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Introduction
Changes of connectivity in large-scale networks 
were previously described in relapsing-remitting 
multiple sclerosis (RRMS) in resting state and dur-
ing tasks (multiple sclerosis (MS); see, for exam-
ple, Tahedl et al.1 for a review). Resting state and 
task-related networks share a common architecture 
that is utilised during task performance;2 therefore, 
altered resting-state connectivity might give rise to 
dysfunctional network activity in response to a 
task. The hallmark pathological alterations of the 

white matter in MS, namely macroscopic lesions 
and diffuse microstructural damage, cause disrup-
tion in neuronal networks that may underlie the 
aforementioned changes.3 These changes might 
also affect the communication between networks, 
causing global functional reorganisation.4 The 
breakdown in network structure and disrupted 
inter-network communication might explain the 
usual pattern of neuropsychological dysfunction in 
MS patients,5 which involves cognitive functions 
evoked by the coordinated interaction of many 
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different brain regions, such as executive functions, 
memory and attention.6

Attention regulates sensory processes in both a tonic 
and phasic manner,7 with the former usually involv-
ing top-down mechanisms and the latter guided by 
stimulus-driven changes in attention. Both systems 
are possibly affected in MS.8 So far, studies mostly 
focused on characterising brain networks underlying 
attention during rest in MS, showing that these net-
works exhibit altered intrinsic connectivity in patients 
that is associated with clinical and cognitive disabil-
ity.9 However, task-based investigation of attention-
related brain activity in MS patients has mostly been 
confined to activation studies.10 Although these stud-
ies established a pattern of altered activity in atten-
tion-related brain regions, they did not investigate 
how these regions interact during a task.

Our aim was to characterise connectivity differences 
within and between attention-related networks during 
a visual attention task between healthy participants 
and RRMS patients.

Materials and methods

Task design
We employed a modified random dot kinematogram 
paradigm, in which participants watch a circular aper-
ture containing coherently moving dots (kinemato-
grams).11 In this case, the dots coherently move in a 
random direction and are of a single colour. At the start 

of each trial, a text message appeared for 0.5 seconds, 
warning participants to pay attention to a specific 
attribute of consequent stimuli (shade of colour or 
direction of motion). Afterwards, two consecutive ran-
dom dot kinematograms were displayed for 0.8 sec-
onds each, with a 1.2-second interstimulus interval. 
The second stimulus was followed by a target stimulus 
displayed for 0.8 seconds after a rest period of 4 sec-
onds. Participants had 8.1 seconds before the next trial 
to decide whether the relevant attribute of the target 
was the same as it had been in one of the previous two 
kinematograms. Each trial lasted for 16.2 seconds 
(including the time given to respond), and there were 
20 trials for each condition (40 altogether). For a 
depiction of the task, see Figure 1.

Participants
A total of 23 patients with RRMS and 29 healthy con-
trols participated in this study. All patients are treated 
at the Multiple Sclerosis Outpatient Clinic, at the 
Department of Neurology, University of Szeged and 
were diagnosed according to the revised McDonald 
criteria12 by neurologists with >10 years of experi-
ence. Patients were in stable clinical condition, mean-
ing they did not relapse 6 months prior to the scans 
and afterwards. All patients received disease-modify-
ing treatment (3 interferon β-1α, 5 glatiramer acetate, 
1 natalizumab, 2 alemtuzumab, 3 dimethyl fumarate, 
5 teriflunomide, 4 fingolimod). Healthy participants 
did not suffer from any neuropsychiatric illnesses, 
and patients did not have additional neuropsychiatric 
conditions apart from RRMS. All participants had 

Figure 1.  Task protocol. The figure depicts one trial of the motion and colour conditions used in the random dot 
kinematogram task. Each trial was followed by an 8.1-second response period, where participants had to decide whether 
the main attribute of the target stimulus (direction of motion or shade of colour) appeared among the two previous 
stimuli.
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normal or corrected-to-normal vision and reported no 
difficulty performing the task. Demographic and clin-
ical data are included in Table 1. According to the 
Helsinki Declaration, we acquired written consent 
from all participants, and the local ethics committee 
approved the study (reference no. 35/2017).

Cognitive testing
We assessed cognitive function in the MS group using 
the electronic version of the validated Hungarian 
Brief International Cognitive Assessment for MS 
(BICAMS) test battery.13 This battery has been devel-
oped to quickly assess cognitive functions often 
affected in MS and includes three tests: the Symbol 
Digit Modalities Test (SDMT) that measures the 
speed of information processing; the Brief Visuospatial 
Memory Test–Revised (BVMT-R) which measures 
visuospatial short-term memory; and the immediate 
recall part of the California Verbal Learning Test 2 
which measures verbal short-term memory.14

Image acquisition
Three-dimensional (3D) T1-weighted fast spoiled 
gradient echo images (FSPGR-IR, TR: 5.3 ms TE: 2.1 
TI: 450 ms, slice thickness: 1 mm, matrix: 512 × 512, 
FOV: 256 mm × 256 mm, slice no. 312, whole-brain 
coverage, flip angle: 12°) and T2*-weighted BOLD 
EPI images (TR: 2500 ms, TE: 27 ms, 44 mm × 3 mm 
axial slices providing whole-brain coverage, FOV: 
288 mm × 288 mm; matrix: 96 × 96, flip-angle: 81°, 
interleaved acquisition scheme) were acquired on a 
3T GE MR750W Discovery scanner (GE, Milwaukee, 
USA). The functional magnetic resonance imaging 
(fMRI) protocol comprised the acquisition of 270 vol-
umes, which took approximately 12 minutes. Stimuli 
were displayed on a screen in the scanner room via a 
video projector. Participants saw the screen through a 
mirror applied to the head coil frame. We did not 

match stimuli onset times to volume acquisition times 
in order to allow for sub-second temporal resolution 
in the time series analysis.

Preprocessing
Preprocessing steps were performed via FEAT 6.0 as 
contained in the FMRIB Software Library (FSL, 
v5.0.10).15 The first five volumes were discarded to 
avoid saturation effects. Motion correction was 
applied using a rigid body (6 DOF) registration to the 
middle volume with MCFLIRT. We additionally 
quantified subject motion by calculating the frame-
wise displacement (FD) for each subject.16 There 
were no differences in motion parameters between 
groups (mean FD between groups: independent-sam-
ples T-test, p > 0.05). Following slice-timing correc-
tion and grand-mean intensity scaling, non-brain 
tissue was removed from the images. Resulting vol-
umes were normalised to the individual T1-weighted 
images using boundary-based registration, then fur-
ther transformed to standard 2 mm MNI-space using 
nonlinear registration as implemented in FSL FNIRT. 
For the multivariate analysis, volumes were resam-
pled into 4 mm standard space. Prior to registration, 
lesion filling was performed on the T1-weighted 
images using the lesion_filling tool included in FSL 
to improve registration accuracy.17

Statistical analysis
Group-level independent component analysis.  We 
performed a multivariate analysis of the activation 
maps using the tensorial extension of independent 
component analysis (TICA) as implemented in FSL 
MELODIC.18 TICA is an exploratory analysis 
method that does not rely on pre-defined time-series 
models. During a complex task, cognitive perfor-
mance is supported by large-scale distributed net-
works, and studies show that even background 

Table 1.  Demographic and clinical data of the participants.

Group MS HC

N 23 29

Age in years 39.01 (±8.83) 40.76 (±13.03)

Sex (female/male)  

Motion during the scan (FD) 0.0024 ± 0.0006 0.0023 ± 0.0007

EDSS 1.31 (±1.49, 0–5) –

Disease duration 9.35 (±6.69) –

Number of T2-hyperintense lesions (median and range) 17 (4–73) –
Lesion volume (cm3, median and range) 25.03 (0.58–47.04) –

FD: framewise displacement; EDSS: Expanded Disability Status Scale; MS: multiple sclerosis; HC: healthy control.
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activity is often modulated by task demands.19 There-
fore, the underlying structure of the data in this case 
is less predictable beforehand, which renders tradi-
tional hypothesis-based methods (like the general 
linear model (GLM) approach) less effective. TICA 
performs a simultaneous tri-linear decomposition of 
all participants’ data into independent component 
matrices, which describe spatial, temporal and sub-
ject-dependent dimensions. This tri-linear combina-
tion is optimised via a least-squares approach so that 
different modes are maximally independent or non-
Gaussian. MELODIC thresholds spatial maps via an 
alternative hypothesis test based on fitting a Gauss-
ian/Gamma mixture model to the distribution of 
voxel intensities within spatial maps and a posterior 
probability threshold of p > 0.5. Data dimensionality 
was estimated automatically using the Laplace 
approximation to the Bayesian evidence of the model 
order, which divided the data into 29 independent 
components (ICs). We classified ICs as signal or 
noise based on resemblance to known functional net-
works in spatial and temporal properties (this was 
done by visual inspection following recent guide-
lines),20 adherence to the task timeline (quantified by 
the a posteriori GLM-based analysis of network time 
series) and consistence across subjects (meaning the 
absence of outliers in the overall pool of individual 
subject modes). To determine the relationship 
between network expression and clinical parameters, 
Spearman’s rank correlation was calculated between 
IC subject modes and disease duration, Expanded 
Disability Status Scale (EDSS) scores, lesion number 
and volume and total number of relapses in the MS 
group. We assessed the potential association between 
network expression and cognitive functions by calcu-
lating the partial Spearman’s rank correlation (con-
trolling for age, sex, years spent in education and 
disease duration) between subject modes and the 
scores of all three BICAMS subtests (SDMT, BVMT-
R, California Verbal Learning Test–second edition 
(CVLT-II)) in the MS group.

To assess voxel wise activation differences between 
the two groups, an additional univariate analysis was 
carried out in IC2 and IC6, with the same first-level 
design as in the post hoc regression analysis, using 
FSL FEAT. The statistical analysis of voxel wise time 
series was performed using FILM with local autocor-
relation correction.21 We carried out the higher-level 
analysis of group differences with FLAME, which is 
contained in FEAT 6.0.22 Z (Gaussianised T) statistic 
images were pre-masked using the probability masks 
of IC2 and IC6 estimated by TICA, then thresholded 
using clusters determined by Z > 3.1 and a corrected 
cluster significance threshold of p = 0.05.23

Within-network functional connectivity.  To assess 
functional connectivity within networks extracted by 
the group ICA, component probability maps were 
thresholded at p = 0.9 and binarised, then masked 
using the 100-parcel version of the cortical atlas by 
Schaefer et al.24 Time series were extracted from the 
masked probability maps by taking the mean of all 
voxels underlying a given parcel. We chose this atlas 
because parcels are matched to the 7-network parcel-
lation by Yeo et al.25

Between-network functional connectivity.  In order to 
determine individual time series underlying each IC, 
we used a dual regression approach to recover sub-
ject-specific component maps.26 These were thresh-
olded at 99% (to minimise the connectivity bias 
introduced by cross-subject differences in the spatial 
configuration of and overlap between networks),27 
binarised and used to extract subject-specific network 
time series, defined as the mean time series of all 
underlying voxels.

Time series analysis.  We analysed time series data 
using the FSLNets toolbox (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FSLNets). Within-network functional 
connectivity was calculated separately for each IC in 
each participant as the partial Pearson’s correlation 
between regional time series. This metric describes 
direct connectivity between two time series over and 
above connectivity to other time series; therefore, it 
provides information about residual stimulus-related 
oscillations over and above the main task effect.28 
Between-network functional connectivity was cal-
culated as the pairwise Pearson’s correlation of all 
selected ICs. The estimated correlation matrices 
were fed into a group-level GLM and evaluated by a 
non-parametric permutation test to assess group dif-
ferences of within- and between-network connectiv-
ity. Results were corrected for multiple comparisons 
by controlling the family-wise error rate. To assess 
whether and how within/between-component con-
nectivity and BICAMS subscores are related in the 
MS group, we calculated the partial Pearson’s cor-
relation, controlling for age, sex, education and dis-
ease duration.

Results

Group ICA
We selected ICs 1, 2, 4 and 6 as valid components. 
IC1 comprised the bilateral extrastriate cortices (V2-
4), and regions considered part of the top-down atten-
tion system: frontal eye fields (FEF), medial frontal 
regions, intraparietal sulci and anterior caudate nuclei. 
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IC2 contained the bilateral lower-level visual corti-
ces, bilateral intraparietal sulci and bilateral FEFs. 
IC4 consisted of areas that resemble the default-mode 
network (ventromedial prefrontal cortex, precuneus, 
bilateral angular gyri and superior temporal gyri). IC6 
comprised the anterior cingulate cortex, the ventral 
frontal cortex and superior parietal lobule on the right 
and the bilateral insulae and striate cortices, repre-
senting a conjunct activation of the ventral attention 
system, salience network and motor cortex. The spa-
tial maps of ICs are depicted in Figure 2.

A post hoc regression analysis was carried out on the 
estimated component time courses, using an event-
related design that coded the onset of the cue, the col-
our and motion conditions, and contained the target as 
nuisance regressor to exclude effects of task perfor-
mance. IC1 and IC2 showed greater activation in the 
motion condition (p < 0.001 and p < 0.049). IC4, the 
default-mode network anticorrelated with the task 
design as expected.

Subject modes of IC2 and IC6 showed significant dif-
ferences between healthy controls and patients, with 
lower scores in the MS group (p < 0.032 and 
p < 0.023, respectively).

In IC2, a significant cluster showing greater activa-
tion during the motion condition in the healthy group 
was detected in the right premotor cortex (p < 0.044).

Correlation with clinical parameters and 
cognitive function
We found no correlation between clinical parameters 
or cognitive performance and the expression of IC2 
and IC6. However, higher expression of IC1 and IC4 
came with significantly lower SDMT scores, con-
trolled for age, sex, education years and disease dura-
tion (R = −0.50, p < 0.029 and R = −0.49, p < 0.032, 
respectively). BVMT-R and CVLT-II scores did not 
show any significant association to subject modes.

Within-network functional connectivity
Figure 3 shows the mean pattern of partial correla-
tion in IC2 nodes. Partial correlation was lower 
between the right anterior intraparietal sulcus and 
the right frontal eye field, as well as between the 
bilateral frontal eye fields in the MS group in IC2 
(p < 0.012 and p < 0.003, corrected for multiple 
comparisons). A stronger connection between the right 
intraparietal sulcus and right frontal eye field came 
with higher SDMT and BVMT-R scores, controlled 

Figure 2.  Results of the tensor-independent component 
analysis. (a) Spatial maps of IC1, 2, 4 and 6. Probability 
maps of each IC were thresholded at p = 0.9, registered 
to 1 mm spatial resolution and overlaid on a standard 
MNI152 template. The colour bar shows Z-values. 
Deactivations (depicted in blue-light blue) represent 
networks anticorrelated with the current IC. For details, 
see the corresponding section. (b) Average timeline of 
network activations during a single trial. To establish a 
timeline of network dynamics after the stimuli appear, 
we created a post-stimulus plot from each network’s 
time courses by pooling data points that were sampled 
from each trial in a window that comprised 20 seconds 
starting from the appearance of the first stimulus. As 
our TR was not matched to stimulus timings, we were 
able to estimate a millisecond resolution plot of network 
activations in the post-stimulus time window. Boxplots 
show subject scores of each IC in the two groups as 
estimated by the TICA analysis.
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for age, sex, education and disease duration in the 
MS group (R = 0.53, p < 0.02 and R = 0.46, 
p < 0.049). No group differences were observed in 
IC6 connectivity.

Between-network functional connectivity
IC1 and IC2 were positively correlated on average in 
both groups (healthy control (HC): R1-2 = 0.68, MS: 
R1-2 = 0.67), and both of them were uncorrelated with 
IC6 (HC: R1-6 = 0.13 and R2-6 = 0.01, MS: R1-6 = 0.03 
and R2-6 = −0.18). IC4, the default mode network 
showed negative correlation on average to all other 
ICs in both groups (HC: R1-4 = −0.37, R2-4 = −0.24  
and R6-4 = −0.5, MS: R1-4 = −0.3, R2-4 = −0.08 and  
R6-4 = −0.54). Differences between network couplings 
were found in the case of IC2-IC4, which showed 
stronger correlation (a lesser extent of anticorrelation) 
in the MS group (p < 0.043).

Discussion
In this study, we showed that the expression of certain 
task-specific networks is altered in RRMS patients 
while performing a visual attention task. One of these 
components (IC2) depicted visual information encod-
ing together with activation of fronto-parietal regions. 
The spatial features of this network resemble the dor-
sal attention and visual networks. The temporal reso-
lution of our experiment did not allow for separating 
the tonic attentional control and the activation of the 
visual system because of the duration of the cue stim-
ulus and the slowness of the hemodynamic response. 
A second component (IC6) was also altered, in which 
the salience network, ventral attentional network and 
motor activity were integrated.

The voxel wise analysis of task-related activation in 
IC2 revealed decreased activation in the right frontal 
eye field, which is consistent with a meta-analysis of 

Figure 3.  Regional connectivity and activation differences in IC2. (a) Nodes of IC2 were overlaid on the smoothed 
ICBM52 template. The figure shows edges that differ significantly between the healthy and MS groups. The correlation 
matrix depicts the average Z-transformed partial correlation between nodes in the healthy group, containing edge weights 
that were consistently strong according to a t-statistic (t > 6). Node labels are taken from the Schaefer atlas. (b) Results 
of the univariate analysis, depicting the right frontal eye field with significantly smaller activation during the motion 
condition in multiple sclerosis patients within IC2. The binarised component map used for pre-threshold masking is 
shown in green. The thresholded Z-statistic was upsampled to 1 mm resolution and overlaid on the MNI152 template 
(cluster maximum MNI coordinates: x = 26, y = −2, z = 48). The colour bar depicts Z-values.
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attention-related activation differences between 
healthy controls and MS patients showing decreased 
activation in similar locations.10 Decreased activa-
tion in this location might have contributed to the 
altered expression of IC2 in MS patients.

IC2 also showed decreased within-network and 
increased between-network connectivity according 
to our results. Specifically, connectivity between 
IC2 and IC4, the default-mode network was altered 
in the MS group, exhibiting diminished anticorrela-
tion. The anticorrelated activity of task-positive and 
task-negative networks is thought to support cogni-
tive function.29,30 Although previous studies 
reported that both the default mode and dorsal atten-
tion networks show altered connectivity patterns as 
a function of cognitive performance in MS,9,31 the 
connectivity between these networks has been less 
frequently investigated. A study described pre-
served anticorrelation structure between the default-
mode and dorsal attention network during rest, with 
increased interaction between the two networks.32 
Our results suggest that this anticorrelation struc-
ture might be perturbed during task performance. 
Additionally, IC2-IC4 connectivity correlated with 
BVMT-R scores in the MS group, which is in line 
with previous studies linking the anticorrelated 
activity of task-positive and task-negative networks 
to working memory performance.30

Interestingly, we found decreased connectivity 
between the right anterior intraparietal sulcus and 
frontal eye field in IC2 throughout the task. These 
regions are the backbone of the dorsal attention net-
work,7 and the right frontal eye field also showed 
reduced activation during the motion condition 
according to our results. Although studies previously 
described alterations in the functional connectivity of 
attention networks during rest,9,33 our results show 
that these connections remain dysfunctional in the 
face of task demands as well.

Our result that higher correlation between attention-
related areas is connected to better SDMT perfor-
mance complements previous descriptions of attention 
deficits in MS being related to processing speed.8 
These connections also scale with BVMT-R perfor-
mance, which might stem from shared resources 
between visuospatial attention and working mem-
ory.34 Processing speed also plays a part in BVMT-R 
performance.35

There are some methodological limitations to con-
sider in this study. As our temporal resolution is  
in the seconds domain, sequentially activating 

networks do not differ enough in their time course 
for TICA to differentiate them as separate compo-
nents. Additionally, we did not explicitly test for col-
our sight in the patient group, though patients 
reported no difficulty performing the task. Finally, 
here we use a complex cognitive task involving mul-
tiple cognitive domains, and further studies are 
required to investigate the neural correlates of spe-
cific aspects of the attention system in MS.

Our results correspond to the growing body of 
research that shows reorganisation of brain net-
works in multiple sclerosis during rest and task per-
formance.36 Functional adaptation of networks has 
implications in the prognosis of MS, as plastic 
changes seem to be closely related to the patients’ 
cognitive performance.37 Also, network plasticity is 
being increasingly exploited for its therapeutic 
value in cognitive rehabilitation.38 Seeing as mala-
daptive changes in brain function appear early, 
future work should aim to establish a timeline of 
functional changes during the disease course, which 
could help develop improved rehabilitation strate-
gies that take dysfunctional network adaptation 
into account.

Conclusion
In this study, we found altered connectivity within 
and between task-related networks during a visual 
attention task in RRMS patients that correlates with 
cognitive disability.
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