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Increasing relevance 
of Gram‑positive cocci in urinary 
tract infections: a 10‑year analysis 
of their prevalence and resistance 
trends
Márió Gajdács 1*, Marianna Ábrók2, Andrea Lázár2 & Katalin Burián2,3

Urinary tract infections (UTIs) are the third most common types of infection in human medicine 
worldwide. There is increasing appreciation for the pathogenic role of Gram‑positive cocci (GPC) in 
UTIs, as they have a plethora of virulence factors, maintaining their pathogenicity and high affinity 
for the epithelial cells of the urinary tract. The study was carried out using microbiological data 
collected corresponding to the period between 2008 and 2017. Antimicrobial susceptibility testing was 
performed using the disk diffusion method and E‑tests. The age range of patients affected from the 
outpatient and inpatient groups differed significantly (43 [range 0.7–99] vs. 68 [range 0.4–99] years; 
p = 0.008). 3962 GPCs were obtained from inpatient and 4358 from outpatient samples, corresponding 
to 20.5 ± 2.8% (range 17.5–26.8%) and 20.6 ± 2.6% (range 17.8–26.0%) of all positive urine samples 
(p > 0.05); in both groups, Enterococcus spp. were the most prevalent (outpatients: 79.6%; inpatients: 
88.5%). High‑level aminoglycoside resistance in enterococci was noted in 31.0–46.6% of cases. A 
pronounced increase in the number of MRSA was seen in the second half of the study period (0.6–1.9% 
vs. 9.8–11.6%; p = 0.038). The ratio of VRE isolates was 0.16%, no VISA/VRSA isolates were detected.

Urinary tract infections (UTIs; ranging from uncomplicated cystitis to severe pyelonephritis and nephrolithiasis) 
are the third most common types of infection in human medicine worldwide (after respiratory tract infections 
and infections of the alimentary tract), and the second most commonly occurring infections in developed 
countries, with 100–180 million cases/year1–3. These infections affect outpatients and hospitalized patients to a 
significant extent (accounting for 25–50% of hospital-acquired infections overall), representing an important 
factor of morbidity, especially due to their recurring  nature1,4. UTIs more commonly affect females, patients 
with immunosuppression or underlying diseases/developmental abnormalities of the urinary system and they 
are associated with some lifestyle choices (sexual promiscuity, public baths)1,5. If left untreated, these infec-
tions may lead to complications, debilitating sequelae and a decreased quality of life (QoL)6. UTIs should also 
be considered an important economic undertaking, as the medical care, pharmacotherapy and lost working 
days corresponding to these pathologies are estimated to be around 5–7 billion US$1,2,7. The etiology of UTIs 
are thought to be predictable, due to the relatively constant spectrum of pathogens implicated, however, due to 
the advancements of medical interventions, pharmacotherapy and the increasing number of patients affected 
by immunosuppression (disease-associated or iatrogenic), other less common pathogens are now emerging as 
prominent factors of  disease1–6. The most common pathogens in UTIs are the members of the Enterobacterales 
order (Gram-negative bacteria found in the gut, namely Escherichia coli, Klebsiella spp., pathogens of the CES 
group [Citrobacter-Enterobacter-Serratia], members of the Proteae tribe [Proteus-Providencia-Morganella]), other 
causative agents include Gram-positive cocci (Enterococcus spp., Streptococcus spp., Staphylococcus saprophyticus 
and S. aureus), non-fermenting Gram-negative bacteria (Pseudomonas spp. and Acinetobacter spp.), atypical 
microorganisms (Mycoplasma, Ureaplasma species) and yeasts (Candida spp.)1–4,8–11.
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Gram-positive facultative anaerobic cocci include several phenotypically heterogenous genera from the Fir-
micutes phylum: Staphycoccus spp. are members of the Bacillales order, while Streptococcus (Group A, B, C and 
G streptococci, based on Lancefield classification) and Enterococcus spp. (Group D streptococci) are members 
of the Lactobacillales  order12. Staphylococcus spp. are ubiquitously found on the skin of humans, additionally, 
S. aureus is one of the most common pathogens of severe suppurative skin and soft tissue infections, abscesses, 
pneumonia, endocarditis and bacteremia; methicillin-resistant S. aureus (MRSA) is also one of the most com-
monly encountered nosocomial pathogens in the US and  Europe13,14. S. aureus and coagulase-negative staphylo-
cocci (CoNS) were previously considered to be uncommon etiological agents in ascending UTIs in outpatients, 
however, they may have a more pronounced role in hospitalized, immunocompromised patients. The isolation 
of S. aureus from urine may also be an indicator of a more severe condition (e.g., bacteremia or endocarditis), 
where the microorganisms reach the kidneys through hematogenous  dissemination15. The isolation frequency of 
S. aureus from UTIs is around 0.5–13% in the  literature13,16. In contrast, S. saprophyticus is a well-characterized 
pathogen in both uncomplicated cystitis and catheter-associated UTIs. The pathogenic role of S. saprophyticus 
in UTIs (sometimes referred to as “honeymoon cystitis”) was described in the 1960s and since then, more and 
more evidence was found regarding the pathogenesis of this  disease17. Most of epidemiological studies estimate 
S. saprophyticus as causative agents in 5–20% of UTIs, however, a study from Sweden found that this pathogen 
was the etiological agent in > 40% of uncomplicated UTIs in  females18. Species of the Enterococcus genus are 
abundantly found in the gut microbiota of animals and humans, being one of the few Gram-positive bacteria that 
are resistant to  bile19. Enterococci are also highly prevalent in aquatic environments and should be considered as 
an indicator of fecal contamination in urban  areas20. E. faecalis and E. faecium are the most common species in 
bacteremia, endocarditis, central nervous system infections and UTIs, however, the emergence of non-faecalis 
enterococci should be taken into  consideration21,22. Similarly to S. aureus, these pathogens are relevant in noso-
comial infections  worldwide23. Temporal changes in the occurrence of Gram-positive cocci in UTIs have been 
described, two peaks (one in early summer, the other in the winter months) were observed in multiple  studies17,18. 
The role of companion animals as reservoirs of S. aureus and Enterococcus spp. and the consideration of these 
pathogens as zoonotic has been published by several  reports24,25.

The therapy of UTIs in both inpatient and outpatient settings is becoming increasingly difficult, due to the 
emergence of drug resistance in these pathogens, leaving clinicians with few therapeutic options  available26,27. 
Gram-positive cocci are no exception to this trend: the clinical significance of methicillin-resistant S. aureus 
[MRSA] is well known, in addition, vancomycin-resistant Enterococci [VRE] are a significant and a sharply 
increasing resistance problem worldwide. One must also mention the slow, but visible emerging threat of van-
comycin-intermediate S. aureus [VISA] species, which will be daunting challenge for  therapy25,28. Several factors 
contribute to the global emergence of antimicrobial resistance (AMR), however, the overuse and misuse of anti-
microbials in human and animal healthcare, in addition to globalization (allowing for fast travel to geographically 
distant regions of the globe, leading to the spread of multidrug resistant pathogens) may be considered as some of 
the most  important29. Multiple reports have demonstrated that resistance plasmids can continuously accumulate 
new resistance determinants for affected bacteria without losing previous ones, therefore bacteria carrying these 
plasmids end up with resistance against an extensive list of available  antimicrobials30. Nevertheless, the resulting 
selection pressure will fuel the “antibiotic resistance spiral”, i.e., the more pronounced use of last-resort antibiot-
ics against drug resistant pathogens, which unavoidably leads to the emergence of resistant strains against the 
last resort agents (e.g., in the case of the increasing prevalence of MRSA, which lead to the use of vancomycin, 
corresponding to the emergence of vancomycin-intermediate S. aureus [VISA], VRSA and VRE isolates, leading 
to the use of linezolid/daptomycin)31–33. The increasing use of oral vancomycin in the therapy of Clostridioides 
difficile infections may put further pressure on the selection of these MDR  pathogens34. Nevertheless, gaining 
more and more resistance determinants also burdens the pathogenic bacteria (i.e. they might therefore lose from 
their original viability and their competitiveness, see the principle of cost–benefit), thus, they may lose “ground” 
in their fight for the respective niche against bacteria with less resistance-determinants35.

The epidemiology and antibiotic-susceptibility trends of urinary tract pathogens show pronounced varia-
tion, both temporally and regionally, therefore, the assessment of these data using analytical epidemiology is 
essential to reflect on the national situation, compared to international  data36. The knowledge of these resistance 
trends may also aid treating physicians in the optimal choice for antibiotic  therapy37. The aim of this study was to 
evaluate the resistance trends and epidemiology of Gram-positive cocci in the UTIs of inpatients and outpatients 
at the Albert Szent-Györgyi Clinical Center (Szeged, Hungary) retrospectively, during a 10-year study period.

Methods
Study location and design, data collection. The present microbiological study was carried out using 
data collected retrospectively, regarding the time period between January 1st, 2008 and December 31st 2017, at 
the Institute of Clinical Microbiology, University of Szeged. The Institute is the affiliated clinical microbiology 
laboratory of the Albert Szent-Györgyi Clinical Center, which is a 1,820-bed primary-and tertiary-care teach-
ing hospital in the Southern Great Plain of Hungary (population: ~ 402,000 people; 2017)38. Data collection was 
performed electronically in the records of the laboratory information system by the authors, corresponding to 
urine samples positive for relevant Gram-positive bacteria.

Samples with clinically significant colony counts for uropathogenic Gram-positive cocci (> 105 CFU/mL; 
however, this was subject to interpretation by the senior clinical microbiologist, and on the basis of information 
provided on the clinical request forms for microbiological analysis and international guidelines) that were posi-
tive for nitrite and leukocyte-esterase tests were included in the data analysis. Only the first isolate per patient 
was included in the study; however, isolates with different antibiotic-susceptibility patterns (i.e. if the isolate 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17658  | https://doi.org/10.1038/s41598-020-74834-y

www.nature.com/scientificreports/

showed different susceptibility to at least one tested antibiotic) from the same patient were considered as differ-
ent individual isolates.

To evaluate the demographic characteristics of these infections, limited amount of patient data was also 
collected (sex, age at sample submission, date of samples submission, inpatient/outpatient status). The study 
was deemed exempt from ethics review by the Institutional Review Board of the University of Szeged (Szeged, 
Hungary), and informed consent was not required as data anonymity was maintained.

Identification of isolates. Ten microliters of each uncentrifuged urine sample was cultured on UriSelect 
chromogenic agar (Bio-Rad, Berkeley, CA, USA) and blood agar (bioMérieux, Marcy-l’Étoile, France) plates 
with a calibrated loop, according to the manufacturer’s instructions, and incubated at 37 °C for 24–48 h, aerobi-
cally. In the period between 2008 and  2012, presumptive, biochemical reaction-based methods and VITEK 2 
Compact ID/AST (bioMérieux, Marcy-l’Étoile, France) were used for bacterial identification; from 2013 onward, 
MALDI-TOF MS (Bruker Daltonics, Germany) was introduced to the workflow of the Department of Bacteriol-
ogy. Mass spectrometry was performed by the Microflex MALDI Biotyper (Bruker Daltonics, Germany) instru-
ment, using the MALDI Biotyper RTC 3.1 software (Bruker Daltonics, Germany) and the MALDI Biotyper 
Library 3.1 for spectrum analysis. Sample preparation methodology and the technical details of MALDI-TOF 
MS measurements were described  elsewhere39.

Susceptibility testing of relevant isolates. Antimicrobial susceptibility testing for the relevant Gram-
positive species was performed using disk diffusion method (Liofilchem, Abruzzo, Italy) and E-tests (Liofilchem, 
Abruzzo, Italy) on Mueller–Hinton agar (MHA) plates, incubated at 35 ± 1 °C for 18–24 h before plate reading. 
The following antibiotic disks were used: penicillin (1 IU), ampicillin (2 μg for S. saprophyticus and 10 μg for 
Enterorococcus spp.), cefoxitin (30 μg), ceftraroline (5 μg), erythromycin (15 μg), clindamycin (2 μg), ciprofloxa-
cin (5 μg), amikacin (30 μg), gentamicin (10 μg), nitrofurantoin (100 μg), rifampicin (5 μg), quinupristin–dal-
fopristin (15 μg), fusidic acid (10 μg), linezolid (10 μg), doxycycline (30 μg), tigecycline (15 μg), trimethoprim-
sulfomethoxazole (23.75/1.25 μg) taking into account the intrinsic resistance mechanisms of the isolates and the 
clinical relevance of the listed antibiotics in the therapy of said  infections40. The interpretation of the results was 
based on EUCAST breakpoints (https ://www.eucas t.org) valid at the time of interpretation, the re-analysis of 
susceptibilities based on revised breakpoints was not performed. Inducible clindamycin resistance was detected 
using the erythromycin-clindamycin D test, these strains were also reported as resistant to clindamycin. During 
data analysis, intermediately-susceptible results were grouped with and reported as resistant.

Methicillin-resistant S. aureus (MRSA) was detected using mannitol-salt agar (MSA) using cefoxitin disks 
(< 22 mm zone diameter) and PBP2′ Latex Agglutination Test Kit (Thermo Fisher Scientific Hungary Gmbh., 
Budapest, Hungary)28. After 2013, a combined MALDI-TOF MS and PBP2′ latex agglutination protocol was 
introduced in our  laboratory41. MRSA-positive isolates were reported as resistant to all β-lactam antibiotics 
(except for 5th generation cephalosporins). Screening for high-level aminoglycoside resistance (HLAR) was done 
using gentamicin (30 μg) disks, while verification of positive results was performed using broth microdilution 
method (with a gentamicin concentration of 500 μg/ml)42.

S. aureus ATCC 29,213, S. aureus ATCC 43,300, E. faecalis ATCC 29,212, Proteus mirabilis ATCC 35,659, 
Escherichia coli ATCC 25,922 and Pseudomonas aeruginosa ATCC 27,853 were used as quality control  strains43.

Statistical analyses. Statistical analyses, including descriptive analysis (means or medians with ranges and 
percentages to characterize data) and statistical tests (χ2-test, Student’s t-test and Mann–Whitney U test) were 
performed with SPSS software version 24 (IBM SPSS Statistics for Windows 24.0, Armonk, NY, USA, IBM 
Corp.). The normality of variables was tested using Shapiro–Wilk tests. p values < 0.05 were considered statisti-
cally  significant43.

Results
Demographic characteristics of affected patients, sample types. During the study period, the 
median age of outpatients affected by UTIs caused by Gram-positive cocci was 43 years, which showed the fol-
lowing variability during the two parts of the study period: age range for outpatients was 0.7–99 years, whereas 
the median age for the first half of the study period was 35, while for the second half was 54 years (p = 0.038) (see 
Fig. 1. for detailed age distribution). In contrast, for the inpatients, the median age overall was 68 years; the age 
rage range was 0.4–99 years, with a median age for the first half of the study period was 64, while for the second 
half was 70 years (p < 0.05). The female-to-male ratio of the outpatient group was 2.03 (that is 67.1% female), and 
1.15 (that is 53.6% female) in the inpatient group, respectively. The observed difference in age distribution of the 
two patient groups (inpatients and outpatients) was statistically significant (43 vs. 68 years; p = 0.008). Patients 
under 10 (outpatients: 18.7%, inpatients: 19.1%) and over 60 years of age (outpatients: 35.6%, inpatients: 61.4%) 
were predominantly affected. The sample distribution among relevant urine samples was the following: among 
samples from outpatient clinics, the overwhelming majority was midstream urine (98.8%), with a minority of 
first-stream urine (1.2%); on the other hand, the distribution from inpatient departments was more variable: 
midstream urine (29.2%), first-stream urine (6.3%), catheter-specimen urine (63.6%) and suprapubic bladder 
taps (0.9%).

Distribution of Gram‑positive cocci in urine samples. Between 2008 and 2017, the Institute of Clin-
ical Microbiology received 21,150 urine samples from outpatient clinics and 19,325 samples from inpatient 
departments, from which a significant urinary pathogen was detected. 3962 Gram-positive coccus isolates were 
obtained from inpatients (396.2 ± 54.2/year) and 4358 from outpatients (435.8 ± 64.6/year). This corresponds to 
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20.5 ± 2.6% (range 17.8–26.0%) for outpatients, while 20.6 ± 2.8% (range 17.5–26.8%) of all positive urine sam-
ples for inpatients; (p > 0.05). In both groups, Enterococcus spp. (predominantly E. faecalis; outpatients: 79.6%; 
inpatients: 88.5%) were the most prevalent, while Staphylococcus spp. (outpatients: 9.2%, mainly S. saprophyticus; 
inpatients: 6.7%, mainly S. aureus) and Streptococcus spp. (predominantly S. agalactiae; outpatients: 11.2%; inpa-
tients: 4.8%) were in a minority. The epidemiology and detailed species distribution of Gram-positive cocci in 
both patient groups are presented in Fig. 2 (outpatients) and Fig. 3 (inpatients). There was an obvious seasonal 
trend in the isolation of Gram-positive cocci in the outpatient group (24.7% was isolated in the June–July peri-
ods, 22.9% in the December-January periods), while no such tendency was noted in the inpatient group. In the 
inpatient group, 14 different species of Gram-positive urinary pathogens were isolated (median 7; range 5–9), 
while in the outpatient group, the species distribution was less diverse, with 12 different species (median 6; range 
5–8) detected.

Antibiotic resistance trends among Gram‑positive cocci isolated from UTIs. Antibiotic resist-
ance data of the isolated enterococci, staphylococci and streptococci in the 10-year study period is presented in 
Tables 1, 2 and 3, respectively. To identify temporal developments in resistance trends, the 10-year study period 
was divided into two 5-year periods (2008–2012 and 2013–2017). The level of resistance in Enterococcus species 
was significantly higher in isolates originating from inpatients in both periods regarding ciprofloxacin, but not 
other antibiotics. Apart from intrinsic resistance, resistance rates against ciprofloxacin and HLAR did not show 
relevant differences among E. faecalis and non-faecalis enterococci (p > 0.05). Likewise, there was no significant 
increase noted in the ratio of resistance strains in either patient groups between the two 5-year periods. HLAR 
was detected in 31.0–46.6% of isolates overall and there was a numerical, but not significant increase in the sec-
ond half of the study period (p = 0.067). Very few VRE isolates were recovered (0.16%; n = 11 from inpatients and 
n = 4 from outpatients, exclusively from E. faecium), while no linezolid-resistant isolates were detected (Table 1.).

The resistance levels in inpatient Staphylococcus samples were significantly higher for amikacin, gentamicin, 
azithromycin (in the 2008–2012 period), ciprofloxacin, doxycycline, nitrofurantoin (in the 2013–2017 period) 
and trimethoprim-sulfamethoxazole (SMX/TMP). There was no significant increase in the resistance of any 
tested antibiotics between 2008–2012 and 2013–2017, however, a numerical tendency was found for azithro-
mycin (p = 0.071). The difference in the number of MRSA isolates among inpatient and outpatients was not 
significant, however, a pronounced increase in the number of MRSA was seen in the second half of the study 
period (0.6–1.9% vs. 9.8–11.6%; p = 0.038). No VISA/VRSA strains were found, in addition, none of the Staphy-
lococcus strains were resistant to the supplementary antibiotics (quinpristin/dalfopristin, tigecycline, linezolid, 
fusidic acid) (Table 2.). In the case of streptococci, significant differences were observed in the resistance levels 
of ciprofloxacin and SMX/TMP, but not in the case of other antibiotics. Additionally, no significant temporal 
changes were noted between the two study periods. No vancomycin or linezolid-resistant strains were detected.

Figure 1.  Age distribution of the affected patients in the outpatient and inpatient group.
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Figure 2.  Frequency and species distribution of Gram-positive bacterial isolates in outpatient samples 
(2008–2017).

Figure 3.  Frequency and species distribution of Gram-positive bacterial isolates in inpatient samples (2008–
2017).
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Table 1.  Percentage of resistant Enterococcus strains to indicator antibiotics from inpatient and outpatient 
departments (2008–2017). a Comparison of resistance levels among isolates originating from outpatients and 
inpatients. b Calculated for E. faecalis isolates only. c High-level aminoglycoside resistance. d Represents the ratio 
of VRE strains. e Quinpristin/dalfopristin. n.s. not significant (p > 0.05).

2008–2012 2013–2017

Outpatients (%) Inpatients (%) Statisticsa Outpatients (%) Inpatients Statisticsa

Ampicillinb 0.1 0.3 n.s 0.2 0.4% n.s

Imipenemb 0.2 0.2 n.s 0.2 0.2% n.s

Ciprofloxacin 31.6 45.2 p = 0.026 16.1% 33.0 p = 0.019

HLARc 31.0 39.8 n.s 45.8% 46.6 n.s

Vancomycind 0.0 0.1 n.s 0.1% 0.3 n.s

QP/DPe 0.0 0.0 n.s 0.0% 0.0 n.s

Tigecycline 0.0 0.0 n.s 0.0% 0.0 n.s

Linezolid 0.0 0.0 n.s 0.0% 0.0 n.s

Table 2.  Percentage of resistant Staphylococcus strains to indicator antibiotics from inpatient and outpatient 
departments (2008–2017). a Comparison of resistance levels among isolates originating from outpatients and 
inpatients. b Calculated for S. saprophyticus isolates only. c Represent the ratio of MRSA isolates in S. aureus. 
d Sulfamethoxazole-trimethoprim. e Represents the ratio of VISA/VRSA strains. f Quinpristin/dalfopristin. n.s.: 
not significant (p > 0.05).

2008–2012 2013–2017

Outpatients (%) Inpatients (%) Statisticsa Outpatients (%) Inpatients (%) Statisticsa

Penicillin 94.8 96.6 n.s 95.2 96.9 n.s

Ampicillinb 10.8 12.2 n.s 12.4 13.7 n.s

Cefoxitinc 0.6 1.9 n.s 9.8 11.6 n.s

Amikacin 1.5 23.2 p < 0.001 1.1 14.2 p < 0.001

Gentamicin 4.6 23.2 p = 0.028 2.1 24.8 p < 0.001

Azithromycin 19.5 25.8 p = 0.049 32.3 33.2 n.s

Clindamycin 17.9 21.9 n.s 22.1 26.3 n.s

Ciprofloxacin 9.7 35.7 p < 0.001 12.1 25.6 p = 0.042

Doxycycline 13.3 29.8 p = 0.04 4.2 30.8 p < 0.001

Nitrofurantoin 2.6 3.3 n.s 0.5 3.8 p = 0.046

SMX/TMPd 5.6 23.2 p < 0.001 1.1 27.1 p < 0.001

Rifampicin 1.0 2.3 n.s 3.3 4.8 n.s

Vancomycine 0.0 0.0 n.s 0.0 0.0 n.s

QP/DPf 0.0 0.0 n.s 0.0 0.0 n.s

Tigecycline 0.0 0.0 n.s 0.0 0.0 n.s

Linezolid 0.0 0.0 n.s 0.0 0.0 n.s

Fusidic acid 0.0 0.0 n.s 0.0 0.0 n.s

Table 3.  Percentage of resistant Streptococcus strains to indicator antibiotics from inpatient and outpatient 
departments (2008–2017). a Comparison of resistance levels among isolates originating from outpatients and 
inpatients. b Sulfamethoxazole-trimethoprim. n.s. not significant (p > 0.05).

2008–2012 2013–2017

Outpatients (%) Inpatients (%) Statisticsa Outpatients (%) Inpatients (%) Statisticsa

Ampicillin 0.0 0.0 n.s 0.0 0.0 n.s

Azithromycin 16.0 17.8 n.s 19.4 21.3 n.s

Clindamycin 14.2 18.5 n.s 19.1 20.4 n.s

Ciprofloxacin 7.1 25.4 p < 0.001 8.3 29.9 p = 0.038

SMX/TMPb 3.3 19.4 p = 0.031 2.6 20.8 p < 0.001

Rifampicin 0.8 1.3 n.s 0.6 0.9 n.s

Vancomycin 0.0 0.0 n.s 0.0 0.0 n.s

Linezolid 0.0 0.0 n.s 0.0 0.0 n.s
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Discussion
The study presents the epidemiological trends and resistance levels of Gram-positive cocci in urinary tract infec-
tions (UTIs) in the southern part of Hungary, over a long surveillance period (10 years). Previous local studies 
have highlighted the epidemiological situation of other pathogens locally: E. coli (56.7% in outpatients, 42.0% 
in inpatients) and Klebsiella  spp43. (8.9% vs. 13.0%) were detected in highest numbers, while members of the 
CES  group44 (2.6% vs. 3.0%), Proteae45 (5.0% vs. 7.2%), non-fermenting Gram-negatives46 (3.4% vs. 5.5%) and 
Candida  spp47. (0.4% vs. 6.0%) were present in lesser numbers. In contrast, these pathogens represented ~ 20% of 
the etiological agents in UTIs, both for inpatients and outpatients, therefore, their epidemiological significance 
should not be disregarded. Among the group of Gram-positive cocci, E. faecalis was the predominant species 
(~ 80% of isolates), which is not surprising, in light of global epidemiological reports on the causative agents for 
 UTIs36. To the best of our knowledge, this is the longest-spanning study reporting on the prevalence and suscep-
tibility of this group of uropathogens in Hungary. In contrast to previous studies, dating back some 20–30 years 
(where the reported prevalence of Enterococcus spp., S. aureus and S. saprophyticus was 2–20%, 0.2–6% and 
0.5–8%, respectively), based on current literature results, their prevalence is around 8–35%, 0.5–13% and 5–20%, 
 respectively48–55. This increase is prevalence is especially notable in patients affected by recurrent UTIs (recur-
rence 3 or more times in 6 months)44. The increased prevalence of these pathogens may be attributed to the 
increase in patients with lifestyle diseases (kidney diseases, diabetes), immunosuppression, patients undergoing 
surgical  interventions56. Additionally, some reports suggest that Enterococcus spp. may be considered an indicator 
of more severe pathologies (e.g., diabetes, abnormality of the genitourinary tract)18–22,49,56. An overview of the 
literature published in the last 20 or so years, regarding the prevalence of UTIs caused by Gram-positive cocci 
outside Hungary is presented in Table 4. In contrast to the present report, most of these studies found that the 
prevalence of Gram-positive cocci was higher in inpatients (hospital-acquired infections). Of note, the seasonal 
occurrence/accumulation of these bacteria (particularly S. saprophyticus) was also verified by our results in the 
Southern Great Plain of Hungary.

Although the susceptibility-reporting for some of the antibiotics (e.g., fusidic acid, rifampicin, erythromycin, 
clindamycin, doxycycline and tigecycline) might seem frivolous in the context of the therapy of UTIs (as these 
drugs are not used in the therapy of these infections), the reporting of these results for epidemiological purposes 
is of interest, especially because not many studies are available regarding GPCs as uropathogens from  Europe66. 
The prevalence of MRSA/VRSA and VRE isolates from urinary samples was advantageous in our study, and 
the levels of these isolates were similarly low in other literature reports as well, especially if we compare resist-
ance levels of urinary isolates with invasive isolates (vancomycin-resistant E. faecalis: 0.0% [2008], 0.4% [2017]; 
vancomycin-resistant E. faecium: 2.8% [2008], 28.3% [2017]; MRSA: 22.5% [2008], 23.6% [2017], data from the 
European Antimicrobial Resistance Surveillance Network [EARS-Net])48–56,67,68. On the other hand, the resistance 

Table 4.  Literature summary on the prevalence of Gram-positive cocci in urinary tract infections outside 
Hungary (1997–2019). CA-UTI community-acquired urinary tract infection, HA-UTI hospital-acquired/
catheter-associated urinary tract infection.

First author Study year Country
Prevalence of Gram-positive cocci 
(%), most common isolate Comments

Barros et al.56 1997–2005 Brazil 6.2%; E. faecalis

Kothari et al.57 2005 India 9.6%; S. saprophyticus CA-UTIs only

Toner et al.58 2005–2014 United Kingdom 14.7%; E. faecalis 9.8% of isolates were resistant to 
vancomycin

Behzadi et al.11 2007 Iran
January-March 2007: 9.1%;  
Enterococcus spp.
October-December 2007: 10.6%; 
Enterococcus spp.

Parameswarappa et al.59 2007–2009 India 12.1%; Enterococcus spp.

Sorlózano-Puerto et al.60 2011–2014 Spain 22.4%; E. faecalis Children only

Zarb et al.49 2010 European Union 17.2%; E. faecalis HA-UTIs only

Lewis et al.50 2013 South Africa 10.8%; E. faecalis CA-UTIs only

Baral et al.51 2013 Nepal 21.7%; S. aurues

Goel et al.61 2013–2014 India 0.5%; Enterococcus spp. CA-UTIs only

Prashamsa et al.52 2015 India 12.5; E. faecalis

Dougnon et al.54 2016 West Africa 21.0%; E. faecalis

Bardoroi et al.55 2017 India 26.7%; S. aureus HA-UTIs only

Zaha et al.62 2017–2018 Romania 7.3%; Enterococcus spp.
4.9%; Staphylococcus spp. All patients were affected by diabetes

Petca et al.63 2018 Romania 18.7%; Enterococcus spp.

Urmi et al.64 2018 Bangladesh 8.2%; Gram-positive cocci

Shrestha et al.4 2018 Nepal 21.3%; E. faecalis

Petca et al.65 2018–2019 Romania 13.3%; Enterococcus spp.
2.1%; Staphylococcus spp. Three different centers
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levels to auxillary antimicrobials (aminoglycosides, fluoroquinolones) was shown to be high, and presenting 
in an increasing tendency (HLAR in enterococci: 53.3% [2008], 62.0% [2017], data from EARS-Net)48–56,67,68. 
S. saprophyticus is a common agent in UTIs, however, regarding its resistance patterns, it has proven so far to 
be mostly sensitive to the relevant antibiotics. Among the tested antibiotics, the highest levels of resistance 
were detected for ciprofloxacin and SMX/TMP, which could a consequence of their prevalent use, due to their 
broad-spectrum activity against both Gram-positive and Gram-negative bacteria. Out of the agents effective 
against Gram-positive bacteria, azithromycin and clindamycin had the highest resistance levels. Enterococci 
are a therapeutic challenge in general, because of their intrinsic resistance mechanisms against many antibiotics 
(aminoglycosides, cephalosporins), and due to their genetic plasticity, they can easily acquire additional resist-
ance determinants against other antimicrobial drugs. This is especially concerning, as these bacteria normally 
live in the gastrointestinal tract, where they can pick up resistance plasmids from other members of the com-
mensal  flora69–72. Vancomycin resistance in Enterococcus species is therefore a severe therapeutic  issue19–23,25. 
High-level aminoglycoside-resistance (HLAR) in Enterococcus spp. was detected in > 40% in the second part of 
the study period. This resistance is usually mediated by aminoglycoside-modifying enzymes (e.g., acetyltrans-
ferases, phospho-transferases and nucleotidyl-transferases). The detection of HLAR is relevant in antimicrobial 
therapy, for the combined use of a cell wall-acting agent (ampicillin, imipenem) and the aminoglycoside for 
their pharmacological  synergy71,72.

Gram-positive cocci have a plethora of virulence determinants, maintaining their high affinity for the epithe-
lial cells of the urinary tract, allowing for their survival. These virulence factors include fibrillar proteins (Ssp) 
mediating cell–cell interactions, fibronectin-binding proteins, elastin-binding protein, adhesins, hemagglutinin, 
elastase and lipase. In addition, most of S. saprophyticus and > 90% of S. aureus strains produce urease, breaking 
down carbamide (urea) in the  urine11–23. Staphylococci may colonize the rectum, while Enterococcus spp. are 
present in fecal matter, therefore their anatomical proximity to the urinary tract may additionally enhance their 
UTI-causing  capabilities20,28. Biofilm-production in these species is an another important factor for the emer-
gence and the persistence of UTIs, with some reports suggesting that some 80% of uropathogenic Gram-positive 
cocci are biofilm-producers48. The presence of biofilm in urethral stents and catheters may lead to obstruction; 
furthermore, microorganisms embedded in biofilm may survive 1000-times higher concentrations of antibiotics, 
compared to non-embedded (i.e. planktonic)  cells48,73,74. The diversification and time-dependent use of these 
virulence determinants allows for the infectivity and survival of these bacteria. At the onset of infection (i.e. low 
population density), the expression levels of adhesins is more significant, while if high population densities are 
achieved, genes corresponding for toxin secretion are  activated74.

Several limitations of this present study need to be acknowledged. In addition to the retrospective study 
design, the authors were unable to access the charts of the individual patients affected, therefore the correlation 
between the existence of clinically relevant risk factors (apart from age, inpatient/outpatient status, and cath-
eterization) could not be assessed. The clear differentiation between Gram-positive asymptomatic bacteriuria 
and clinically significant (symptomatic) urinary tract infection in the elderly is very difficult. Furthermore, the 
molecular characterization and genotyping of the isolates species (which could have provided us with important 
data, especially in case of MRSA or S. saprophyticus isolates) was not performed, due to financial constraints. 
Also, the selection bias of publication should also be noted, as most studies describing the prevalence of infectious 
diseases are tertiary-care centers or specialized centers, corresponds to patients with more severe conditions or 
underlying  illnesses75. Nevertheless, the information presented in this report should be useful in both national 
and international comparisons for epidemiological purposes; additionally, the resistance trends presented here 
may aid clinicians in the selection of appropriate antimicrobial  therapy76.

Conclusions
Although urinary tract infections are principally caused by Gram-negative bacteria, Gram-positives have emerged 
as important causative agents of UTIs, particularly among elderly patients, often associated with co-morbidities, 
pregnant women and catheterized patients, both in low- and high-income countries. In our study, correspond-
ing to the southern region of Hungary, their prevalence was found to be around 20%, with Enterococcus spp. in 
highest numbers. While there was no relevant difference is their prevalence among inpatients and outpatients, 
the emergence of drug resistance in these pathogens to commonly used antibiotics is a worrisome finding, com-
promising therapeutic options in the clinical practice and leading to the use of agents with less advantageous 
side effect profiles, further contributing to the selection pressure on these microorganisms. In our local settings, 
the resistance rates for fluoroquinolones are particularly concerning (these agents are not recommended to be 
used empirically), in addition, the same goes for the use of most aminoglycosides for hospitalized patients. In 
contrast, the use of nitrofurantoin for staphylococci may still be regarded as safe in our settings, and the tested 
isolates are almost uniformly susceptible to the available last-resort antibiotics.
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