1] be the proportion of
the time we use for transfer. Here, we set the gossip cycle length
∆g = δ/p. To implement the bursty model in federated learning,
we have many choices for the cycle length depending on how
many nodes the master wants to contact in a single cycle. If we
set ∆f = (δup + δdown)/p (where δup and δdown are the upload and
ownload transfer times, respectively) then the master should
ontact all the nodes as before so the only effect is to slow the
lgorithm down. If we set a shorter cycle length then the master
ill contact only a subset of the nodes to achieve the required
roportion of p overall. We will examine this latter case when
he cycle length is set so that 1% of the nodes are contacted in a
ycle: ∆f = δup + δdown, where we need p = 1/100 to hold as
ell. When compression is used, δ and δ might differ.
up down

115
Fig. 3. Error of partitioned gossip learning with S = 10 and N = 4140 on the
Spambase dataset as a function of η and λ after 1000 cycles.

In both the bursty and the continuous transfer scenarios, on
average, the two algorithms transfer the same number of bits
overall in the network during the same amount of time. Further-
more, continuous transfer is the special case of bursty transfer
with p = 1.

As for subsampling, we explore the sampling probability val-
ues s ∈ {1, 0.5, 0.25, 0.1}. In federated learning, both the up-
stream and the downstream messages can be sampled using a

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124
Fig. 4. Federated learning, 100 nodes, long transfer time, no failures, different aggregation algorithms and upstream subsampling probabilities and with sdown = 1.
different rate, denoted by sup and sdown, respectively. The setting
we use in our experiments is sdown = sup. However, we shall
also show runs where we fix sdown = 1 and experiment with
upstream sampling only. When the subsampling is based on
partitioning, the number of partitions S defines the sampling
probability, which equals 1/S. On the plots s = 1/S will be used
even in the partitioned case to indicate the compression rate.

We train a logistic regression model. For the datasets that
have more than two classes (Pendigits, HAR), we embedded the
model in a one-vs-all meta-classifier. The learning algorithm was
stochastic gradient descent. The learning rate η and the regu-
larization coefficient λ used in our experiments are shown in
Table 2. We used grid search to optimize these parameters in var-
ious scenarios, and found these values relatively robust. However,
one should keep in mind that including additional hyperparam-
eters in the search, such as the number of iterations (that we
simply fixed here), could result in a different outcome.

Although we fixed the parameters shown in Table 2 in all the
scenarios, it is interesting to have a more fine-grained look at
the behavior of these hyperparameters. This sheds some light on
possible heuristics to pick the right parameters. All the examples
here are measurements with gossip learning without token ac-
counts but with model partitioning and S = 10. With network
size N = 100, over the Pendigits dataset, after 10 gossip cycles,
the optimal hyperparameters are η = 102 and λ = 10−2, as
shown in Fig. 2. However, after 100 cycles, the optimal values
are η = 103 and λ = 10−3, and after 1000 cycles, η = 104

and λ = 10−4. We often observed similar trends also with other
algorithms and datasets. Notice that settings where ηλ = 1
(points on the diagonal of the grid) are often a good choice;
however, there are exceptions. For instance, when we have only
one example per node, over the Spambase dataset, this is not the
case, as shown in Fig. 3. As we can see, here, the points above the
diagonal tend to be somewhat better. Also note that settings with
ηλ > 1 (points below the diagonal) tend to perform very poorly.
116
Table 2
Hyperparameters.

Spambase Pendigits HAR

Parameter η 103 104 102

Parameter λ 10−3 10−4 10−2

6. Experimental results

We ran the simulations using PeerSim [26]. As for the hard-
ware requirements for reproducing our results, we used a server
with 8 2GHz CPUs each with 8 cores, for a total of 64 cores. The
server had 512GB RAM. On this configuration, the experiments
we include in this work can be completed within a month.

We measure learning performance with the help of the 0–1
error, which gives the proportion of the misclassified examples
in the test set. In the case of gossip learning the loss is defined
as the average loss over the online nodes. This means that we
compute the 0–1 error of all the local models stored at the nodes
over the same test set, and we report the average. In federated
learning we evaluate the central model at the master. Note that
this is often more optimistic than evaluating the average of the
online nodes. For example, in the bursty transfer scenario, or if
the downstream communication is compressed (that is, sdown <
1), the local models will always be more outdated than the central
one, because the nodes will not receive the complete model, or
they receive it with a delay.

The presented measurements are averages of 5 runs with dif-
ferent random seeds. The only exceptions are the measurements
with our gossip algorithms in the scenarios over the HAR dataset
when the network size was the database size. These scenarios are
expensive to simulate so we show a single run.

The 0–1 error is measured as a function of the total amount
of bits communicated anywhere in the system normalized by

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

t

t
l

6

s
t
o
d
i

p
g
w
v
t
p
a
p

Fig. 5. Gossip learning with one node for each example, bursty transfer, subsampling probability s = 0.1, no-failure (left) and smartphone trace with long transfer
ime (right). Variants with and without model partitioning, indicated as P and NP, respectively.
t
a

t
i
o
s
c
D
r
u
o
b
i
i
D
c
e

he number of online nodes. We use the size of a full machine
earning model as the unit of the transferred information.

.1. Basic design choices

First, we compare the two aggregation algorithms for sub-
ampled models in Algorithm 7 (Fig. 4) in the no-failure con-
inuous transfer scenario. The results indicate a slight advantage
f aggregateImproved, although the performance depends on the
atabase. In the following we will apply aggregateImproved as our
mplementation of method aggregate.

Another design choice is whether we should apply model
artitioning. We introduced model partitioning to help token
ossip learning. However, this technique has other advantages as
ell. To verify this, we compared partitioned and non-partitioned
ariants in several scenarios (Fig. 5). We show the scenario where
he effect in question is the clearest. Clearly, the partitioned im-
lementations consistently outperform the non-partitioned ones,
lthough in the no-failure scenario, classical gossip learning ap-
ears to suffer a temporary setback during convergence. Note that
 i

117
his is a case where the hyperparameters are not exactly optimal,
s we explained in Section 5.4, Fig. 3.
The improved performance in the partitioned case is due to

he more fine-grained handling of the age parameter. Recall that
n the partitioned implementation, all the partitions have their
wn age and are updated accordingly. In the smartphone trace
cenario, this feature is especially useful, since when a node
omes back online after an offline period, its model is outdated.
uring the first merge operation on the model, only those pa-
ameters will get an updated age parameter that were indeed
pdated, that is, that are included in the merged partition. With-
ut partitioning, only a random subset of the parameters will
e merged, but the entire model will get a new age value. This
s a problem because in the first merge operation that they are
ncluded in, the weight of these old parameters will be too large.
ue to these observations, from now on, all the experiments are
arried out with model partitioning, and this fact will not be
xplicitly indicated.
The third design choice that we study is the subsampling (that

s, compression) strategy for federated learning. Recall that we

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

t

h
c
t
a
s
o
b
m
w
r

o
c
t
s
t
s
n
s

6

n
a
d
F
s
i
t
S
l

g

Fig. 6. Federated learning with 100 nodes, no-failure scenario, with different subsampling strategies and s = 0.1. The ‘‘local’’ plot indicates the average of the models
hat the clients store, otherwise the master’s model is evaluated.
o
w
a
I

n
t
g
t
t
g
t
a

m
2
T
e
c
i
o
i
w
i
l
c
w

c
e
a
g
r

ave a choice to subsample only the model that is sent by the
lient to the master or we can subsample in both directions. Note
hat if we subsample in both directions then we can achieve
much higher compression rate but the convergence will be

lower. Overall, however, it is possible that, as a function of
verall bits communicated, it is still preferable to compress in
oth directions. Note that subsampling only the model from the
aster to the client is meaningless because that way the client
ill send mostly outdated parameters that the master has already
eceived in previous rounds.

Fig. 6 compares the two meaningful strategies for the case
f s = 0.1. Subsampling in both directions is clearly the better
hoice. However, it also has a downside, because in that case
he clients no longer receive the full model from the master
o they cannot use the best possible model locally. To illustrate
his problem, we include the average performance of the models
tored locally. Depending on the application, this may or may
ot be a problem. Nevertheless, from now on, we will apply
ubsampling in both directions in the remaining experiments.

.2. Continuous transfer

Here, we study the continuous transfer setup where all the
odes try to minimize their idle time taking advantage of the
vailable bandwidth as best as they can. The comparison of the
ifferent algorithms and subsampling probabilities is shown in
ig. 7. The stochastic gradient descent (SGD) method is also
hown, which was implemented by gossip learning with no merg-
ng, where the received model replaces the current model at
he nodes. Clearly, the methods using merge are all better than
GD. Also, it is very clear that subsampling helps both federated
earning and gossip learning.

Most importantly, in the 100 node setup (left column of Fig. 7),
ossip learning is competitive with federated learning in the case
 P

118
f high compression rates (that is, low sampling probability). This
as not expected, as gossip learning is fully decentralized, so the
ggregation is clearly delayed compared to federated learning.
ndeed, with no compression, federated learning performs better.

Fig. 7 (right) also illustrates the extreme scenario, when each
ode has only one example, and the size of the network equals
he dataset size. This is a much more difficult scenario for both
ossip and federated learning. Also, federated learning is expected
o perform relatively better, because of the more aggressive cen-
ral aggregation of the relatively little local information. Still,
ossip learning is in the same ballpark in terms of performance. In
erms of long range convergence (recall, that our scenarios cover
pproximately a day’s time) all the methods achieve good results.
Fig. 8 contains our results over the smartphone trace churn

odel. Here, all the experiments shown correspond to a period of
4 h, so the horizontal axis has a temporal interpretation as well.
he choice of long or short transfer time causes almost no differ-
nce (apart from the fact that the shorter transfer time obviously
orresponds to proportionally faster convergence). Also, more
nterestingly, churn only causes a minor increase in the variance
f the 0–1 error but otherwise we have a stable convergence. This
s due to the application of model partitioning. Previous results
ithout model partitioning showed a much higher variance. It

s also worth pointing out that federated learning and gossip
earning shows a practically identical performance under high
ompression rates. Again, gossip learning is clearly competitive
ith federated learning.
Fig. 9 contains the results of our experiments with the single

lass assignment scenario, as described in Section 5.1. In this
xtreme scenario, the advantage of federated learning is more
pparent, although on the long run gossip learning also achieves
ood results. Interestingly, in this case the different compression
ates do not have a clear preference order. For example, on the
endigits database (containing 10 classes) the compressed variant

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

F
s

6

c
d
o
b
a
o
i
b

f
m

Fig. 7. Federated learning and gossip learning with 100 nodes (left) and with one node for each sample (right), no-failure scenario, with different subsampling
probabilities. Stochastic Gradient Descent (SGD) is implemented by gossip learning with no merging (received model replaces current model).
is inferior, while on HAR (with 6 classes) the compressed variant
appears to be preferable.

Let us also point out the similarity between the results on
igs. 9 and 7 (right). Indeed, the scenario where each node has one
ample is also a single class assignment scenario by definition.

.3. Bursty transfer

Here, we study the bursty transfer setup where all the nodes
ommunicate only during a given percentage of the time, as
escribed in Section 5.4. Without any modification, the behavior
f the algorithms we have discussed so far is very similar to their
ehavior in the continuous transfer scenario. Although gossip
lgorithms do work slightly better due to the reduced number
f parallel transfers, the bursty transfer scenario offers a possibil-
ty to implement specialized techniques that take advantage of
ursty transfer explicitly.
In the case of gossip learning, we introduced the token account

low control technique, as described previously. This technique
otivated the partition-based sampling technique, to allow for
119
the formation of ‘‘hot potato’’ chains for each partition separately.
Recall that in Section 6.1 we decided that all the experiments
would use model partitioning, after observing that it helps even
traditional gossip.

In the case of federated learning, one such technique is when
the master communicates only with a subset of the workers in
each round, selecting a different subset each time. This way,
although the workers communicate in a bursty fashion, the global
model still evolves relatively faster. Here, we will assume that the
nodes communicate only 1% of the time. In this case, the master
will talk to 1% of the nodes in each round. This way, the master
communicates continuously while the nodes communicate in
bursts.

Fig. 10 illustrates the performance in the bursty transfer sce-
nario. Clearly, the convergence of each algorithm becomes faster
than in the continuous communication case. This suggests that
it is better to allow for short but high bandwidth bursts as
opposed to long but low bandwidth continuous communication.
We can also observe that token gossip converges faster than

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

r
c

6

e
b
w
t
s

g
i
b
T
m
w
o
s

Fig. 8. Federated learning and gossip learning over the smartphone trace with long (left) and short (right) transfer time, in the 100 node scenario.
egular gossip in most cases. Also, the best gossip variant is, again,
ompetitive to the federated learning algorithm.

.4. Large scale

Here, we experiment with the scenario where the number of
xamples per node was the same as in the 100 node scenario,
ut the network size equaled the database size. To achieve this,
e replicated the examples, that is, each example was assigned
o multiple nodes (see Section 5.1). We call this the large scale
cenario.
The results are shown in Fig. 11. We can see that the best

ossip variants are competitive with the best federated learn-
ng variants. The first observation we can make is that in the
ursty transfer scenario a faster convergence can be achieved.
his is due to the algorithms that exploit burstiness. Besides, the
ost important feature of this large scale scenario seems to be
hether the label distribution is biased (single label assignment)
r not (random assignment). The single class assignment (biased)
cenario results in a slower convergence for both approaches.
120
However, compared with previous experiments, increasing the
size of the network in itself does not slow the protocols down.

7. Related work

The literature on machine learning and, in general, optimiza-
tion based on decentralized consensus is vast [30]. Our contribu-
tion here is a comparison of the efficiency of decentralized and
centralized solutions that are based on keeping the data local.
Thus, we focus on works that target the same problem. Savazzi
et al. [29] study a number of gossip based decentralized learning
methods in the context of industrial IoT applications. They focus
on the case where the data distribution is not identical over the
nodes. They do not consider compression techniques or other
algorithmic enhancements such as token-based flow control.

Hu et al. [17] introduce a segmentation mechanism similar to
ours, but their motivation is different. Their focus is on saturating
the bandwidth of all the nodes using P2P connections that have
a relatively smaller bandwidth, which means they propose that
the nodes should communicate to several peers simultaneously.

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

S
t
a
t

f
s
s
o
a

p
l
i
n

a
m
s
p

r
e
g
a
a
T
u
n
c
o
c
m
f

Fig. 9. Federated learning and gossip learning with 100 nodes, no-failure scenario, with single class assignment.
ending only a part of the model appears to be beneficial in
his scenario. In our case, we focused on convergence speed as
function of overall communication, and we used this technique
o optimize our token-based flow control mechanism.

Blot et al. [6] compare a number of aggregation schemes
or the decentralized aggregation of gradients, including a gos-
ip version based on the weighted push sum communication
cheme [20]. Although the authors do not cite federated learning
r gossip learning as such, their theoretical analysis and new
lgorithm variants are relevant and merit further study.
Lalitha et al. [23] study the scenario where each node can

ossibly observe only a subset of parameters and the task is to
earn a Bayesian model collaboratively without a server. The work
s mainly theoretical, experimental evaluation is done with two
odes only, as an illustration.
Jameel et al. [18] focus on the communication topology, and

ttempt to design an optimal topology that is both fast and com-
unication efficient. They propose a superpeer topology where
uperpeers form a ring and they all have a number of ordinary
eers connected to them.
Lian et al. [24] and Tang et al. [33] introduce gossip algo-

ithms and compare them with the centralized variant. Koloskova
t al. [21] improve these algorithms via supporting arbitrary
radient compression. The main contribution in these works is
theoretical analysis of the synchronized implementation. Their
ssumptions on the network bandwidth are different from ours.
hey assume that the server is not unlimited in its bandwidth
sage, and they characterize convergence as a function of the
umber of synchronization epochs. In our study, due to our edge
omputing motivation, we focus on convergence as a function
f system-wide overall communication in various scenarios in-
luding realistic node churn. We perform asynchronous measure-
ents along with optimization techniques, such as token-based

low control.
121
Giaretta and Girdzijauskas [14] present a thorough analysis
of the applicability of gossip learning, but without consider-
ing federated learning. Their work includes scenarios that we
have not discussed here including the effect of topology, and the
correlation of communication speed and data distribution.

Ben-Hun and Hoefler [4] very briefly consider gossip alterna-
tives claiming that they have performance issues.

8. Conclusions

Here, we compared federated learning and gossip learning
to see to what extent doing away with central components—as
gossip learning does—hurts performance. The first hurdle was
designing the experiments. One has to be careful what system
model is selected and what constraints and performance mea-
sures are applied. For example, the best algorithm will be very
different when we grant a fixed overall communication budget
to the system overall but allow for slow execution, or when we
give a fixed amount of time and allow for utilizing all the available
bandwidth at all the nodes.

Our choice was to allow the nodes to communicate within
a configurable bandwidth cap that is uniform over the network,
except the master node. This can be done in a continuous fashion,
or in a bursty fashion. In the latter case, the cap is interpreted
in terms of the average bandwidth usage in any time window
of some fixed length. These models cover most application sce-
narios. Within these models, we were interested in the speed of
convergence after a given amount of overall communication.

We observed several interesting phenomena in our various
scenarios. In the random class assignment case (when nodes have
a random subset of the learning examples) gossip learning is
clearly competitive with federated learning. In the single class
assignment scenario, federated learning converges faster, since
it can mix information more efficiently. This includes the case

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

o
i
a
t
v
i
o

a

Fig. 10. Federated learning and gossip learning with 100 nodes (left) and with one node for each sample (right), no-failure scenario, in the bursty transfer scenario.
when every node has only a single example, as it is also a special
case of single class assignment. However, gossip learning is able
to converge as well in a practically realistic time frame. Here,
we believe that gossip learning could be improved via applying
more sophisticated peer sampling methods that are optimized
to increase the efficiency of mixing different updates, or via
applying a different learning rule, based on momentum methods,
for example [3].

In our experimental setup we opted for putting the same cap
n both upstream and downstream traffic in federated learn-
ng, as motivated in Section 5.2. But even if one removes this
ssumption and considers downstream traffic completely free,
he downstream-compressed federated learning variant will con-
erge only twice as fast, a relatively modest difference. Note that
n gossip learning there is only peer-to-peer traffic, so there is
nly one cap.
The bursty traffic model broadens the algorithm design space,
llowing for an array of techniques for scheduling the messages

122
to achieve a speedup relative to the random schedule. We exper-
imented with token-based flow control in gossip learning, and
could achieve a performance comparable to federated learning
in the random label assignment scenarios. In general, our results
indicate that it is better to allow clients to communicate in bursts
(maximal bandwidth for a short time) as opposed to setting a low
bandwidth cap but allowing for continuous communication.

The token-based flow control approach outperforms the ran-
dom gossip baseline that does not use any flow control. However,
to achieve these advantages, the compression mechanism must
be based on partitioning, as opposed to simple subsampling.
The reason is that this way, the different partitions can form
‘‘hot potato’’ chains separately, whereas with subsampling, these
chains cannot form because sampling picks different weights in
every step.

In addition, we have only examined subsampling as a com-
pression mechanism. There are more sophisticated compression
techniques [9] that could potentially be applied in both federated

and gossip learning.

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124

c
t

R

Fig. 11. Selected experiments in the large scale scenario. Continuous transfer (left) and bursty transfer (right). ‘Biased’ indicates single class assignment, ‘trace’
indicates the smartphone trace scenario.
Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] European Commission, General data protection regulation (GDPR), 2018,
URL: https://ec.europa.eu/commission/priorities/justice-and-fundamental-
rights/data-protection/2018-reform-eu-data-protection-rules.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain
dataset for human activity recognition using smartphones., in: 21th Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), 2013.

[3] J. Ba, D. Kingma, Adam: A method for stochastic optimization, in: 3rd
International Conference on Learning Representations (ICLR), 2015.

[4] T. Ben-Nun, T. Hoefler, Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis, ACM Comput. Surv. 52 (4) (2019) http:
//dx.doi.org/10.1145/3320060.

[5] Á. Berta, V. Bilicki, M. Jelasity, Defining and understanding smartphone
churn over the internet: a measurement study, in: Proceedings of the 14th
123
IEEE International Conference on Peer-to-Peer Computing (P2P 2014), IEEE,
2014, http://dx.doi.org/10.1109/P2P.2014.6934317.

[6] M. Blot, D. Picard, N. Thome, M. Cord, Distributed optimization for deep
learning with gossip exchange, Neurocomputing 330 (2019) 287–296, http:
//dx.doi.org/10.1016/j.neucom.2018.11.002.

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel,
D. Ramage, A. Segal, K. Seth, Practical secure aggregation for federated
learning on user-held data, in: NIPS Workshop on Private Multi-Party
Machine Learning, 2016.

[8] G. Danner, Á. Berta, I. Hegedűs, M. Jelasity, Robust fully distributed mini-
batch gradient descent with privacy preservation, Secur. Commun. Netw.
2018 (2018) 6728020, http://dx.doi.org/10.1155/2018/6728020.

[9] G. Danner, M. Jelasity, Robust decentralized mean estimation with limited
communication, in: M. Aldinucci, L. Padovani, M. Torquati (Eds.), Euro-Par
2018, Springer International Publishing, 2018, pp. 447–461, http://dx.doi.
org/10.1007/978-3-319-96983-1_32.

[10] G. Danner, M. Jelasity, Token account algorithms: The best of the proactive
and reactive worlds, in: Proceedings of the 38th International Conference
on Distributed Computing Systems (ICDCS 2018), IEEE Computer Society,
2018, pp. 885–895, http://dx.doi.org/10.1109/ICDCS.2018.00090.

[11] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, A.Y. Ng, Large scale distributed deep
networks, in: Proceedings of the 25th International Conference on Neural

https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb2
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb3
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb3
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb3
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.1109/P2P.2014.6934317
http://dx.doi.org/10.1016/j.neucom.2018.11.002
http://dx.doi.org/10.1016/j.neucom.2018.11.002
http://dx.doi.org/10.1016/j.neucom.2018.11.002
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb7
http://dx.doi.org/10.1155/2018/6728020
http://dx.doi.org/10.1007/978-3-319-96983-1_32
http://dx.doi.org/10.1007/978-3-319-96983-1_32
http://dx.doi.org/10.1007/978-3-319-96983-1_32
http://dx.doi.org/10.1109/ICDCS.2018.00090
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11

I. Hegedűs, G. Danner and M. Jelasity Journal of Parallel and Distributed Computing 148 (2021) 109–124
Information Processing Systems - Volume 1, Curran Associates Inc., USA,
2012, pp. 1223–1231.

[12] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), Association for Computational Linguistics, Minneapolis,
Minnesota, 2019, pp. 4171–4186, http://dx.doi.org/10.18653/v1/N19-1423.

[13] D. Dua, C. Graff, UCI machine learning repository, 2019, URL: http://archive.
ics.uci.edu/ml.

[14] L. Giaretta, Š. Girdzijauskas, Gossip learning: Off the beaten path, in: 2019
IEEE International Conference on Big Data (Big Data), 2019, pp. 1117–1124,
http://dx.doi.org/10.1109/BigData47090.2019.9006216.

[15] I. Hegedűs, Á. Berta, L. Kocsis, A.A. Benczúr, M. Jelasity, Robust decen-
tralized low-rank matrix decomposition, ACM Trans. Intell. Syst. Technol.
(TIST) 7 (4) (2016) 62:1–62:24, http://dx.doi.org/10.1145/2854157.

[16] I. Hegedűs, G. Danner, M. Jelasity, Gossip learning as a decentralized
alternative to federated learning, in: J. Pereira, L. Ricci (Eds.), Proceedings
of the 19th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS 2019), Springer International Publishing,
2019, pp. 74–90, http://dx.doi.org/10.1007/978-3-030-22496-7_5.

[17] C. Hu, J. Jiang, Z. Wang, Decentralized federated learning: A segmented
gossip approach, in: The 1st International Workshop on Federated Machine
Learning for User Privacy and Data Confidentiality (IJCAI Workshop), 2019.

[18] M. Jameel, J. Grabocka, M. ul Islam Arif, L. Schmidt-Thieme, Ring-star:
A sparse topology for faster model averaging in decentralized parallel
SGD, in: Decentralized Machine Learning At the Edge (ECML PKDD 2019
Workshop), 2019.

[19] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, M. van Steen,
Gossip-based peer sampling, ACM Trans. Comput. Syst. 25 (3) (2007) 8,
http://dx.doi.org/10.1145/1275517.1275520.

[20] D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate
information, in: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’03), IEEE Computer Society, 2003,
pp. 482–491, http://dx.doi.org/10.1109/SFCS.2003.1238221.

[21] A. Koloskova, S. Stich, M. Jaggi, Decentralized stochastic optimization
and gossip algorithms with compressed communication, in: K. Chaudhuri,
R. Salakhutdinov (Eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, PMLR, Long Beach, California, USA, 2019, pp.
3478–3487.

[22] J. Konecný, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon,
Federated learning: Strategies for improving communication efficiency, in:
Private Multi-Party Machine Learning (NIPS 2016 Workshop), 2016.

[23] A. Lalitha, S. Shekhar, T. Javidi, F. Koushanfar, Fully decentralized federated
learning, in: Bayesian Deep Learning (NIPS 2018 Workshop), 2018.

[24] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can decentralized
algorithms outperform centralized algorithms? A case study for decen-
tralized parallel stochastic gradient descent, in: I. Guyon, U.V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 30, Curran Associates, Inc., 2017,
pp. 5330–5340.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas,
Communication-efficient learning of deep networks from decentralized
data, in: A. Singh, J. Zhu (Eds.), Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, PMLR, Fort Lauderdale,
FL, USA, 2017, pp. 1273–1282.

[26] A. Montresor, M. Jelasity, Peersim: A scalable p2p simulator, in: Proceed-
ings of the 9th IEEE International Conference on Peer-to-Peer Computing
(P2P 2009), IEEE, Seattle, Washington, USA, 2009, pp. 99–100, http://dx.
doi.org/10.1109/P2P.2009.5284506, extended abstract.

[27] R. Ormándi, I. Hegedűs, M. Jelasity, Gossip learning with linear models
on fully distributed data, Concurr. Comput.: Pract. Exper. 25 (4) (2013)
556–571, http://dx.doi.org/10.1002/cpe.2858.

[28] R. Roverso, J. Dowling, M. Jelasity, Through the wormhole: Low cost,
fresh peer sampling for the internet, in: Proceedings of the 13th IEEE
International Conference on Peer-to-Peer Computing (P2P 2013), IEEE,
2013, http://dx.doi.org/10.1109/P2P.2013.6688707.
124
[29] S. Savazzi, M. Nicoli, V. Rampa, Federated learning with cooperating
devices: A consensus approach for massive IoT networks, IEEE Internet
Things J. (2020) http://dx.doi.org/10.1109/JIOT.2020.2964162.

[30] A. Sayed, Adaptation, learning, and optimization over networks, Found.
Trends Mach. Learn. 7 (4–5) (2014) 311–801, http://dx.doi.org/10.1561/
2200000051, URL: http://iracema.icsl.ucla.edu/publications/books/now_
2014/book.pdf.

[31] H. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,
R.M. Summers, Deep convolutional neural networks for computer-aided
detection: Cnn architectures, dataset characteristics and transfer learning,
IEEE Trans. Med. Imaging 35 (5) (2016) 1285–1298.

[32] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, W. Willinger, On unbiased
sampling for unstructured peer-to-peer networks, IEEE/ACM Trans. Netw.
17 (2) (2009) 377–390, http://dx.doi.org/10.1109/TNET.2008.2001730.

[33] H. Tang, X. Lian, M. Yan, C. Zhang, J. Liu, D2: Decentralized training over
decentralized data, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th
International Conference on Machine Learning, PMLR, Stockholmsmässan,
Stockholm Sweden, 2018, pp. 4848–4856.

[34] J. Wang, B. Cao, P.S. Yu, L. Sun, W. Bao, X. Zhu, Deep learning towards
mobile applications, in: IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018, pp. 1385–1393, http://dx.doi.org/10.
1109/ICDCS.2018.00139.

[35] Y. Zhang, J.C. Duchi, M.J. Wainwright, Communication-efficient algorithms
for statistical optimization, J. Mach. Learn. Res. 14 (1) (2013) 3321–3363.

István Hegedűs is a research fellow at the Institute of
Informatics of the University of Szeged. He obtained
his Ph.D. degree in computer science in 2017 from the
University of Szeged and he received his M.Sc. in com-
puter science from the same university. He received
the award for the most innovative Ph.D. thesis in 2017
at the University of Szeged. He has been a teaching
artificial intelligence since 2009. His main research
interests include fully distributed algorithms and de-
centralized machine learning. He has participated in
several successful research and industrial projects in

these areas.

Gábor Danner is currently pursuing a Ph.D. degree
at the Doctoral School of Computer Science of the
University of Szeged, Szeged, Hungary, where he is su-
pervised by Márk Jelasity. He received his M.Sc. degree
in Computer Science from the same institution in 2014.
In 2015, he received a 1st prize at the National Sci-
entific Students’ Associations Conference (OTDK) with
his work entitled ‘‘Calculating Ultra-Strong and Ex-
tended Solutions for Nine Men’s Morris, Morabaraba,
and Lasker.’’ The main focus of his thesis is to make de-
centralized machine learning algorithms more efficient

in terms of communication cost. His main research interests are fully distributed
algorithms, data mining, and artificial intelligence in games.

Márk Jelasity is a full professor at the Institute of
Informatics of the University of Szeged. He is the
head of the Department of Algorithms and Artificial
Intelligence. He received his Ph.D. degree in computer
science from the University of Leiden in 2001. From
2000 until 2006 he was a postdoc at the Free University
of Amsterdam and the University of Bologna. He visited
Cornell University in 2013 as a Fulbright Scholar. He
is the recipient of the 10 years best paper award at
the ACM/IFIP/USENIX Middleware Conference (2014)
and the Bolyai Plaquette of the Hungarian Academy of

Sciences (2015). He worked in several areas including self-organizing systems,
distributed computing, machine learning, and the intersections of these.

http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb11
http://dx.doi.org/10.18653/v1/N19-1423
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/BigData47090.2019.9006216
http://dx.doi.org/10.1145/2854157
http://dx.doi.org/10.1007/978-3-030-22496-7_5
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb17
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb17
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb17
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb17
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb17
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb18
http://dx.doi.org/10.1145/1275517.1275520
http://dx.doi.org/10.1109/SFCS.2003.1238221
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb21
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb22
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb22
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb22
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb22
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb22
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb23
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb23
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb23
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb24
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb25
http://dx.doi.org/10.1109/P2P.2009.5284506
http://dx.doi.org/10.1109/P2P.2009.5284506
http://dx.doi.org/10.1109/P2P.2009.5284506
http://dx.doi.org/10.1002/cpe.2858
http://dx.doi.org/10.1109/P2P.2013.6688707
http://dx.doi.org/10.1109/JIOT.2020.2964162
http://dx.doi.org/10.1561/2200000051
http://dx.doi.org/10.1561/2200000051
http://dx.doi.org/10.1561/2200000051
http://iracema.icsl.ucla.edu/publications/books/now_2014/book.pdf
http://iracema.icsl.ucla.edu/publications/books/now_2014/book.pdf
http://iracema.icsl.ucla.edu/publications/books/now_2014/book.pdf
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb31
http://dx.doi.org/10.1109/TNET.2008.2001730
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb33
http://dx.doi.org/10.1109/ICDCS.2018.00139
http://dx.doi.org/10.1109/ICDCS.2018.00139
http://dx.doi.org/10.1109/ICDCS.2018.00139
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb35
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb35
http://refhub.elsevier.com/S0743-7315(20)30389-0/sb35

	Decentralized learning works: An empirical comparison of gossip learning and federated learning
	Introduction
	Machine learning basics
	Gossip learning
	Random sampling and model partitioning
	Token gossip learning

	Federated learning
	Experimental setup
	Datasets
	System model
	Smartphone traces
	Hyperparameters

	Experimental results
	Basic design choices
	Continuous transfer
	Bursty transfer
	Large scale

	Related work
	Conclusions
	Declaration of competing interest
	References

