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Abstract: In the present work, the structure and thermal stability of Ca–Al mixed-metal compounds, 
relevant in the Bayer process as intermediates, have been investigated. X-ray diffraction (XRD) 
measurements revealed the amorphous morphology of the compounds, which was corroborated by 
SEM-EDX measurements. The results of ICP-OES and UV-Vis experiments suggested the formation 
of three possible ternary calcium aluminum heptagluconate (Ca-Al-Hpgl) compounds, with the 
formulae of CaAlHpgl(OH)40, Ca2AlHpgl2(OH)50 and Ca3Al2Hpgl3(OH)90. Additional IR and Raman 
experiments revealed the centrally symmetric arrangement of heptagluconate around the metal ion. 
The increased thermal stability was demonstrated by thermal analysis of the solids and confirmed 
our findings. 

Keywords: calcium; aluminate; Bayer process; heptagluconate; ternary compounds; structure of 
solid compounds 

 

1. Introduction 

Bauxite ores are the primary raw materials of the large-scale production of alumina, due to their 
high aluminum content, availability, as well as the relative simplicity of their refinement. During the 
Bayer process, i.e., the recrystallization of the aluminum content of bauxite in the form of Al(OH)3, 
the causticity of the process liquor must be maximized to improve productivity. Therefore, lime 
(Ca(OH)2) is added to the spent liquor to convert the in situ formed sodium carbonate to sodium 
hydroxide via the precipitation of calcium carbonate. This so-called recausticization step is an integral 
part of most Bayer refineries operation; hence, lime belongs to the primary raw materials of alumina 
production, and is essential for the causticization process to be a cost-effective operation of a Bayer 
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refinery [1]. As such, the chemistry of calcium hydroxide in Bayer liquors has attracted considerable 
scientific as well as technological interest [2–4]. 

In a recent review, Rosenberg et al. gave a detailed overview of the solid calcium- and 
aluminum-containing species relevant to the Bayer process. Accordingly, the most stable solid 
calcium species forming in sodium aluminate solutions is the Ca3Al2O6∙6H2O (tricalcium-aluminate 
hexahydrate, TCA) [5]. Additionally, they detected two metastable layered double hydroxides 
(LDHs), namely the [Ca2Al(OH)6]2∙1/2CO3∙OH∙nH2O and the [Ca2Al(OH)6]2∙CO3∙nH2O compounds. 
In these solids, the Al(OH)6 polyhedra are connected by Ca atoms whose coordination shell is 
completed by hydrating water molecules, as inferred from the X-ray diffraction (XRD) analysis of the 
chloride analogue, i.e., so-called Friedel’s salt [6]. The formation of LDHs is a critical reaction step in 
the recausticization of the liquor. Although these intermediate processes first result in a decrease in 
the concentration of both carbonate and aluminate ions, the latter is recovered due to the 
decomposition of LDHs above 80 °C, yielding calcium carbonate and soluble aluminate. 

Apart from inorganic components, low-molecular-weight organic compounds are also 
introduced into the Bayer process by most bauxites. Since the accumulation of these materials over 
time may have an impact on the causticization process of the refineries, a deep understanding of the 
speciation behavior of calcium(II) in the presence of these organics is vital to predict the solubility of 
lime in Bayer liquors. In this respect, The and Sivakumar investigated the effect of organic molecules 
on the solubility of calcium(II) in strongly caustic liquors. They reported that humic acid and sodium 
gluconate (used as model compounds in their study) significantly enhanced the solubility of 
calcium(II) [7]. From these results, one can infer strong interactions between calcium (II) ions and 
these organic molecules in solution, that is, the formation of stable compounds. 

The solution equilibria between sugar-type ligands (such as gluconate, gulonate, 
heptagluconate, isosaccharinate) and Ca2+ or Al3+ ions in acidic to neutral medium have been by now 
well established [8–14]. Additionally, complexation reactions in strongly alkaline medium have been 
quantified and deep understanding on metal-ligand interactions have been gained [15–17]. That is, 
these complexing agents act exclusively as multidentate ligands via simultaneously binding metal 
ions by the COO− as well as one or more OH or O− functions, yielding stable chelate structures. On 
the other hand, little is known about the interactions in a three-component system containing both 
metal ions and a complexing agent. In particular, quantitative description of such systems is 
important, since, based on the results with other tri- or tetravalent cations reported in the literature 
[18–21], Ca2+ ions and sugar derivatives may form ternary compounds with Al3+ ions too. In this 
respect, for example, ternary species were proposed to form when gluconate (Scheme 1) was added 
to a suspension of tricalcium aluminate, based on qualitative X-ray diffraction and infrared analyses 
[22,23]. 

The working hypothesis of the current contribution is that in order to adequately describe the 
solution equilibria of such a ternary system, one has to consider the incidental formation of solid 
ternary compounds. In addition to this, characterization of the solids precipitating from binary 
solutions allows for a separate analysis of the interactions between the heptagluconate and one metal 
ion (Ca2+ or Al3+), which helps to disentangle the rather complex binding motifs that may be present 
both in ternary solids and solutions containing the constituents of the ternary compounds. 

In this paper, we report on the qualitative and quantitative analysis of the solid phases forming 
in solutions containing calcium, aluminate and heptagluconate (Hpgl−) ions, with the latter serving 
as a model organic ligand (Scheme 1). A set of experimental methods were used, i.e., X-ray diffraction 
(XRD), (differential) thermogravimetry (TG/DTG), scanning electron microscopy coupled to energy-
dispresive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared (FT-IR) and Raman as well as 
inductively-coupled plasma optical emission spectroscopies (ICP-OES). 
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Scheme 1. Structural formulae of D-gluconate (left) and D-heptagluconate (right) ions. 

2. Results and Discussion 

2.1. Crystallinity of the As-Prepared Binary and Ternary Samples as Well as Reference Compounds 

First, the powder X-ray diffractograms of the precipitates as well as the Na− and Ca− 
heptagluconate reference compounds were recorded to gain information on the reflection patterns 
and crystallinity, respectively. While NaHpgl × nH2O has sharp and well-separated reflections 
(Figure 1), the diffractograms of the Ca(Hpgl)2 × 2H2O reference, the as-prepared binary Ca-Hpgl and 
Al-Hpgl samples are rather broad and not well-structured indicating that the binary compounds are 
amorphous. Similarly, the diffractogram of the ternary Ca-Al-Hpgl-5 sample shows broad reflections 
with poor signal-to-noise ratio (Figure 1; for the other ternary compounds, see Figure S1 in the 
Electronic Supplementary Materials, ESI), referring again to a low degree of crystallinity. This finding 
is in line with the formation of amorphous Ca-Al-gluconate solid phases, reported previously [22]. 

 
Figure 1. X-ray diffractograms of the reference heptagluconate (Hpgl−) salts, the as-prepared binary 
Ca- and Al-Hpgl solid compounds and a typical ternary Ca-Al-Hpgl compound. 

2.2. Morphologies of the Binary and Ternary Precipitates as well as Reference Solids 

The results of the SEM analysis are in line with the findings of the X-ray diffractometry: 
compared to the angular particles of the well-crystallized heptagluconate sodium salt, the ternary 
and binary solids are rather amorphous, and they show significantly different morphologies (Figure 
2). For all these samples, exclusively highly aggregated particles (in the range of 500–1000 nm merged 
into few micron sizes) with planar shape and smooth edges could be observed without the occurrence 
of crystallites. Meanwhile, the SEM-EDX analysis of the ternary samples (here CaAl-Hpgl-5 is shown 
in Figure 2) shows rather uniform distribution of calcium and aluminum atoms implying that this 
compound is indeed a ternary compound and not the heterogenous mixture of two binary solids (the 
separated elemental distribution mapping images can be found in Figure S2). 
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Figure 2. Scanning electron microscopy (SEM) images of sodium heptagluconate (Na-Hpgl) reference 
salt as well as the binary (Ca-Hpgl, Al-Hpgl) and ternary (CaAl-Hpgl) compounds with Ca2+ and Al3+ 
ions. The images of CaAl-Hpgl-2 and CaAl-Hpgl-7 represent the typical morphology, while the image 
of CaAl-Hpgl-5 represents the metal distribution of the ternary samples. 

2.3. Component Quantification and Stochiometric Calculations 

The total concentrations of Ca2+ and Al3+ for the binary and ternary samples (dissolved in ≈2 M 
HCl) were determined by ICP-OES, while the concentration of heptagluconate was estimated on the 
basis of UV-Vis spectrophotometry (see Section 3.3). The calculated mass percentages of Ca2+, Al3+ 
and Hpgl− are listed in Table 1. The molar fraction of OH− was determined applying the charge 
balance equation, and any residual mass was ascribed to the presence of surface or lattice water. The 
molar fractions of all components were referenced to that of Al3+ (which was set to unity), and the 
thus obtained cumulative stoichiometries are presented also in Table 1. 

As a result, the Ca-Hpgl binary compound is most probably in the form of partially 
deprotonated CaHpgl2, while the formula of Al-Hpgl binary sample (AlHpgl0.4(OH)2.6) can be 
assigned to the trinuclear Al3Hpgl(OH)80 compound, whose stoichiometry is similar to the previously 
reported Al3Hpgl(OH)102− species, which was found to be formed in strongly alkaline solutions [16]. 

In the systems containing Al3+, Hpgl− and OH− ions, where the predominant solution species are 
the AlHpgl2(OH)54− and AlHpgl(OH)42− at total concentrations given in Table 1 [16], the formation of 
the solid phase could be observed. As will be further discussed in Section 2.4, this may be attributed 
to the formation of at least one low-solubility ternary Ca-Al-Hpgl compound. Examining the 
calculated cumulative stoichiometry listed in Table 1, two types of compounds could be 
distinguished. In the first case, when the nOH/nHpgl ratio was above 1.0 (samples CaAl-Hpgl-1 to 4), 
the formation of CaAlHpgl(OH)40 and Ca2AlHpgl2(OH)50 could be suggested by the following 
reactions: 

Ca2+ + AlHpgl(OH)42− = CaAlHpgl(OH)40 (1) 

2Ca2+ + AlHpgl2(OH)54− = Ca2AlHpgl2(OH)50 (2) 

The product forming in Equation (1) refers to the sample CaAl-Hpgl-1, while the stoichiometries 
of samples 2, 3 and 4 are interpretable by Equation (2). The excess Ca2+ and Hpgl− might be assigned 
to binary Ca-Hpgl compounds, whose stoichiometry could not be defined unambigously. 

On the other hand, for samples with nOH/nHpgl < 1.0, one major compound with a more 
sophisticated structure could be assumed. Examining the calculated stoichiometries for samples 
CaAl-Hpgl-5 to 8, the differences among them are only minor, which may refer the exclusive 
formation of only one compound, Ca3Al2Hpgl3(OH)9. Interestingly, the stoichiometry of the 
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compound strongly resembles of that of TCA (Ca3Al2(OH)12), which may contribute to the 
understanding of the results published by Kim et al. [22,23]. 

Considering the average error of the obtained stoichiometric numbers (ν ≈ ±0.2) based on the 
assignation of Al-Hpgl, the proposal of the foregoing ternary species might be a good iteration of the 
calculated compositions. 

Table 1. w/w% distribution of the components and the calculated cumulative stoichiometry of the 
corresponding solids. 

Sample ID Ca2+ 
(w/w%) 

Al3+ 
(w/w%) 

Hpgl− 
(w/w%) 

Calculated Cumulative 
Stochiometry 

Ca-Hpgl 7.6 - 74.9 CaHpgl1.8(OH)0.3 × 4.9 H2O 
Al-Hpgl - 17.0 60.5 AlHpgl0.4(OH)2.6 

CaAl-Hpgl-1 16.7 5.7 58.0 Ca2AlHpgl1.2(OH)5.7 
CaAl-Hpgl-2 13.4 3.3 67.9 Ca2.8AlHpgl2.5(OH)6.0 × 0.5 H2O 
CaAl-Hpgl-3 12.6 4.1 66.6 Ca2.1AlHpgl1.9(OH)5.2 × 0.6 H2O 
CaAl-Hpgl-4 14.8 2.9 62.3 Ca3.5AlHpgl2.6(OH)7.4 × H2O 
CaAl-Hpgl-5 11.6 4.4 63.9 Ca1.8AlHpgl1.8(OH)4.8 × 1.3 H2O 
CaAl-Hpgl-6 12.4 5.7 64.9 Ca1.5AlHpgl1.4(OH)4.6 × 0.1 H2O 
CaAl-Hpgl-7 13.4 6.8 61.3 Ca1.3AlHpgl1.2(OH)4.5 × 0.6 H2O 
CaAl-Hpgl-8 12.0 5.4 63.9 Ca1.5AlHpgl1.4(OH)4.6 × 0.6 H2O 

2.4. The Effect of Metal Coordination on the Infrared and Raman Spectra of Sodium Heptagluconate 

The C-C stretching range of the Raman spectra divided the ternary samples into two groups 
showing clear difference in the conformation of the backbone of Hpgl− (Figure 3). Raman spectra of 
samples from CaAl-Hpgl-1 to CaAl-Hpgl-4 differ only below 800 cm−1, in the out of plane 
deformation range of the carboxylate and C-H groups (Figure 3, left (a)). Only slight relative intensity 
differences can be identified elsewhere in the spectra. 

The other group of samples from CaAl-Hpgl-5 to CaAl-Hpgl-8 produced much more uniform 
Raman spectra; they are almost indistinguishable, except around 1600 cm−1, in the carboxylate 
stretching region (Figure 3, left (b)). 

The C-C stretching region of both groups differ essentially indicating the difference in the 
conformation of the carbon chain. This range is rather complicated in the spectra of CaAl-Hpgl-1 to 
CaAl-Hpgl-4, but the other set of spectra shows very clearly a series of nearly equidistant bands, the 
so-called “band progression,” i.e., the sign of a fully stretched carbon backbone [24]. 
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Figure 3. Raman and IR spectra of the ternary compounds. The difference between the C-C stretching 
region of the two groups indicates the difference in the conformation of the carbon chain (for the 
explanation of (a) and (b), see text). 

The corresponding infrared spectra confirm the conclusions drawn from the Raman spectra 
(Figure 3, right). The magnitude of differences for both groups of spectra are essentially the same; 
therefore, the division of samples into two groups from CaAl-Hplg-1 to CaAl-Hplg-4 and from CaAl-
Hplg-5 to CaAl-Hplg-8 is appropriate. 

Another feature in the spectra worth mentioning is the carboxylate region, which can be seen in 
Figure S3b. The position of the peaks, tentatively assigned to the carboxylate stretching modes, did 
not coincide with the corresponding infrared and Raman spectra of the samples. Since the selection 
rules do not justify this difference, there were only two possibilities to take into account. One possible 
explanation is that the Hpgl is arranged in central symmetry around the metal ions resulting the 
separation of the “gerade” and “ungerade” species into the Raman and into the infrared spectra, 
respectively. On the other hand, the positions of the peaks could be the results of overlapping bands 
with various intensities, which is indicated by the differences in the carboxylate stretching region 
depicted in Figure 3 (b) [24]. 

A simple way to verify this assumption is performing Fourier Self-Deconvolution on the spectra 
between 1850 and 1200 cm−1. A typical result of the Fourier Self-Deconvolution is shown in Figure S4. 
The carboxylate stretching peaks split into at least two components in the infrared spectra. However, 
the deconvolution of the same range of the Raman spectra provided less information with the peak 
around 1600 cm−1 being too weak, and too broad for a successful Fourier Self-Deconvolution. On the 
other hand, the assumed symmetric carboxylate stretching band did not decompose. 

In conjunction with Fourier Self-Deconvolution, peak fitting was performed with every 
spectrum in the same region. An example of the fitting process accomplished for sample CaAl-Hpgl-
8 is depicted in Figure 4. 

 
Figure 4. The result of peak fitting demonstrated on sample CaAl-Hpgl-8. The positions of the fitted 
carboxylate stretching bands, which refer to a symmetry center between the heptagluconate, are 
denoted by dotted lines. 

Concerning the fitting process, there were apparent deviations between the two groups of 
samples. Generally, fewer peaks were sufficient for the satisfactory fitting of the spectra of samples 
from CaAl-Hpgl-1 to CaAl-Hpgl-4 than for samples from CaAl-Hpgl-5 to CaAl-Hpgl-8. More 
importantly, no analogous bands could be found in the Raman spectra of the first group of samples 
between 1600 and 1500 cm−1 matching the strong infrared band of the antisymmetric carboxylate 
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stretching mode. Moreover, the fitting of the Raman spectra would have been inadequate for the 
second set of samples without the corresponding, very low intensity bands. The positions of the fitted 
carboxylate stretching bands in the IR and the Raman spectra are satisfactorily close to each other 
ruling out the presence of a symmetry center between the Hpgl (for detailed data, see Table S1 in the 
ESI). 

The spectra of the binary samples Ca-Hpgl and Al-Hpgl were also analyzed. Their spectra, with 
the carboxylate stretching bands are shown in Figure 5. 

 
Figure 5. Fitting results of the Ca-Hpgl and Al-Hpgl binary samples. The antisymmentric carboxylate 
stretching mode of Hpgl− above 1600 cm−1 refers to the coordination with Al(III), while between 1600 
and 1500 cm−1 to that with Ca(II). 

Comparing the fitted peak positions with those of the ternary compounds, one can infer that the 
presence of two bands in the antisymmetric carboxylate stretching region could be attributed to the 
coordination of Ca(II) and Al(III) ions to Hpgl−. Explicitly, the antisymmetric stretching mode above 
1600 cm−1 corresponds to the coordination of Al(III), while the band between 1600 cm−1 and 1500 cm−1 
may be the sign of coordination to Ca(II) [25–27]. 

Finally, the ratios of the integrated intensities of the fitted antisymmetric carboxylate bands 
above and below 1600 cm−1 corroborate the existence of the two distinct types of samples. The ratios 
were above 1.0 for the samples from CaAl-Hpgl-1 to CaAl-Hpgl-4, and below 1.0 for the rest, which 
indicates lower amounts of Al(III) coordinated to Hpgl− in the first group (Table S1). 

2.5. Thermal Analysis 

The thermograms of both the Al- and Ca-Hpgl solids (Figures 6a and S4) as well as the CaAl-
Hpgl-7 ternary compound (Figure 6b) exhibit well-distinguishable mass loss processes. For all 
compounds, the physically adsorbed water (i.e., the fraction of water, which is bound to the surface) 
evaporate first at 50 °C, followed by the release of lattice water below ~180 °C. 
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(a) (b) 

Figure 6. Thermograms (left axis, black solid line) and differential thermograms (right axis, blue solid 
line) of the Al-binary (a) and a representative ternary (CaAl-Hpgl-7) compound (b). 

The next major loss peak appears between 180 and 400 °C (Al-Hpgl) or 180 and 350 °C (Ca-Hpgl 
and CaAl-Hpgl-5). To reveal the underlying chemical processes, infrared spectra of the CaAl-Hpgl-7 
solid calcined at 200, 310, 340 and 500 °C were recorded (Figure 7a). The sample calcined at 200 °C 
remains essentially intact, since the peaks in the corresponding spectrum are in similar positions and 
of similar shape as compared to the initial solid (Figure 3, right). However, above 310 °C, marked 
variations can be observed: the intensities of the Hpgl O–H/C–H stretching vibrational modes at 
2750–3750 cm−1 gradually decrease in conjunction with the weakening of the C–O bands between 900 
and 1200 cm−1. Parallel to the mineralization of the heptagluconate, dehydration of the Al(OH)x(3-x)+ 
ion may also occur, since this step takes place at < 300 °C in the case of Al(OH)3 [28]. 

  
(a) (b) 

Figure 7. Infrared spectra of the CaAl-Hpgl-7 ternary solid compound after heat treatment at different 
temperatures (a), and the binary and commercial solids at 200 °C and 340 °C (b). 
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Between 340 and 500 °C, the caramelization of the sugar proceeds with similar mass losses (16–
22%), presumably along with the dehydration of the Ca(OH)y(2−y)+ (which occurs at ~460 °C, see the 
TG curve of Ca(OH)2 in Figure S6). The IR spectrum of the solids calcined at 500 °C shows the 
disappearance of the C–H and C–O bonds. The collapse of the heptagluconate moiety is also shown 
by the variation of asymmetric and symmetric vibrations of the COO− groups (at 1570 and 1410 cm−1). 
Meanwhile, a signal at 1420 cm−1 ascribed to the surface-adsorbed CO2 molecules as well as a 
resonance mode at 1480 cm−1 corresponding to the in situ generated calcite phase appeared [29]. 

Above 500 °C, the merger of calcite phase decomposition (Figure S6) with the final-step 
mineralization of Hpgl− could be observed; the decarbonization processes took place in the most 
substantial amounts (24–30% mass losses). The caramelization and mineralization processes were 
confirmed by the XRD measurements shown in Figure S7. A notable feature of the Al-Hpgl and Ca-
Hpgl binary samples is that the decomposition of Hpgl− commenced at temperatures higher than 
those in the commercially available sodium and calcium salts of heptagluconate. The ternary samples 
exhibited even more pronounced thermal stabilities: for the binary solids heat-treated at 200 °C, a 
significant decrease in the intensities of their C–O peaks (900–1200 cm−1) on their infrared spectra 
could be observed (Figure 6), while those of the ternary compounds were unscathed. This enhanced 
thermal stability of Hpgl− is more evident for the calcination of samples at 340 °C: the C–O bands and 
even the O–H/C–H stretching modes (2750–3750 cm−1) of the Na- and Ca-salts of heptagluconate 
disappeared from the spectrum, while these peaks were still observable for CaAl-Hpgl-7 after heat-
treatment at 340 °C. Moreover, the calculated mass losses remained under ~13% for the ternary solids 
between 200 and 350 °C, and these values were significantly larger (21 and 34%) for the binary 
precipitates (Table S2.). Ultimately, these observations indicate that the ternary compounds are more 
stable than the binary ones suggesting that the simultaneous binding of Ca2+ and Al3+ yields overall 
stronger metal-sugar interactions. 
  



Molecules 2020, 25, 4715 10 of 14 

 

3. Materials and Methods 

3.1. Reagents and Solutions 

All solutions were prepared using deionized water (Merck Millipore Milli–Q®, Burlington, MA, 
USA). Stock solutions were prepared using sodium α-D-heptagluconate (Sigma-Aldrich, St. Louis, 
MO, USA, ≥99% purity), calcium α-D-heptagluconate dihydrate (Sigma–Aldrich, ≥98.0% purity), 
calcium chloride dihydrate (Analar Normapur, supplier VWR Hungary, Hungary, a.r. grade), 
magnesium sulfate heptahydrate (Analar Normapur, a.r. grade) and hydrochloric acid (Scharlau, 
Barcelona, Spain, a.r. grade). The ionic strength of the solutions was set with sodium chloride (VWR, 
Radnor, PA, USA, a.r. grade) to 4.0 M. Sodium α-D-heptagluconate was purchased as non-
stoichiometrically hydrated salt; therefore, its water content was determined by weighting the solid 
before and after heating it at 80 °C for six hours. 

The HCl stock solutions (~1.0 M) were made by the volumetric dilution of 37 w/w% HCl solution 
and were standardized with KHCO3 solution. Sodium hydroxide solutions were gravimetrically 
diluted from a concentrated (~50 w/w%), carbonate-free NaOH solution, as previously described [30]. 
Sodium aluminate solutions (~4.0 M NaAl(OH)4, ~4.0 M NaOH) were prepared by dissolving high 
purity aluminum wires (J.M. & Co., Brackley, UK, 99.99% purity) in a carbonate free NaOH solution, 
following the steps previously described [31]. 

The concentration of CaCl2 and NaAl(OH)4 solutions were determined by EDTA titration prior 
to the measurements. 

3.2. Synthesis and Preparation of the Samples 

The binary calcium- or aluminum-containing solids were precipitated from solutions 
comprising [Hpgl−]T = 0.200 M, [Ca2+]T = 0.135 M, [OH−]T = 0.250 M and [Hpgl−]T = 0.146 M, [Al(OH)−]T 
= 0.292 M, [OH−]T = 0.146 M, respectively (herefter, subscript T denotes total or analytical 
concentrations). As for the ternary solution, solid samples were obtained by gradually adding 0.9923 
M CaCl2 (I = 4 M NaCl) to solutions containing aluminate and heptagluconate ions at various 
amounts. The initial concentrations of different components were varied between [Hpgl−]T = 0.100–
0.500 M, [Al(OH)−]T = 0.100–0.375 M and [OH−]T = 0.050–0.250 M. The concentration of calcium(II) in 
the solutions before the appearance of the precipitate ranged from 0.06 M to 0.32 M. The sample 
identifiers and the corresponding solution compositions at the onset of precipitation are listed in 
Table 2. 

All samples were filtered through a hydrophilic PVDF 0.45 μm porous size membrane filter and 
rinsed with deionized water to remove NaCl traces from the surface. Prior to measurements, the 
solids were kept in a desiccator. 

Table 2. The list of the as-prepared solid precipitates and the analytical concentrations. 

Sample ID [Ca2+]T/M [Al(OH)−]T/M [Hpgl−]T/M [OH−]T/M 
Ca-Hpgl 0.135 - 0.200 0.250 
Al-Hpgl - 0.292 0.146 0.146 

CaAl-Hpgl-1 0.055 0.095 0.095 0.236 
CaAl-Hpgl-2 0.120 0.088 0.176 0.220 
CaAl-Hpgl-3 0.122 0.132 0.175 0.220 
CaAl-Hpgl-4 0.063 0.047 0.094 0.235 
CaAl-Hpgl-5 0.322 0.169 0.338 0.169 
CaAl-Hpgl-6 0.197 0.081 0.160 0.042 
CaAl-Hpgl-7 0.200 0.120 0.160 0.042 
CaAl-Hpgl-8 0.175 0.165 0.165 0.044 
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3.3. Methods of Structural Characterization 

The solid compounds were first characterized by a Rigaku MiniFlex Type II. X-ray 
diffractometer (Tokyo, Japan) applying CuKα radiation (λ = 0.15406 nm). The diffractograms were 
recorded in a 2θ° range of 5–65° with 3°∙min−1 scanning speed. 

The morphologies of the binary and ternary precipitates were visualized by scanning electron 
microscopy (SEM, Hitachi S-4700, Chiyoda City, Tokyo, Japan) at various magnifications and 
acceleration voltages. The segregation of the elements in the solids was analyzed by an energy-
dispersive X-ray spectroscopy accessory connected to the scanning electron microscope (EDX, Röntec 
QX2 spectrometer equipped with Be window, Berlin, Germany). The thermal properties of the 
samples were investigated by a Setaram Labsys derivatograph (Setaram Hungary, Hungary) 
operating under a constant flow of air at 5 °C∙min−1 heating rate. For the analysis, 25–30 mg portions 
of the solids were placed into high-purity alpha-alumina crucibles. 

A Bio-Rad Digilab Division FTS65A/896 FT-IR Spectrometer (California, CA, USA) with a 
Harrick’s Meridian™ SplitPea Single Reflection Diamond ATR Accessory (Cambridge, MA, USA) 
was used to record the spectra of the samples at room temperature. The measurements were 
performed in the range of 4000–400 cm−1 at 4 cm−1 optical resolution and 128 interferograms were 
averaged to achieve good signal to noise ratio. Raman spectra were recorded in the range of 3500 
cm−1–100 cm−1 at 2 cm−1 resolution by a Thermo Scientific Raman DXR microscope (Waltham, MA, 
USA) at room temperature. The light source was a diode-pumped, frequency-doubled Nd:YAG laser 
(λ = 760 nm), which was used at 15 mW maximum laser power. 

Spectra were analyzed (including deconvolution, peak fitting, etc.) with the aid of the Thermo 
Galactic Inc. GRAMS/AI version 7 software (Waltham, MA, USA) [32]. 

The total concentrations of Ca2+ and Al3+ ions were determined with a Thermo Scientific iCAP 
7400 ICP-OES DUO spectrometer with radial plasma viewing. An accurately weighed ≈ 25 mg 
portion of each sample was dissolved in 5 cm3 ≈ 2 M hydrochloric acid and diluted with deionized 
water. The calibration was performed using an ICP Multielement standard solution IV (CertiPUR®, 
supplier VWR Hungary, Hungary) along with internal magnesium standard. 

The spectra of solutions containing heptagluconate were recorded with a Specord 210 plus 
double beam UV-Vis spectrophotometer Germany) at (25.1 ± 0.1) °C, in the wavelength range of 185–
500 nm with 0.1 nm resolution. The optical path length of the quartz cuvette was 1 cm. Prior to the 
measurements, a known amount of each sample (≈50 mg) was dissolved in ≈ 2 M HCl. Due to the 
strongly acidic medium, Hpgl− undergoes lactonization, a reaction in which cyclic esters are formed 
[16], giving rise to a gradual shift in the absorbance. To minimize this effect, all samples were 
measured right after their preparation. Additionally, the absorbance readings were performed at the 
isosbestic point at 218 nm, where they are invariant of the progress of lactonization (Figure S8). The 
calculation of concentrations in the samples was based on the calibration curve recorded for a 
solution series with known concentrations of Hpgl− (0.001 M–0.010 M) at ≈2 M HCl (Figure S9), 
applying Beer’s law. 

4. Conclusions 

In this work, the solid phases obtained from solutions containing Ca2+, Al3+ and Hpgl− ions, were 
characterized with various experimental methods. These compounds were found to have a low 
degree of crystallinity, homogeneous elemental distribution and a significantly different morphology 
than those of the commercially available Hpgl− salts, which is in line with the results published by 
Kim and Lee [22]. 

Based on the results of spectrophotometry and elemental analysis, two types of compounds 
could be distinguished: CaAlHpgl(OH)40 along with Ca2AlHpgl2(OH)50 forms with nOH/nHpgl > 1.0, 
while for nOH/nHpgl < 1.0, the more uniform Ca3Al2Hpgl3(OH)90 stoichiometry can be proposed. The 
latter strongly resembles the composition of Ca3Al2(OH)12 (Tricalcium aluminate), which may explain 
the similar IR spectra observed for the reaction of TCA with Gluc− by others earlier [23]. Regarding 
the binary compounds, the formation of Al3Hpgl(OH)80 and varius mixed Ca-containing binary 
compounds was invoked. 
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FT-IR and Raman spectroscopic measurements reinforced the assumption that the solid 
compounds can be divided into two groups: the different peak positions of the fitted carboxylate 
bands, based on the results of Fourier self-deconvolution, may refer to the coordination of Ca2+ or Al3+ 
ions. The ratio of integrated intensities for these peaks clearly marks the boundary between the two 
groups of compounds. Furthermore, the centrally symmetric arrangement of Hpgl around the metal 
ion was inferred from the positions of the fitted antisymmetric carboxylate stretching bands. 

Based on the thermal analysis of the commercially available salts of heptagluconate along with 
the binary and ternary compounds, an increased stability of the binary and ternary compounds was 
observed. This stability was the highest in case of ternary compounds, which was attributed to the 
simultaneous binding of both metal ions to the Hpgl. 

Supplementary Materials: The following are available online, Figure S1: X-ray diffractograms of the ternary 
precipitates. Figure S2: Metal distribution visualization of the CaAl-Hpgl-5. Yellow dots: aluminum, red dots: 
calcium. Figure S3: The observable difference between the O-H stretching range and in that of the COO− group, 
presented on the infrared and Raman spectrum of sample CaAl-Hpgl-3. Figure S4: Fourier Self-Deconvolution 
performed on the IR and Raman spectra of sample CaAl-Hpgl-8. Figure S5: Thermograms of the commercial 
heptagluconic acid sodium and calcium salts from Sigma. Aldrich. Figure S6: Thermograms of the commercial 
calcium hydroxide and carbonate salts from Sigma Aldrich. Figure S7. XRD diffractograms of the heat-treated 
CaAl-Hpgl-7 sample. The inorganic CaO and Al2O3 compound were identified, which supports the suggested 
mineralization process. Figure S8: Time-dependent UV-Vis spectra of heptagluconic acid. Total concentrations: 
[NaHpgl]T = 0.005 M, [HCl]T = 2.0075 M (t = 25.0 ± 0.1 °C). Figure S9: Calibration curve of heptagluconic acid. The 
result of linear fitting is depicted as dashed line. Table S1: Results of the peak fitting, performed on the 
carboxylate region (1850–1200 cm−1) of the IR (plain background) and Raman (grey background) spectra. Table 
S2: Mass losses of the solids at different temperature ranges. 
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