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Background: Internal hemorrhage is a medical emergency, which requires immediate

causal therapy, but the recognition may be difficult. The reactive changes of the

mesenteric circulation may be part of the earliest hemodynamic responses to bleeding.

Methane is present in the luminal atmosphere; thus, we hypothesized that it can track

the intestinal circulatory changes, induced by hemorrhage, non-invasively. Our goal was

to validate and compare the sensitivity of this method with an established technique

using sublingual microcirculatory monitoring in a large animal model of controlled, graded

hemorrhage and the early phase of following fluid resuscitation.

Materials and Methods: The experiments were performed on anesthetized, ventilated

Vietnamese minipigs (approval number: V/148/2013; n = 6). The animals were gradually

bled seven times consecutively of 5% of their estimated blood volume (BV) each,

followed by gradual fluid resuscitation with colloid (hydroxyethyl starch; 5% of the

estimated BV/dose) until 80 mmHg mean arterial pressure was achieved. After each

step, macrohemodynamic parameters were recorded, and exhaled methane level was

monitored continuously with a custom-built photoacoustic laser-spectroscopy unit. The

microcirculation of the sublingual area, ileal serosa, and mucosa was examined by

intravital videomicroscopy (Cytocam-IDF, Braedius).

Results: Mesenteric perfusion was significantly reduced by a 5% blood loss, whereas

microperfusion in the oral cavity deteriorated after a 25% loss. A statistically significant

correlation was found between exhaled methane levels, superior mesenteric artery flow

(r = 0.93), or microcirculatory changes in the ileal serosa (ρ = 0.78) and mucosa (r

= 0.77). After resuscitation, the ileal mucosal microcirculation increased rapidly [De

Backer score (DBS): 2.36 ± 0.42 vs. 8.6 ± 2.1 mm−1], whereas serosal perfusion

changed gradually and with a lower amplitude (DBS: 2.51 ± 0.48 vs. 5.73 ± 0.75).

Sublingual perfusion correlated with mucosal (r = 0.74) and serosal (r = 0.66) mesenteric

microperfusion during the hemorrhage phase but not during the resuscitation phase.
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Conclusion: Detection of exhaled methane levels is of diagnostic significance

during experimental hemorrhage as it indicates blood loss earlier than sublingual

microcirculatory changes and in the early phase of fluid resuscitation, the exhaled

methane values change in association with the mesenteric perfusion and the

microcirculation of the ileum.

Keywords: exhaled methane, diagnostic significance, small intestinal microcirculation, hemorrhage, resuscitation

INTRODUCTION

The manifestation of internal bleeding varies, with the signs and
symptoms usually not easily recognized; thus, a diagnosis can
be difficult (1–5). Hemodynamic changes or alterations within
simple laboratory parameters are often not present during the
early stage of bleeding, and advanced imaging possibilities, such
as CT angiography and catheter angiography, which are able
to identify the presence and location of a hemorrhage, are
frequently inaccessible and unsuitable for continuousmonitoring
(6). Nevertheless, it is recognized that the mortality rate for
postoperative internal bleeding is significantly increased if higher
transfusion volumes are required; therefore, the earliest possible
diagnosis is necessary.

As part of the redistribution of circulation, the reduction of
mesenteric perfusion is among the first homeostatic responses,
and therefore a continuous, direct monitoring of blood flow in
the superior mesenteric artery (SMA) and downstream intestinal
microperfusion would be a highly useful, early warning tool.
Today, such observations at the patient’s bedside, however, are
impossible. Nevertheless, non-invasive techniques with indirect
monitoring options, such as sublingual capnometry and intravital
microscopy methods, were developed and are in clinical use with
variable success (7, 8).

We hypothesized that measurement of exhaled methane
concentrations may also offer a solution to this problem.
Methane in the human body originates from several sources,
but it is widely accepted that it is produced by anaerobic
methanogenic microorganisms, colonizing the mammalian
gastrointestinal (GI) tract (9). Due to its physicochemical
properties, methane is distributed evenly across membrane
barriers, traverses the mucosa, and enters the mesenteric
microcirculation freely (10). For continuous methane detection,
near-infrared diode lasers are very effective tools for high-
sensitivity photoacoustic spectroscopy (PAS) (11), and we have
already provided evidence that a PAS-based breath analysis
device can successfully replace gas chromatography (GC) (12).

In our earlier proof of principle study, we provided evidence
that the exhaled methane levels change in association with
changes in superior mesenteric arterial blood flow (13). It has
been demonstrated that arterial occlusions and reperfusions and
the accompanying mucosal microcirculatory cycles correlated
significantly with parallel changes in methane concentration in
the exhaled air (13). Therefore, the aim of the present study was to
investigate the diagnostic value of real-time detection of exhaled
methane levels to recognize internal bleeding in a clinically-
relevant large animal model. Further aims were to examine

whether continuous breath methane output monitoring can
provide information on the condition of the mesenteric vascular
beds during fluid resuscitation and to compare the efficacy of the
technique with intravital sublingual microcirculatory analysis, a
diagnostic method already in clinical use (14, 15).

MATERIALS AND METHODS

Animals
The experiments were performed on male outbred Vietnamese
minipigs (n = 6; 40 ± 3 kg bw) in accordance with the National
Institutes of Health guidelines on the handling of and care
for experimental animals and EU Directive 2010/63 on the
protection of animals used for scientific purposes (approval
number: V/148/2013). The animals were obtained from a local,
officially licensed breeder and were kept in the animal house
of the institute for an acclimatization period of 7–10 days with
natural circadian light and free access to water and food. Prior to
the experiments, the animals were fasted for 12 h with free access
to tap water.

Surgical Preparations
Male outbred Vietnamese minipigs (n = 6; weighing 40 ±

3 kg) were used. Anesthesia was induced with a mixture
of tiletamine zolazepam (5mg kg−1 im; Virbac, Carros,
France) and xylazine (2mg kg−1 im; Produlab Pharma,
Raamsdonksveer, The Netherlands). The animals were placed
in supine position on a warming pad with body temperature
kept at 37.5 ± 0.4◦C. After endotracheal intubation, mechanical
ventilation was started with a tidal volume of 8–10ml
kg−1, and the respiratory rate was adjusted to maintain
the end-tidal pressure of carbon dioxide in the 35–45
mmHg range. Anesthesia was maintained with a continuous
infusion of propofol (6mg kg−1 h−1 iv; Fresenius Kabi, Bad
Homburg, Germany), midazolam (1.2mg kg−1 h−1; Torrex
Chiesi Pharma, Vienna, Austria), and fentanyl (0.02mg kg−1

h−1; Richter Gedeon, Budapest, Hungary). Ringer’s lactate (RL)
infusion was administered at a rate of 10ml kg−1 h−1 until
bleeding was started. The depth of anesthesia was regularly
controlled by monitoring the jaw tone and the absence of
interdigital reflex.

The left jugular vein was cannulated with a 7F, three lumen
catheter (Smiths Medical, Kirchseeon, Germany) for fluid and
drug administration, as was the left femoral artery for invasive
monitoring of mean arterial pressure (MAP) (PICCO Plus;
PULSION Medical Systems, Feldkirchen, Germany). The left
carotid artery was cannulated with a 13G single lumen catheter
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FIGURE 1 | Experimental protocol (A) and timeline of the measurement period during the experiment (B).

(Balton, Warsaw, Poland) for blood withdrawal. After median
laparotomy, the SMA was dissected free, and a flow probe
(Transonic Systems Inc., Ithaca, NY, USA) was placed around
it to measure SMA flow. The wound in the abdominal wall had
then been temporarily closed with clips until themicrocirculatory
investigations were started.

Experimental Protocol
After the surgical preparation, a 30-min stabilizing period
was provided, followed by baseline measurements. Gradual
bleeding was then started. The protocol was divided
into seven steps with hemorrhage (T0-T6), followed by
gradual fluid resuscitation in five steps (T7-T12), until
80% of the baseline MAP value was reached (Figure 1A).
The total blood volume (BV) was set as 65ml kg−1, 5%
of the estimated BV was withdrawn (129 ± 8ml) by
the end of each bleeding step, and an equal volume of
hydroxyethyl starch (HES; Voluven 6%, 130/0.4; Fresenius
Kabi, Bad Homburg, Germany) was administered during each
resuscitation step.

Every bleeding or resuscitation interval was started with
microcirculatory recordings at the ileal mucosal and serosal
surfaces and at the sublingual area. The terminal ileum was
positioned on a purpose-built investigation stand. To provide
access to the ileal mucosa, a 5-cm antimesenteric incision
was made with diathermy 15 cm orally from the ileo-cecal
junction. The serosal and mucosal surfaces of the exteriorized
ileal section were continuously rinsed with saline. At each
location, three, 20-s video recordings were made. Following the

intravital videomicroscopic investigations, MAP and SMA flow
were recorded, and finally blood samples were taken for lactate,
total hemoglobin (tHb), and hematocrit (Hct) determinations.
Methane values were continuously recorded throughout the
observation period. At the end of the experiments, the animals
were sacrificed with an overdose of pentobarbital sodium
(120mg kg−1 iv; Sigma-Aldrich Inc., St. Louis, MO, USA).
The timeline of measurement intervals is summarized in
Figure 1B.

Exhaled CH4 Analysis
We employed a near-infrared laser technique-based PS
apparatus (12). PS is a subclass of optical absorption
spectroscopy that measures optical absorption indirectly
via the conversion of absorbed light energy into acoustic waves
due to the thermal expansion of absorbing gas samples. The
amplitude of the generated sound is directly proportional
to the concentration of the absorbing gas component.
The gas sample passes through the photoacoustic cell, in
which signal generation takes place, and a microphone then
detects the photoacoustic signal produced. The gas samples
were taken continuously from the exhalation outlet of the
ventilator at a 150ml min−1 rate during the experiments.
The baseline exhaled CH4 values were determined, and the
values were thereafter subtracted from the test values. The
online-detected methane values were averaged for 60-s periods
to be identical with the parallel, 3 × 20-s periods of the
microcirculatory analyses.
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FIGURE 2 | Changes in mean arterial pressure (mmHg) (A), the superior mesenteric artery flow (ml min−1 ) (B), and exhaled methane levels (ppm) (C) during the

hemorrhage and resuscitation phases. The plots demonstrate the median and the 25th (lower whisker) and 75th (upper whisker) percentiles. *p < 0.05 within group

vs. baseline values.

Measurements of Lactate Level, Total
Hemoglobin Concentration, and
Hematocrit
Changes in tHb, Hct, and lactate concentration were analyzed
with a cooximetry blood gas analyzer (Cobas b 123; Roche Ltd.,
Basel, Switzerland) from the arterial blood samples.

Microcirculation Measurements
The Cytocam-Incident Dark Field (IDF) imaging technique
(CytoCam Video Microscope System; Braedius Medical, Huizen,
The Netherlands) was used to visualize and evaluate the
microcirculation of the ileal serosal and mucosal layers and
the sublingual area. IDF imaging is optimized to visualize the
hemoglobin-containing structures by illuminating the organ
surface with linearly polarized light (16).

Images of empty ileum segment microcirculation (serosal and
mucosal surfaces) and sublingual microcirculation were recorded
in three, 20-s, high-quality video clips per location by the same
investigator, and records were saved as digital AVI-DV files to a
hard drive. Every video clip was evaluated offline using analyzing
software (AVA 3.0; Automated Vascular Analysis, Academic
Medical Center, University of Amsterdam).

The capillaries (with diameter <20µm) were categorized by
sight as capillaries with no flow, sluggish flow, or continuous flow.
The number of intersections of capillaries with at least sluggish
flow with three equidistant horizontal and three equidistant
vertical lines was counted and was manually entered in the
corresponding tool in the analyzing software to calculate the
De Backer score (DBS). The microvascular flow index (MFI)
was determined in four quadrants of a record according to the
score system defined by the MFI evaluation tool in the analyzing
software: no flow (1), sluggish flow (2), or continuous flow (3).
The final MFI value of a record was the average for the MFI of
the four quadrants. The microvascular heterogeneity index (HI)
was calculated as the difference between the highest and lowest

MFIs of the three records divided by the mean MFI value of the
same three videos (17). Blinded evaluation was performed by two
investigators (NV and AG).

Statistical Analysis
Data analysis was performed with a statistical software package
(SigmaStat for Windows; Jandel Scientific, Erkrath, Germany).
Normality of data distribution was analyzed with the Shapiro–
Wilk test. The Friedman on ranks or one-way repeated measures
analysis of variance (ANOVA) was applied within groups. Time-
dependent differences from the baseline for each group were
assessed with Dunn’smethod or the Bonferroni t-test. Differences
among groups were analyzed with the Kruskal–Wallis one-way
ANOVA on ranks, followed by Dunn’s method. Median values
and 75th and 25th percentiles are provided in the figures; p values
< 0.05 were considered significant. Correlations between two
variables were examined using Pearson’s correlation coefficient
(r) or Spearman’s rank correlation coefficient (ρ); regression lines
and 95% confidence intervals are provided in the figures.

RESULTS

Systemic Effects of Gradual Bleeding and
Resuscitation: Changes in MAP
After the bleeding, MAP significantly decreased by T3 (20% of
blood loss) and remained significantly lower until the end of the
hemorrhage phase. During the resuscitation period, it remained
significantly lower than the control values until T10, at which the
volume of fluid replacement was equal to 15% of the estimated
BV. By the end of the resuscitation phase, MAP reached 80% of
the baseline value, as planned (Figure 2A).

The plasma lactate level was increased significantly by T6 (30%
blood loss) and remained significantly higher than the baseline
value until T11. The bleeding and fluid resuscitation caused a
continuous decrease in both tHb and Hct values. A significant
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TABLE 1 | The effects of the hemorrhage and resuscitation phases on blood

lactate (mmol L−1), Hct (%), and tHb (g dl−1).

Parameters Lactate tHb Hct

Hemorrhage phase

T0 Median 2.25 11.92 33.25

p25; p75 1.97; 2.43 9.7; 13.4 27.75; 38.1

T1 Median 2.69 11.8 33.7

p25; p75 2.2; 2.83 9.45; 12.9 28.25; 36.78

T2 Median 2.91 11.13 32.1

p25; p75 2.73; 3.2 9.0; 12.4 26.9; 35.2

T3 Median 3.11 11.04 31.4

p25; p75 2.77; 3.5 9.02; 12.02 25.7; 33.8

T4 Median 3.675 10.58 29.89

p25; p75 3.438; 4.03 8.8; 11.45 25.5; 32.68

T5 Median 4.41 10.36 29.1

p25; p75 4.27; 4.53 8.55; 11.3 24.9; 31.6

T6 Median 5.42* 10.11* 26.1*

p25; p75 4.65; 6.05 8.28; 10.85 23.38; 29.63

Resuscitation phase

T7 Median 6.71* 8.66* 23.68*

p25; p75 5.88; 7.3 7.43; 10.48 20.9; 28.82

T8 Median 6.33* 7.99* 21.97*

p25; p75 5.63; 7.0 7.05; 10.23 19.45; 27.97

T9 Median 5.4* 7.5* 20.56*

p25; p75 5.13; 6.1 6.58; 9.68 18.57; 26.2

T10 Median 4.65* 7.29* 18.8*

p25; p75 4.425; 5.4 6.6; 8.98 16.55; 24.0

T11 Median 4.418* 6.9* 17.38*

p25; p75 3.9; 4.85 5.85; 8.2 15.43; 21.88

T12 Median 3.95 6.75* 16.37*

p25; p75 3.55; 4.85 5.7; 7.87 14.4; 20.77

The table demonstrates the median values and the 25th and 75th percentiles.
*p < 0.05 vs. baseline values.

difference from the baseline values was observed at T6 in the case
of both parameters. tHb was raised by more than 3 g dl−1 until
the end of the hemorrhage phase (M = 11.92; p25 = 9.7; p75 =

13.4 g dl−1 vs. M = 8.66; p25 = 7.43; p75 = 10.48 g dl−1), which
indicates severe bleeding (Table 1).

Mesenteric Macrohemodynamics
The SMA flow decreased continuously during the hemorrhage
phases. An early, significant drop was already noted at a 5%
loss (T1) of the estimated BV. After fluid resuscitation, the MAP
started to increase steeply and reached its peak value at the
second resuscitation step at T8. During the following parts of
the resuscitation phase, it decreased gradually to the level of the
baseline values (Figure 2B).

Changes in Exhaled Methane Levels
The average for baseline exhaled methane was 60.9–90.1 ppm,
which corresponds to the higher range of values measured
in methane-producing humans (9). The individual baseline
data were subtracted from the test values to increase the

comparability of measurements even in the case of larger
individual variances (13).

The exhaled methane concentration decreased significantly
after 5% blood loss, already at T1, similarly to the SMA flow
changes. After resuscitation was started, breath methane level
rapidly increased to a significantly higher level than the baseline
and reached a peak after a fluid volume equal to 10% of the
estimated BV, administered at the T8 period (Figure 2C).

Changes in Sublingual and Ileal
Microcirculation
The DBS values decreased significantly as the bleeding
progressed. The serosal DBS was lower than the baseline
value from a 10% blood loss (T2). This was followed by a
deterioration of mucosal DBS from the loss of 20% of the
estimated BV (T4), whereas the decrease of DBS in the sublingual
area was statistically significant from a 25% blood loss only (T5).
Moreover, the sublingual DBS was significantly higher than the
values in the ileal regions from T5 to T7, which marks the end
of the hemorrhage phase and a loss of 35% of BV. When fluid
resuscitation started, the mucosal DBS increased rapidly and was
significantly higher than the serosal and sublingual values after
fluid replacement with a volume equal to 5% of BV (T8), reaching
the highest value at T10. The serosal DBS values increased more
gradually with a maximum at T12 (Figure 3A).

Bleeding caused a decrease in the MFI in all three locations,
and the first to reach significance was the MFI in the sublingual
area at T3. This was followed by a significant decrease in
serosal MFI from T4 and in mucosal MFI from T5. The fluid
resuscitation resulted in a significant improvement of the MFI
in all investigated locations. Sublingual MFI was significantly
higher than the MFI in the ileal mucosa and serosa from T10

(Figure 3B).
The heterogeneity of the microcirculation increased during

the hemorrhage phase as shown by the HI. The most important
difference between the sublingual and ileal regions is that while
the sublingual HI was restored during resuscitation, the HI in
both the ileal mucosa and serosa remained significantly higher
than the baseline and the sublingual values until the end of the
experiments (Figure 3C).

Link Between Changes in Exhaled
Methane Concentration and Mesenteric
Macro- and Microperfusion
We compared the changes in the exhaled methane concentration
during the whole observation period with SMA flow data (r
= 0.93; Figure 4A). Moreover, we investigated the association
separately in the hemorrhage phase (r = 0.82; Figure 4B) and
in the resuscitation phase as well (r = 0.79; Figure 4C). When
the possible links between the changes in exhaled methane
levels and the DBS values of the two components of the ileal
microcirculation during the hemorrhage and resuscitation were
investigated, the DBS in the serosa correlated significantly with
the exhaled methane values during the experiments (ρ = 0.78;
Figure 5A). When separately investigated, the correlation could
be shown in both the bleeding phase (r = 0.79; Figure 5B) and
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FIGURE 3 | Changes in De Backer score (1 mm−1 ) values (A), the microvascular flow index (B), and the heterogeneity index (C) for the mucosa (black circles) and

serosa in the ileum (black triangle) and sublingual area (empty square) during the hemorrhage and resuscitation phases. The plots demonstrate the median values and

the 25th (lower whisker) and 75th (upper whisker) percentiles. xp < 0.05 mucosa or sublingual values vs. serosa values; #p < 0.05 serosa or sublingual values vs.

mucosa values; *p < 0.05 vs. baseline values.

the fluid resuscitation period (ρ = 0.52; Figure 5C). Similarly,
a significant correlation was present in the case of the mucosal
DBS values when the whole data set was analyzed (r = 0.77;
Figure 6A) and also when data were separated to the hemorrhage
(r = 0.82; Figure 6B) and resuscitation phases (ρ = 0.63;
Figure 6C). Phases are shown to demonstrate the changes in
exhaled methane concentrations and the DBS of the ileal mucosa
on an original methane registration curve of a single animal and
the simultaneous changes in the SMA flow and mucosal DBS in
the same animal during hemorrhage and resuscitation (Figure 7).

Correlations Between Sublingual and Ileal
Mucosal or Serosal Microcirculation
Significant correlations were detected during the hemorrhage
phase between the sublingual DBS and the serosal or mucosal
DBS values (r = 0.74 and r = 0.66, respectively; Figures 8A,B).

DISCUSSION

We used continuous, real-time detection of exhaled methane
concentration to investigate the link to the macro- and
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FIGURE 4 | Correlation between superior mesenteric artery flow (ml min−1) and changes in exhaled methane concentration (ppm) during the whole course of

experiments (A; black scatters show the data collected during bleeding, and gray scatters show the data recorded during resuscitation), the hemorrhage (B; black

scatters) and resuscitation phases (C; black scatters). The plot demonstrates the regression line (black line) and corresponding r values as indicators of the strength of

the linear correlation and p significance values.

FIGURE 5 | Correlation between the De Backer score (1 mm−1) for the serosa and changes in exhaled methane concentration (ppm) during the whole course of

experiments (A; black scatters show the data collected during bleeding, and gray scatters show the data recorded during resuscitation), the hemorrhage (B; black

scatters) and resuscitation phases (C; black scatters). The plot demonstrates the regression line (black line) and corresponding r and ρ values as indicators of the

strength of the linear correlation and p significance values.

microvascular components of the mesenteric circulation during
and after hemorrhage. The changes in SMA flow developed
earlier than systemic hemodynamic or Hct responses, and
the changes in exhaled methane levels strictly followed the
mesenteric alterations. Therefore, we propose that monitoring
methane in the exhaled air may be an early warning
tool to recognize internal hemorrhage. Moreover, exhaled
methane monitoring can provide information to estimate the
condition of the microcirculatory part of the mesenteric region
during bleeding, and it is capable of following the sudden

changes during the very early phase of fluid resuscitation.
Nonetheless, we are aware that an important limitation is
the detection of baseline values in certain clinical situations.
Here, it should be noted that real-time breath methane
monitoring technique may increase the diagnostic potential
of previous, traditional methods. This approach is based on
dynamic, constant tracking instead of detection static values
in a given time. Any observation (increase or decrease) can
direct the attention toward a possible disturbance of the
mesenteric circulation.
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FIGURE 6 | Correlation between the De Backer score (1 mm−1) for the mucosa and changes in exhaled methane concentration (ppm) during the whole course of

experiments (A; black scatters show the data collected during bleeding, and gray scatters show the data recorded during resuscitation), the hemorrhage (B; black

scatters) and resuscitation phases (C; black scatters). The plot demonstrates the regression line (black line) and corresponding r and ρ values as indicators of the

strength of the linear correlation and p significance values.

FIGURE 7 | Original tracings representing changes in exhaled methane levels (ppm) (continuous black line), the De Backer score (1 mm−1 ) for ileal mucosa (black

circles) and superior mesenteric artery flow (ml min−1 ) (gray triangle) of an individual animal.

The methane breath test is already used to diagnose certain GI
disorders. In human clinical laboratory practice, breath methane
levels are usually determined by a lactulose test and sampling
of breath air in gas-tight bags, which are then analyzed by
GC, equipped with either flame ionization, thermal conductivity,
or mass spectrometry detectors (18). Here, it should be noted

that the sampling frequency of these traditional methods is
limited. Our approach is somehow different; in contrast to
the GC technique, PAS provides the option to follow real-
time changes at a sensitivity threshold <1 ppm compared with
the 3 ppm sensitivity threshold of the presently available GC
instruments.With this method, the dynamics of exhaledmethane
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FIGURE 8 | Correlation between the De Backer score (1 mm−1 ) for the serosa (A) or mucosa (B) and the De Backer score (1 mm−1 ) for the sublingual area during the

hemorrhage phase. The plot demonstrates the regression line (gray line) and corresponding (black scatters) r values as an indicator of the strength of the linear

correlation and p significance values.

concentrations can also be followed in single breath sample
analyses (12).

We used an anesthetized, acute pig model for a gradual,
relatively low rate (5% loss of BV in each step), but severe
hemorrhage was followed by a controlled, gradual and restricted
(80% of the baseline MAP) fluid resuscitation. The total BV loss
was set at 35%, which resulted in an approximately 3 g dl−1 loss
of tHB, confirming the severity of the bleeding. The low rate
provided a good temporal resolution with the possibility of seven
measurement intervals during the hemorrhage phase and five
intervals until the goal MAP was reached in the resuscitation
phase. We decided to use HES as resuscitation fluid, as it was
expected to provide pronounced macrohemodynamic changes
and was also capable of restoring intestinal microcirculation (19).

As expected, the SMA blood flow was affected very early,
already significantly decreased after 5% blood was withdrawn.
Changes in the exhaled methane concentration followed the
decrease with the same dynamics. Significant changes in the
DBS of the serosal and mucosal components of the ileal
microcirculation occurred slightly later, after a 10 or 20%
blood loss, respectively. The difference between the mesenteric
macro- and microcirculation might be explained by a possible
autoregulation of mesenteric microperfusion (20), whereas the
delay between the mucosal and serosal microcirculatory changes
may be a result of the phenomenon of microcirculatory
redistribution, which supports the oxygenation of the mucosa at
the price of reduced serosal perfusion (21). The earlier decrease
of the exhaled methane level might indicate a reduced absolute
volume of the perfused blood, without the decrease of perfused
capillary density.

At the beginning of the resuscitation phase (T7-T8), a
sudden increase in the SMA flow and mucosal DBS and a

rise in exhaled methane levels were observed. However, by
the end of the experiments, the exhaled methane and SMA
flow values decreased, and no significant difference could be
detected compared with the baseline values. The DBS of both
the mucosal and serosal areas remained steady during the
whole resuscitation phase, and no decrease was observed in
the last two resuscitation intervals. Nonetheless, the HI was
increased by the end of the hemorrhage phase and remained
elevated during the entire resuscitation phase, which suggests
that the microcirculation was not completely restored by the fluid
replacement and might explain the methane decrease after the
initial peak.

The microcirculation of the sublingual area is frequently
investigated, as it is considered a suitable GI region for
non-invasive approaches, assuming that the changes might
indicate the condition of the microcirculation in more distal
sections, such as the ileum. Indeed, earlier studies demonstrated
that tissue carbon dioxide pressure in the sublingual area is
tied to changes in the small intestinal microcirculation in
a hemorrhagic shock and fluid resuscitation model (22). In
the present study, we could not detect a correlation between
the sublingual microcirculation and the serosal or mucosal
components of ileal microperfusion in the resuscitation phase,
and this finding highlights the difference between the two
methods. An investigation of the sublingual area is capable of
following the GI microcirculatory changes in a wider timeframe
only, and this is not affected by an increase in the sampling
frequency because of the inertia between the sublingual and
more distal microcirculatory regions. On the other hand, the
dynamics of the changes in the exhaled methane concentrations
were similar to those of the changes in the mesenteric circulation.
Real-time monitoring of exhaled methane level was capable
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of following the sudden changes observed at the very early
resuscitation phase.

However, the changes of methane levels increased with a
slightly lower rate following the microcirculatory changes during
the resuscitation phase than in the hemorrhage period. The
lower correlation coefficients between exhaled methane levels
and serosal or mucosal DBS values also refer to the role of
the characteristics of the changes of the mesenteric perfusion.
The different kinetics of the relationship of exhaled methane
levels and microcirculatory changes might be explained by the
rapid improvement of the microperfusion at the early phase of
resuscitation. We suggest a two-compartment model, in which
the lumen and the wall of the intestines is one of the components,
and the circulating blood is the other part. In this case, the
disproportionate increase in the blood flow and methane access
to the circulatory compartment may explain the lower than
expected exhaled methane output during the resuscitation phase.

In conclusion, changes in exhaled methane concentration
may indicate bleeding at an early stage and follow changes in
mesenteric perfusion during hemorrhage and resuscitation as
well, with a diagnostic value comparable to the monitoring of the
sublingual microcirculatory area. It might be a useful, additional
non-invasive tool in cases where hemorrhagic complications
might be expected; however, even in its current form, the
technique might contribute to acquiring additional information
on the mesenteric circulation in experimental setups.
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