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Abstract

We present generalizations of the well-known trigonometric spin Sutherland models, which were derived 
by Hamiltonian reduction of ‘free motion’ on cotangent bundles of compact simple Lie groups based on the 
conjugation action. Our models result by reducing the corresponding Heisenberg doubles with the aid of a 
Poisson-Lie analogue of the conjugation action. We describe the reduced symplectic structure and show that 
the ‘reduced main Hamiltonians’ reproduce the spin Sutherland model by keeping only their leading terms. 
The solutions of the equations of motion emerge from geodesics on the compact Lie group via the standard 
projection method and possess many first integrals. Similar hyperbolic spin Ruijsenaars–Schneider type 
models were obtained previously by L.-C. Li using a different method, based on coboundary dynamical 
Poisson groupoids, but their relation with spin Sutherland models was not discussed.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Integrable systems of particles moving in one dimension have been studied intensively for 
nearly 50 years, beginning with the pioneering papers of Calogero [6], Sutherland [51] and Moser 
[35]. Thanks to their fascinating mathematics and diverse applications [11,37–39,44,52], the 
interest in these models shows no sign of diminishing. New connections to mathematics and new 
applications are still coming to light in the current literature, see e.g. [4,7,8,22,24,46,53].

* Correspondence to: Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, H-6720 Szeged, 
Hungary.

E-mail address: lfeher@physx.u-szeged.hu.
https://doi.org/10.1016/j.nuclphysb.2019.114807
0550-3213/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2019.114807
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:lfeher@physx.u-szeged.hu
https://doi.org/10.1016/j.nuclphysb.2019.114807
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2019.114807&domain=pdf


2 L. Fehér / Nuclear Physics B 949 (2019) 114807
The richness of these models is also due to their many generalizations and deformations. 
These are associated with different interaction potentials (from rational to elliptic), root systems 
and extensions with internal degrees of freedom. We call ‘Sutherland models’ the systems de-
fined by trigonometric or hyperbolic potentials. For all these systems, classical and quantum 
mechanical versions are studied separately, and one needs to pay attention to the distinct fea-
tures of the systems with real particle positions and their complexifications. The investigations 
of Ruijsenaars–Schneider (RS) type deformations [44,45] is motivated, for example, by relations 
to solitons, spin chains, special functions and double affine Hecke algebras.

The internal degrees of freedom are colloquially called ‘spin’, and can be of two rather differ-
ent kinds. First, the point particles can carry spins varying in a vector space, as is the case for the 
Gibbons–Hermsen models [20] and their RS type generalizations introduced by Krichever and 
Zabrodin [28]. Second, the models can involve a collective spin variable that typically belongs to 
a coadjoint orbit, and is not assigned separately to the particles. An example of this second type 
is the trigonometric spin Sutherland model defined classically by a Hamiltonian of the following 
form:

HSuth(e
iq,p, ξ) = 1

2
〈p,p〉 + 1

2

∑
α>0

1

|α|2
|ξα|2

sin2 α(q)
2

. (1.1)

Here, 〈 , 〉 is the Killing form of the complexification of the Lie algebra G of a compact simple 
Lie group, G, eiq belongs to the interior, T o, of a Weyl alcove1 in the maximal torus T < G, 
and ip varies in the Lie algebra T of T . The spin variable ξ = ∑

α>0

(
ξαEα − ξ∗

αE−α

)
lies 

in O0 := O ∩ T ⊥, where O is an arbitrarily chosen coadjoint orbit of G, and α runs over the 
positive roots. More precisely, the Hamiltonian HSuth lives on the phase space T ∗T o × (O0/T ). 
These spin Sutherland models can be interpreted as Hamiltonian reductions of free motion on G, 
relying on the cotangent lift of the conjugation action of G on itself. The reduction can be utilized 
to show their integrability, and to analyze their quantum mechanics with the aid of representation 
theory [12,17,18,41–43]. Spinless models can be obtained in this way only for G = SU(n), using 
a minimal coadjoint orbit, for which the T -action on O0 is transitive.

As was shown by Li and Xu [32], the models (1.1) (and generalizations) result from a different 
construction as well. Their construction is built on Lie algebroids defined using the solutions of 
the classical dynamical Yang-Baxter equation. For the connection of these approaches, we refer 
to [17].

Our original motivation for the present work stems from [14], where it was shown how 
the Ruijsenaars–Schneider deformation of the standard spinless Sutherland model arises from 
a Hamiltonian reduction of the Poisson-Lie counterpart of T ∗SU(n), the so-called Heisenberg 
double. To obtain the spinless model, one has to choose a minimal dressing orbit of SU(n) in set-
ting up the reduction. It is natural to expect that the analogous reduction of the Heisenberg double 
of any compact simple Lie group, along an arbitrary dressing orbit, will lead to a generalization 
of the spin Sutherland model (1.1). Motivated by the recent interest in spin Calogero–Moser and 
RS models [4,9,22,24,42,43,46], we take up this issue here.

In fact, the purpose of this paper is to describe the spin RS type models that descend from the 
Heisenberg double of a compact simple Lie group G. The so-called main reduced Hamiltonians, 
which originate from the characters of the complexification of G, will turn out to have HSuth
(1.1) as their leading term, up to cubic and higher order terms in p and a spin variable. (Here and 

1 A Weyl alcove is a fundamental domain for the conjugation action of G on itself.
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throughout the paper, we refer to the total, or combined, degree in p and the spin variable. For 
example, p3, p2σ , pσ 2 and σ 3 all have degree 3.) The spin variable now belongs to a reduced 
dressing orbit of the Poisson-Lie group G. The dressing orbits are the Poisson-Lie analogues of 
the coadjoint orbits, and in the compact case each dressing orbit is diffeomorphic, and is even 
symplectomorphic [21], to a coadjoint orbit.

In the SU(n) case, using analytic continuation from trigonometric to hyperbolic functions, our 
models reproduce the spin RS type equations of motion derived by Braden and Hone [5] from the 
soliton solutions of An−1 affine Toda theory with imaginary coupling. These equations of motion 
were interpreted previously by L.-C. Li [29,30] as examples of spin RS type Hamiltonian sys-
tems obtained by applying (discrete and Hamiltonian) reductions to the coboundary dynamical 
Poisson groupoids that underlie the geometric interpretation of the classical dynamical Yang-
Baxter equation [13]. Remembering also the alternative constructions of spin Sutherland models 
[17,32], it is clear that there must exist a connection between our systems and corresponding 
systems of [29,30]. The two approaches are substantially different, but the analytic continuation 
of our models appears to yield a subclass of those in [30]. This is discussed further in Remark 6.3
and in Section 7, together with other approaches to spin RS type models. The precise connection 
will be explored in detail in a subsequent publication.

In the trigonometric/hyperbolic case, the papers [4,9] contain two different reduction treat-
ments of the holomorphic spin RS systems of Krichever and Zabrodin [28] associated with 
SL(n, C). The complexifications of our systems associated with SU(n) do not reproduce those 
systems. The systems studied in [4,9,28] feature individual spins attached to the particles, while 
our systems involve only collective spin variables. Hamiltonian reductions leading directly to 
distinct real forms of the complex trigonometric/hyperbolic spin RS systems of [28], as well as 
the elliptic systems and the case of general root systems, should be developed in the future.

Now we sketch the organization of the rest of the paper. We start in Section 2 by recalling 
the reduction treatment of the spin Sutherland models, which can be found in many sources (see 
e.g. [17,41]). This section puts our generalization in context, and provides motivation for it. In 
Section 3, we present the rudiments of the standard Heisenberg double of a compact Poisson-Lie 
group and its ‘natural free system’ that we shall reduce. To our knowledge, this ‘free system’ 
first appeared in [55], and was utilized previously, for example, in [14,15]. Then, in Section 4, 
we describe the structure of the reduced phase space in an as complete manner as is known for 
the spin Sutherland models. In Section 5, we show that the spin Sutherland Hamiltonian (1.1) is 
recovered as the leading term of the reduced main Hamiltonians associated with the characters 
of the finite dimensional irreducible representations of GC . In Section 6, we develop the form of 
the reduced Hamilton equations, detail the projection approach for constructing their solutions, 
and display a large number of integrals of motion. We also present spectral parameter dependent 
Lax equations. Section 7 contains an outlook on future studies and open questions.

Finally, let us highlight our main results. The first important result is the description of the 
symplectic structure on a dense open submanifold of the reduced phase space, given by The-
orem 4.3. The second significant result, presented in Section 5.1, is the characterization of the 
reduced main Hamiltonians from which we can recover the spin Sutherland Hamiltonian (1.1)
as the leading term. More precisely, we also recover the Lax matrix of the model (1.1) as a suit-
able leading term, and explain in Remark 5.1 how our models can be viewed as one-parameter 
deformations of the spin Sutherland models. In the SU(n) case, we obtain an explicit solution 
of the moment map constraints, see Section 5.2. Further results are the simple derivation of the 
reduced equations of motion and their solutions in Section 6.1, and the arguments put forward in 
Section 6.2 that indicate their integrability.
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2. Spin Sutherland model from reduction

First of all, we fix the Lie theoretic [26] notations that will be used throughout the paper. Let 
GC be a complex simple Lie algebra equipped with the normalized Killing form 〈 , 〉, and a 
Chevalley basis given by E±α (α ∈ �+) and Tαk

(αk ∈ �), where �+ and � denote the sets of 
positive and simple roots, respectively. The normalization is such that the long roots have length √

2 and 〈Eα, Eβ〉 = 2
|α|2 δα,−β holds. We let N := dimC(GC) and write GC

R for GC regarded as 
a Lie algebra over the real numbers. We then have the real vector space direct sum

GC
R = G +B, (2.1)

where

G = spanR{(Eα − E−α), i(Eα + E−α), iTαk
| α ∈ �+, αk ∈ �} (2.2)

is the compact real form of GC and

B = spanR{Eα, iEα,Tαk
| α ∈ �+, αk ∈ �} (2.3)

is a ‘Borel’ subalgebra. Consider the connected and simply connected complex Lie group, GC, 
associated with GC . When viewed as a real Lie group, we denote it as GC

R , and let G and B stand 
for the connected Lie subgroups of GC

R corresponding to the subalgebras G and B, respectively. 
The restriction of 〈 , 〉 to G is the negative definite Killing form of G. The subalgebras G and B
of GC

R are isotropic with respect to the non-degenerate invariant bilinear form on GC
R provided 

by the imaginary part of the complex Killing form, which we denote as

(X,Y ) := Im〈X,Y 〉, ∀X,Y ∈ GC
R . (2.4)

Notationwise, we shall ‘pretend’ that we are always dealing with matrix Lie groups. For example, 
the left-invariant Maurer–Cartan form on G will be written as g−1dg. If desired, our matrix Lie 
group notations can be easily converted into more abstract symbolism.

Now, we briefly summarize the reduction that we shall generalize. We start with the master 
phase space M := T ∗G ×O, where T ∗G is the cotangent bundle, and O is a coadjoint orbit of 
the Lie group G. The phase space is endowed with the Poisson maps

JL : M → G∗, JR : M → G∗, JO : M → G∗, (2.5)

where JL (JR) generates the Hamiltonian left-action of G on T ∗G engendered by the left-shifts 
(right-shifts) and JO is obtained by combining projection to O with the tautological embedding 
of O into G∗. One then considers the moment map

μ := JL + JR + JO (2.6)

that generates the ‘conjugation action’ of G on M . A dense open subset of the reduced phase 
space belonging to the zero value of μ can be identified with the (stratified) symplectic space 
(see [49,50])

M
reg
red = T ∗T o ×O0/T , (2.7)

where T o is the interior of a Weyl alcove in the maximal torus T < G, and O0/T is the sym-
plectic reduction of O by T at the zero value of the respective moment map.

Next, we explain how the above description of the reduced phase space comes about. For this, 
we let πG : T ∗G → G denote the bundle projection and use the diffeomorphism
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(πG,JR) : T ∗G → G × G∗. (2.8)

Together with the identification G∗ � G defined by the Killing form of G, this allows us to take

G × G ×O = {(g, J, ξ)} (2.9)

as the model of M . Then the symplectic form ω of M can be written as

ω = −d〈J,g−1dg〉 + ωO, (2.10)

where ωO is the canonical symplectic form of O. The subset of M on which μ = 0 holds is 
specified by the constraint equation

J − gJg−1 + ξ = 0. (2.11)

We can bring2 g−1 into its representative Q ∈T , which we parametrize as

Q = exp(iq). (2.12)

Then the constraint (2.11) becomes

e−iqJ eiq − J = ξ. (2.13)

We assume that q is regular, i.e. eiq belongs to the interior T o of a Weyl alcove, which permits 
us to solve the moment map constraint as follows:

J = −ip +
∑

α∈�+
(JαEα − J ∗

α E−α), ξ =
∑

α∈�+
(ξαEα − ξ∗

αE−α), (2.14)

where ip ∈ T is arbitrary and

Jα = ξα

e−iα(q) − 1
. (2.15)

In this way, we obtained a ‘partial gauge fixing’ parametrized by

T o × T ×O0 = {(eiq, ip, ξ)}. (2.16)

We still need to divide this gauge slice by the residual gauge transformations, generated by T , 
which act only on O0. This yields the model (2.7) of the reduced phase space, where T ∗T o is 
identified with T o × T . The reduced symplectic structure can be displayed as

ωred = 〈dp ∧, dq〉 + ωred
O . (2.17)

Here, ωred
O stands for the (stratified) symplectic structure arising form (O, ωO), reduced by the 

T -action at zero moment map value. That is, ωred
O encodes the restriction of the Poisson brackets 

of the elements of C∞(O)T to O0 =O ∩ T ⊥.
Upon substitution of (2.15), the ‘free’ Hamiltonian

H(g, J, ξ) := −1

2
〈J,J 〉 (2.18)

yields the spin Sutherland Hamiltonian HSuth given by equation (1.1). The flow generated by H
is called ‘free motion’:

2 The inverse is used since g−1 is the counterpart of gR that will appear later.
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g(t) = g(0) exp(tJ (0)), J (t) = J (0), ξ(t) = ξ(0), (2.19)

and the dynamics governed by HSuth results by projecting this to the reduced phase space. The 
Hamiltonian H is a member of the Abelian Poisson algebra

CI (M) := J ∗
R(C∞(G∗)G), (2.20)

whose functional dimension equals r = rank(G). The elements of CI (M) Poisson commute 
with all elements of the Poisson algebra CJ (M) generated by the components of JL, JR and 
JO . The functional dimension of the ‘algebra of integrals of motion’ CJ (M) is dim(M) − r , 
since the functions of JL and JR are connected by r independent relations, which express the 
equality f ◦ JR = f ◦ (−JL) for every f ∈ C∞(G∗)G. This means [34,36] that the free Hamil-
tonians CI (M), with their integrals of motion CJ (M), represent a degenerately integrable (in 
other words non-commutative integrable or super-integrable) system on M . The various notions 
of integrability and their relations are reviewed, for example, in [23,56].

All elements of CI (M) descend to smooth functions on the reduced phase space. Their re-
duced flows can be found via the projection method, similarly to the case of H, and all those flows 
are complete on the full reduced phase space, Mred = μ−1(0)/G. It was shown by Reshetikhin 
[41–43] that the degenerate integrability of the free Hamiltonian H (1.1) is inherited at the re-
duced level with analytic integrals of motion, at least for generic coadjoint orbits and on a dense 
open subset of Mred. Liouville integrability in the same generic case follows from the results of 
[31]. It would require further work to obtain a full understanding for arbitrary orbits and arbi-
trary symplectic strata [49,50] of Mred. We do not go into this intricate issue, but wish to display 
a large number of integrals of motion that survive the reduction. Namely, let P(J, gJg−1) be 
an arbitrary polynomial in its non-commutative variables (viewed as elements of the enveloping 
algebra). Then evaluate the trace of this polynomial in an arbitrary finite dimensional unitary 
representation ρ of G. It is easy to see that all the functions trρ

(
P(J, gJg−1)

)
Poisson commute 

with every element of CI (M) and they are G-invariant with respect to the conjugation action. We 
suspect that the resulting integrals of motion are sufficient for the integrability of the reduction 
of CI (M) in general.

Later we shall derive spin RS type systems, which will be compared to the spin Sutherland 
systems. Instead of the identification G∗ � G, the comparison will be done using another model 
of G∗. This model is defined by realizing any linear functional φ on G in the form φ(X) =
(ξ̃ , X), ∀X ∈ G, where ξ̃ is from the subalgebra B of GC

R . The two models of G∗, G and B, are 
in bijection via the equality

φ(X) = 〈ξ,X〉 = (ξ̃ ,X), ξ ∈ G, ξ̃ ∈ B. (2.21)

This implies that

ξ =
r∑

k=1

iξkTαk
+

∑
α∈�+

(
ξαEα − ξ∗

αE−α

)
(2.22)

corresponds to

ξ̃ =
r∑

ξ̃ kTαk
+

∑
+
ξ̃αEα with ξ̃α = −2iξα and ξ̃ k = −ξk. (2.23)
k=1 α∈�
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Thus, the spin Sutherland Hamiltonian (1.1) can be casted as

HSuth(e
iq,p, ξ̃ ) = 1

2
〈p,p〉 + 1

8

∑
α∈�+

1

|α|2
|ξ̃α|2

sin2 α(q)
2

. (2.24)

3. Unreduced free system on the Heisenberg double

In what follows we freely use basic notions and results from the theory of Poisson-Lie groups, 
as can be found, e.g., in the reviews [10,27,48]. One may also consult [15], where similar back-
ground material as given below is described in more detail.

We start by noting that the Lie algebra GC
R and its subalgebras G and B form a Manin triple. 

Consequently, G and B are Poisson-Lie groups in duality. The multiplicative Poisson bracket on 
C∞(G) is given by

{φ1, φ2}G(g) =
(
g−1(dLφ1(g))g, dRφ2(g)

)
, ∀φ1, φ2 ∈ C∞(G), ∀g ∈ G, (3.1)

and that on C∞(B) is given by

{f1, f2}B(b) = −
(
b−1(dLf1(b))b, dRf2(b)

)
, ∀f1, f2 ∈ C∞(B), ∀b ∈ B. (3.2)

Here, for a real function φ ∈ C∞(G) the left and right derivatives dL,Rφ ∈ C∞(G, B) are defined 
by

d

ds

∣∣∣∣
s=0

φ(esXgesY ) =
(
X,dLφ(g)

)
+

(
Y,dRφ(g)

)
, ∀X,Y ∈ G, ∀g ∈ G, (3.3)

and dL,Rf ∈ C∞(B, G) for a real function f ∈ C∞(B) are defined similarly. In the above Pois-
son bracket formulas conjugation is an informal shorthand for the adjoint action of GC

R on its Lie 
algebra.

The manifold GC
R carries a natural symplectic structure, +, which goes back to Semenov-

Tian-Shansky [47] and to Alekseev and Malkin [1]. When equipped with +, GC
R is a Poisson-

Lie analogue of the cotangent bundle T ∗G, alias the ‘Heisenberg double’ of the Poisson-Lie 
group G. To present +, let us recall that every element K ∈ GC

R admits the alternative Iwasawa 
decompositions

K = bLg−1
R = gLb−1

R , bL, bR ∈ B, gL,gR ∈ G, (3.4)

that define diffeomorphisms between GC
R and G × B . The pair gR, bR or the pair gL, bL can be 

also used as free variables in G × B , utilizing the relation

g−1
L bL = b−1

R gR. (3.5)

By making use of these decompositions, we have

+ = 1

2

(
dbLb−1

L
∧, dgLg−1

L

)
+ 1

2

(
dbRb−1

R
∧, dgRg−1

R

)
. (3.6)

It is useful to introduce the maps �L, �R from GC
R to B and the maps �L, �R from GC

R to G
by setting

�L(K) := bL, �R(K) := bR, �L(K) := gL, �R(K) := gR. (3.7)
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These are Poisson maps with respect to the Poisson structure associated with + and the multi-
plicative Poisson structures on B and on G, respectively.

The group G acts on B by the (left) dressing action given by

Dressη(b) = �L(ηb), ∀η ∈ G, b ∈ B, (3.8)

which is a Poisson action. The induced infinitesimal action of G on B reads

dressXb = b(b−1Xb)B, ∀X ∈ G, (3.9)

where on the right-hand side we use projection along G, by means of (2.1). The ring of invariants 
C∞(B)G forms the center of the Poisson algebra of B . Thus we obtain an algebra of commuting 
‘free Hamiltonians’, CI (G

C
R), by the definition

CI (G
C
R) := �∗

R(C∞(B)G). (3.10)

It is worth remarking that �∗
R(C∞(B)G) = �∗

L(C∞(B)G). The flow generated by any Hamilto-
nian �∗

R(h) ∈ CI can be written down explicitly:

gR(t) = exp
[
tdLh(bR(0))

]
gR(0), bL(t) = bL(0), bR(t) = bR(0). (3.11)

Notice the similarity with the corresponding flow3 (2.19) on T ∗G. These Hamiltonians Poisson 
commute with all the elements of �∗

L(C∞(B)) and �∗
R(C∞(B)), which together generate the 

Poisson algebra of the integrals of motion, denoted as CJ (GC
R). The functional dimension of 

CI is the rank r of GC , while the functional dimension of CJ is (2N − r). The latter statement 
follows since for any f ∈ C∞(B)G we have

�∗
L(f ) = �∗

R(f ◦ invB), (3.12)

where invB is the inversion map on the group B . These identities represent r independent re-
lations between �∗

L(C∞(B)) and �∗
R(C∞(B)), which otherwise give independent functions. 

Consequently [23,42,56], the Hamiltonians in CI (3.10) define a degenerate integrable system.
The following model of the Poisson manifold B is often useful. Let

P := exp(iG) (3.13)

denote the closed submanifold of GC
R diffeomorphic to iG by the exponential map. Note that G

and G are pointwise fixed by corresponding Cartan involutions [26] θ and � of GC
R and GC

R . 
Somewhat colloquially, we write

X† := −θ(X), K† := �(K−1) for X ∈ GC
R , K ∈ GC

R, (3.14)

since this anti-involution can be arranged to be the usual matrix adjoint for the classical groups. 
Then the map

m : B → P, B � b �→ bb† ∈ P (3.15)

is a diffeomorphism, which converts the dressing action of G on B into the conjugation action 
of G on P. That is, we have

m ◦ Dressη = Cη ◦ m where Cη(P ) := ηPη−1 ∀P ∈P. (3.16)

3 As was noted before, g in (2.19) corresponds to g−1. The analogous eq. (2.38) in [15] contains a typo.

R
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It follows that any dressing orbit, OB , is diffeomorphic by m to OP = m(OB), and one can 
parametrize it as

OP = m(OB) = {exp(2iX) | X ∈ OG}, (3.17)

where OG is an adjoint orbit of G. In terms of this exponential parametrization, the form of the 
Poisson structure on P = m(B) is described in [16].

We end this section by recording another useful feature of the Poisson structure on B . For 
this, let us consider the decompositions

B = B0 +B+, G = T + T ⊥ (3.18)

where B0 (resp. B+) is spanned by Cartan elements (resp. root vectors). Choose an arbitrary basis 
{Xα} of T and a basis {Y i} of T ⊥. Every element b ∈ B can be uniquely written in the form

b = b0b+ = eβ0eβ+ with β0 ∈ B0, β+ ∈ B+, (3.19)

and the components

βα
0 := (β0,X

α), βi+ := (β+, Y i) (3.20)

can be taken as coordinate functions on B . The Poisson brackets of these functions satisfy

{βα
0 , β

γ

0 }B = 0, {βk+, β
γ

0 }B = ([Y k,Xγ ], β+) (3.21)

and

{βi+, β
j
+}B = ([Y i, Y j ], β0 + β+) + o(β+, β0). (3.22)

The Poisson brackets {βi+, βj
+}B are polynomials in β+ and trigonometric polynomials in β0. 

Equation (3.22), where o(β+, β0) stands for terms whose combined degree in the components of 
β+ and β0 is at least 2, shows that the linear part of the Poisson brackets of the variables βα

0 , βi+
is the Lie-Poisson bracket of G.

4. Reduction along an arbitrary dressing orbit

We recall that the dressing orbits OB are the symplectic leaves in B , and let OB
stand for 

the symplectic form on OB . Before defining the reduction, we extend the phase space GC
R by a 

non-trivial dressing orbit, i.e., we consider the unreduced phase space

M := GC
R ×OB = {(K,S) | K ∈ GC

R, S ∈OB} (4.1)

equipped with the symplectic form

 = + + OB
. (4.2)

The Abelian Poisson algebra (3.10) is trivially extended to yield CI(M), whose elements do not 
depend on S ∈OB , and the algebra of the integrals of motion CJ (GC

R) is extended to

CJ (M) = (�L,�R,�OB
)∗

(
C∞(B × B ×OB)

)
, (4.3)

where �OB
is the obvious projection from M to OB ⊂ B , and �L, �R (3.7) are regarded as 

maps from M to B . That is, CJ (M) contains all functions of bL, bR (3.4) and S. This extension 
maintains the degenerate integrability.
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We shall study Marsden–Weinstein type reduction [33] at the unit value e ∈ B of a suitable 
Poisson-Lie moment map � :M → B . Concretely, we introduce the map � by taking the prod-
uct

� = �L�R�OB
, (4.4)

i.e.,

�(K,S) = �L(K)�R(K)S. (4.5)

Clearly, the product is a proper generalization of the sum in (2.6). This definition gives a Poisson 
map because the 3 factors of � are Poisson maps into B and they pairwise Poisson commute. We 
know from general theory [33] that the Poisson map � generates an infinitesimal left-action of 
G on M. Namely, the vector field XM on M corresponding to X ∈ G operates on f ∈ C∞(M)

by the following formula:

df (XM) = (X, {f,�}M�−1), (4.6)

where { , }M is the Poisson bracket on functions on M, and notationwise we pretend that B
is a matrix Lie group. The G-action (4.6) integrates to a global Poisson-Lie action of G on M, 
denoted below � : G ×M → M.

Lemma 4.1. The action of η ∈ G on M is given by the following diffeomorphism �η,

�η(K,S) = (ηK�R(ηbL),Dress�R(ηbLbR)−1(S)), (4.7)

where we use the notations introduced in (3.4), (3.7) and (3.8). The map

� : G ×M → M, �(η,K,S) = �η(K,S) (4.8)

is Poisson, and the moment map � is equivariant: � ◦ �η = Dressη ◦ �.

Proof. One can verify that this formula defines a group action, and the induced infinitesimal 
action reproduces the derivations given by the moment map according to (4.6). �
Remark 4.2. One can check that �L and �L�R are also equivariant in the sense that

�L ◦ �η = Dressη ◦ �L, (�L�R) ◦ �η = Dressη ◦ (�L�R). (4.9)

It follows that all elements of �∗
L(C∞(B)G) = �∗

R(C∞(B)G) := CI (M) are invariant with 
respect to �η. Without the extension of the Heisenberg double by the dressing orbit, the action 
(4.7) was introduced in [25], where it was called ‘quasi-adjoint action’.

Now, we are interested in the reduced phase space

Mred := �−1(e)/G. (4.10)

For certain orbits OB this is a smooth symplectic manifold. In general, it is a union of smooth 
symplectic manifolds of various dimension, a so-called stratified symplectic space [49,50]. Its 
structure turns out to be quite similar to what occurs in the cotangent bundle case. In particular, 
a reduction of the orbit OB itself will come to fore shortly in our description.

The maximal torus T < G is a Poisson-Lie subgroup of G, on which the Poisson structure 
vanishes. Hence the dressing Poisson action of G on OB restricts to an ordinary Hamiltonian 
action of T . This action operates simply by conjugation. Writing S ∈ OB in the form
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S = S0S+ with S0 ∈ B0, S+ ∈ B+, (4.11)

the map

S �→ log(S0) ∈ B0 (4.12)

is the moment map for the action of T on OB , as follows, for example, from (3.21). Here, B0
plays the role of the dual space of T , via the bilinear form (2.4). By setting this moment map to 
zero, i.e. setting S0 equal to the unit element, we obtain the reduced dressing orbit

Ored
B = {S+ ∈ OB}/T , (4.13)

which itself is a stratified symplectic space.
Let Greg ⊂ G be the set of regular elements. The space of the conjugacy classes in Greg is 

a smooth manifold, which can be identified with an open Weyl alcove T o, i.e., a connected 
component of T reg. In this paper we focus on the reduction of the dense open submanifold of M
given by

Mreg = �−1
R (Greg), (4.14)

that is, we shall assume that in K = bLg−1
R we have gR ∈ Greg. We denote

Mreg
red = {(K,S) | �(K,S) = e, gR ∈ Greg}/G. (4.15)

Now we state one of the main results of the paper.

Theorem 4.3. The open dense subset Mreg
red of the reduced phase space can be identified with

T ∗T o ×Ored
B , (4.16)

where T o is an open Weyl alcove in T and Ored
B is the reduced dressing orbit (4.13). The reduced 

symplectic structure reads

red = T ∗T o + red
OB

, (4.17)

where the first term is the canonical symplectic form of the cotangent bundle T ∗T o, and the 
second term refers to the reduced orbit (4.13).

Proof. We wish to parametrize the G-orbits in the regular part of the constraint surface:

�−1(e) ∩ �−1
R (Greg). (4.18)

On account of (4.7), the action of η ∈ G works on K according to

K = bLg−1
R �→ �L(ηbL)

(
�R(ηbL)−1gR�R(ηbL)

)−1
. (4.19)

Since for any bL ∈ B , the map η �→ �R(ηbL) is a diffeomorphism on G, we can transform gR

into the maximal torus. More precisely, since we assumed regularity, we see that every gauge 
orbit has representatives in the set

Z := {(K,S) | �(K,S) = e, �R(K) ∈T o}. (4.20)

In other words, the manifold Z is the gauge slice of a partial gauge fixing. Now we employ the 
decomposition

bR = b0b+ with b0 ∈ B0, b+ ∈ B+, (4.21)
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and introduce the notation Q := �R(K). Then the equality K = bLg−1
R = gLb−1

R tells us that

gL = g−1
R = Q−1 and bL = Q−1b−1

R Q. (4.22)

Because of the last relation, we can write

bLbR = Q−1b−1
R QbR = Q−1b−1+ b−1

0 Qb0b+ = Q−1b−1+ Qb+. (4.23)

Thus, the restriction of the moment map to Z can be expressed as

�(K,S) = bLbRS = Q−1b−1+ Qb+S. (4.24)

This has the following crucial consequences. First, the B0-factor b0 of bR is not constrained. 
Second, we must have S ∈ B+, i.e., S = S+ ∈ OB ∩ B+. Third, the moment map constraint

Q−1b−1+ Qb+S+ = e (4.25)

determines b+ as a function of Q and S+. To summarize, we obtain a diffeomorphism

Z � (T o × B0) × (OB ∩ B+) = {(Q,b0, S+)} (4.26)

by the parametrization

K = Q−1b−1+ b−1
0 , S = S+ with b+ = b+(Q,S+) (4.27)

determined by the constraint equation (4.25). We stress that, for any given Q ∈ T o and S+ ∈
OB ∩ B+, equation (4.25) admits a unique solution for b+. (See also Section 5.)

Two elements of Z are gauge equivalent if they are carried into each other by the action of 
some η ∈ G. It follows from the transformation rule of gR ,

gR �→ �R(ηbL)−1gR�R(ηbL), (4.28)

that the ‘residual gauge transformations’ that map elements of Z to Z are given by the action 
of the subgroup T < G. The factors Q and b0 are invariant under this action, while S+ and the 
corresponding b+ transform according to

S+ �→ T S+T −1, b+ �→ T b+T −1, ∀T ∈ T . (4.29)

Therefore, recalling that Q and b0 can be arbitrary, we obtain the identification

Mreg
red ≡Z/T ≡ (T o × B0) ×Ored

B . (4.30)

By general principles, the reduced (stratified) symplectic structure on Mreg
red arises from the pull-

back of the symplectic form of M to the submanifold Z of �−1(e). Let ιZ : Z → M and 
ιO : (OB ∩ B+) → OB denote the tautological injections, and introduce the parametrizations

Q = exp(iq), b0 = exp(p), (4.31)

where p varies freely in B0. By using these, we find from (4.2) and (3.6) that

ι∗Z () = 〈dp ∧, dq〉 + ι∗O(OB
). (4.32)

The second term descends to the (stratified) symplectic structure of the reduced dressing orbit 
(4.13). Together with the identification (4.30), this completes the proof. �
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Remark 4.4. The ring of smooth functions on Ored
B (4.13) can be identified with the invariants 

C∞(OB ∩ B+)T . Such invariants can be constructed as follows. Let us write S+ ∈ OB ∩ B+ in 
the form

S+ = exp
( ∑
α∈�+

σαeα

)
, (4.33)

where the σα are complex coordinate functions. Consider arbitrary positive roots ϕ1, . . . , ϕn1 and 
ψ1, . . . , ψn2 for which

n1∑
i=1

ϕi =
n2∑

j=1

ψj . (4.34)

Then the following polynomial function is T -invariant:

n1∏
i=1

σϕi

n2∏
j=1

σ ∗
ψj

. (4.35)

Here any repetition of the roots is allowed. The real and imaginary parts of these complex poly-
nomials can be regarded as T -invariant functions on the whole of OB , by declaring that they do 
not depend on S0 for S = S0S+ ∈ OB . If we evaluate their Poisson brackets according to (3.22)
and restrict the result to OB ∩ B+, then we obtain invariant polynomials in the same variables 
σα . In principle, this algorithm leads to the Poisson algebra of smooth functions carried by the 
reduced dressing orbit. The reduced Poisson bracket closes on the polynomials given by linear 
combinations of the invariants of the form (4.35).

Remark 4.5. For completeness, it may be worth explaining that the reduced coadjoint orbits 
Ored = O0/T and dressing orbits Ored

B (4.13) are always non-empty. For a coadjoint orbit O ⊂
G∗ = G, let us first note that O ∩ T is an orbit of the Weyl group of the pair (G, T ). Referring to 
the famous convexity theorems of Kostant, Atiyah and Guillemin and Sternberg, one knows that 
the image of the moment map for the T -action on O is the convex hull of this Weyl orbit. Now, 
let xi ∈ T , i = 1, . . . , N , denote the elements of the Weyl orbit, and form the convex combination 
x := 1

N

∑N
i=1 xi . It is clear that x is a fixed point for the action of the Weyl group. But the origin is 

the unique fixed point, since a fixed point is characterized by the property that it is perpendicular 
to all the roots that define the Weyl reflections. Thus x = 0 is in the image of the moment map, 
i.e., O0 is non-empty.

Essentially the same argument can be applied in the case of the dressing orbits, too.

Remark 4.6. Recall that G∗ equipped with the linear Lie-Poisson bracket and B equipped with 
the multiplicative Poisson bracket (3.2) are Poisson diffeomorphic [21]. The existence of a 
T -equivariant Poisson diffeomorphism implies that every reduced dressing orbit (4.13) is sym-
plectomorphic to a reduced coadjoint orbit O0/T . Such a Ginzburg-Weinstein diffeomorphism 
has been exhibited in [2] for G = SU(n). If a T -equivariant Ginzburg-Weinstein diffeomorphism 
exists in general, which is believed to be the case, then the phase space M reg

red in (2.7) is always 
symplectomorphic to the corresponding phase space Mreg

red in (4.16).
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5. Connection with the spin Sutherland model

We need to recall some group theoretic facts. Let ρ : GC → GL(V ) be a finite dimensional 
irreducible representation. Then the complex vector space V can be equipped with a Hermitian 
inner product in such a way that ρ(K†) = ρ(K)† holds ∀K ∈ GC , that is, the compact subgroup 
G and P (3.13) are represented by unitary and by positive operators, respectively. The char-
acter χρ(K) = tr(ρ(K)) restricts to a G-invariant function on P, and C∞(P)G is functionally 
generated by the characters of the r fundamental highest weight representations.

We shall inspect the so-called main reduced Hamiltonians, which descend from the characters. 
More precisely, we reduce the G-invariant functions Hρ ∈ C∞(M)G of the form

Hρ(K,S) := trρ(bRb
†
R) := cρ tr(ρ(bRb

†
R)). (5.1)

Here, K = gLb−1
R as in (3.4) and cρ is a normalization constant, chosen so that

cρ tr (ρ(Eα)ρ(E−α)) = 2/|α|2. (5.2)

The associated representation of GC is also denoted by ρ, and below we shall write simply 
trρ(XY) instead of cρ tr(ρ(X)ρ(Y )).

We shall demonstrate that, upon evaluation in the diagonal gauge Z (4.26), Hρ
red can be 

expanded in such a manner that its leading term has the same form as the spin Sutherland Hamil-
tonian (1.1). Then we shall point out the relationship between the Lax matrix engendered by 
bRb

†
R and the Lax matrix of the spin Sutherland model. In Remark 5.1, we elucidate the inter-

pretation of these statements in terms of a one-parameter deformation. In Section 5.2, we derive 
explicit formulas for GC = SL(n, C), using its defining representation.

5.1. Reduced main Hamiltonians and Lax matrices

Let us inspect the constraint equation (4.25) by parametrizing the variables as

S+ = eσ , b+ = eβ, σ =
∑
α>0

σαEα, β =
∑
α>0

βαEα (5.3)

using complex expansion coefficients σα , βα , and Q = eiq . The Baker-Campbell-Hausdorff for-
mula permits us to rewrite the constraint equation as

exp(β − Q−1βQ − 1

2
[Q−1βQ,β] + · · · ) = exp(−σ), (5.4)

where the dots indicate higher commutators. Note that the BCH series is now finite, since B+ is 
nilpotent. Using that B+ is diffeomorphic to its Lie algebra by the exponential map, we see from

β − Q−1βQ − 1

2
[Q−1βQ,β] + · · · = −σ (5.5)

that βα can be expressed in terms of σ and eiq in the following form:

βα = σα

e−iα(q) − 1
+ �α(eiq, σ ), (5.6)

where �α contains higher order terms in the components of σ . Namely, we have

�α =
∑ ∑

fϕ1,...,ϕk
(eiq)σϕ1 . . . σϕk

, (5.7)

k≥2 ϕ1,...,ϕk
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where the ϕ1, . . . , ϕk are unordered collections of positive roots, such that α = ϕ1 + · · · + ϕk . 
The fϕ1,...,ϕk

are rational functions in eiq , and the sum contains only finitely many terms. These 
claims are established by inspection of equation (5.5), proceeding iteratively according to the 
height of the root α labeling σα on the right-hand side. It follows that the restriction of Hρ (5.1)
to Z ⊂ �−1(e) (4.26) can be expanded as a polynomial in the components of the ‘spin variable’ 
σ , with coefficients given by rational functions in the components of eiq multiplied by suitable 
components of b2

0 ≡ exp(2p). Specifically, we see that

H
ρ
red(e

iq,p,σ ) = trρ(e2pb+b
†
+) (5.8)

can be expanded as

H
ρ
red(e

iq,p,σ ) = trρ

(
e2p

(
1ρ + 1

4

∑
α>0

|σα|2EαE−α

sin2(α(q)/2)
+ o2(σ, σ ∗)

))
. (5.9)

To obtain this from (5.8), we took into account that E†
α = E−α and that, in consequence of the 

invariance of trρ with respect to conjugation by the elements of T , trρ(e2pEαE−γ ) = 0 unless 
γ = α. Applying (5.2) and expanding e2p , equation (5.9) implies

H
ρ
red(e

iq,p,σ ) = dimρ +2trρ(p2) + 1

2

∑
α>0

1

|α|2
|σα|2

sin2(α(q)/2)
+ o2(σ, σ ∗,p). (5.10)

The symbols o2 indicate terms that are at least cubic in the components of the displayed argu-
ments, and depend rationally on eiq . We used that trρ(p) = 0, because GC is a simple Lie algebra. 
According to (5.10), the leading term of 1

4 (H
ρ
red − dimρ) matches precisely the spin Sutherland 

Hamiltonian (2.24).
We have seen that, when expanded in the components p and the spin variable σ , the leading 

term of the reduced main Hamiltonian (5.10) has the same form as the spin Sutherland Hamil-
tonian (2.24). It should be noted that the Poisson brackets of the corresponding spin variables, 
ξ̃α and σα , are different in the two cases. The relationship between the spin algebra that arises in 
our Poisson-Lie case and the one that occurs for the spin Sutherland model is given by equation 
(3.22). It follows that we recover the spin Sutherland model (1.1) from our reduced system if we 
keep only the leading term of the reduced Hamiltonian Hρ

red and only the leading terms of the 
Poisson brackets of the spin variables.

All reduced Hamiltonians arising from CI (M) = �∗
R(C∞(B)G) can be expressed as 

G-invariant functions of the ‘Lax matrix’ L(eiq, p, σ) := bRb
†
R , regarded as a function on Z

(4.26). Working in some representation and keeping only linear terms in p and σ , this Lax 
matrix can be expanded as follows:

L(eiq,p,σ ) = 1 + 2p +
∑
α>0

(
σα

e−iα(q) − 1
Eα + σ ∗

α

eiα(q) − 1
E−α

)
+ o(σ, σ ∗,p). (5.11)

If we replace σα by ξ̃α and substitute the change of variables (2.23), then (up to irrelevant con-
stants) the linear part of L in σ, σ ∗ and p reproduces LSuth := iJ as given by equations (2.14)
and (2.15), which can be regarded as a Lax matrix for the spin Sutherland model:

LSuth(e
iq,p, ξ) = p +

∑(
iξα

e−iα(q) − 1
Eα + (iξα)∗

eiα(q) − 1
E−α

)
. (5.12)
α>0
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It is clear from this that the G-invariant polynomials of LSuth can be recovered as leading terms 
of suitable invariant polynomials of (L − 1).

In fact, taking G = SU(n) and a minimal dressing orbit our construction reproduces the stan-
dard trigonometric RS system [14]. In this case, there are no spin variables since the reduced 
dressing orbit consists of a single point. The characters of the fundamental representations give 
rise to (n − 1) independent Hamiltonians, which become the standard RS Hamiltonians [44,45]
after a certain canonical transformation. In the general case, the Hamiltonians (5.9) resemble the 
light-cone Hamiltonians of the RS system. The presence of the leading exponent e2p in (5.9)
entails that the reduced main Hamiltonians originating from the r fundamental characters are 
functionally independent in general.

Remark 5.1. The foregoing results justify calling our models generalizations of the spin Suther-
land models, but we also would like to view them as deformations. However, so far we have not 
introduced any deformation parameter. In fact, we can not introduce a deformation parameter if 
we take the spin variables from a fixed reduced dressing orbit. Now we explain that this obstacle 
can be overcome by placing all our reduced phase spaces (4.16) inside the single Poisson space 
T ∗T o × (B+/T ), where B+/T is the Poisson reduction of (B, { , }B) at the zero value of the 
moment map for the Hamiltonian T -action. We can then consider a real, positive scale parameter 
ε and replace the variables (eiq, p, eσ ) ∈ T ∗T o ×B+ by (eiq, εp, eεσ ). At the same time, we use 
the scaled Poisson structure { , }ε = ε{ , }, so that p and q remain canonical conjugates with 
respect to { , }ε . In this way we obtain the relation

lim
ε→0

1

4ε2

(
H

ρ
red(e

iq, εp, εσ ) − dimρ

)
= 1

2
trρ(p2) + 1

8

∑
α>0

1

|α|2
|σα|2

sin2(α(q)/2)
. (5.13)

Moreover, it follows from (3.22) that in the ε = 0 limit the T -invariant polynomials of σ ∈ B+
satisfy the Poisson brackets corresponding to the reduction of G∗ � B at the zero value of the 
moment map for the respective T -action. The expansion (5.11) of L gives

L(eiq, εp, εσ ) = 1 + 2εLSuth(e
iq,p, ξ) + o(ε), with 2iξα = σα, (5.14)

and thus we can recover all invariant polynomials of LSuth via suitable scaling limits of invariants 
of L(eiq, εp, εσ ). For example, if we consider GC = SL(n, C) then we obtain (n − 1) indepen-
dent Hamiltonians for the spin Sutherland model from

tr(LSuth(e
iq,p, ξ)k) = lim

ε→0

1

(2ε)k
tr

(
(L(eiq, εp, εσ ) − 1n)

k
)

, k = 2, . . . , n. (5.15)

The limiting procedure just outlined is similar to the way in which the spinless Sutherland model 
is obtained as the non-relativistic limit of the standard RS model [44,45]. In that context, the 
parameter ε−1 plays the role of the ‘velocity of light’.

Remark 5.2. One-parameter families of dressing orbits of a given type are represented by the 
G-orbits in P that are of the form exp(2isOG) for a fixed coadjoint orbit in G∗ ≡ G and any 
non-zero real parameter s. It is tempting to speculate that s can also give rise to a deformation 
parameter, which should connect the spin RS models associated with these dressing orbits to the 
spin Sutherland model based on OG . This appears an intricate issue because of the complicated 
mapping from the exponential parametrization SS† = exp(2isX) with X ∈ OG (cf. equation 
(3.17)) to the parametrization S = S0e

σ that we found convenient to use. We plan to return 
to this problem elsewhere.
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5.2. Explicit formulas for GC = SL(n, C)

In this case, it is convenient to parametrize b ∈ B by using matrix elements. After diagonaliz-
ing gR , we are going to solve the moment map constraint for

bR = epb, (5.16)

where b is an unknown upper triangular matrix with unit diagonal. The constraint equation is 
given by

Q−1bQ = bS, (5.17)

where Q = diag(Q1, . . . , Qn) ∈ T o and S ∈ OB ∩ B+ is the constrained ‘spin’ variable. Except 
for the notation, this is the same as equation (4.25). Applying the principal gradation of n × n

matrices, which is additive under matrix multiplication, we expand b and S according to

b = 1n + b(1) + · · · + b(n − 1), S = 1n + S(1) + · · · + S(n − 1). (5.18)

For example, S(j) is a linear combination of the n × n elementary matrices of the form Ei,i+j . 
We can spell out the constraint equation as

Q−1b(k)Q − b(k) = S(k) +
∑

i+j=k

b(i)S(j), k = 1, . . . , n − 1, (5.19)

where 1 ≤ i, j ≤ n − 1. This can be solved iteratively, proceeding upwards from k = 1 until 
k = n − 1. To write down the solution, we introduce the shorthand notation

Ia,a+j = 1

Qa+jQ
−1
a − 1

, (5.20)

which is well defined since Q is regular. It is not difficult to ascertain that the solution for the 
matrix b is as follows. For the grade 1 matrix entries, we have

ba,a+1 = Ia,a+1Sa,a+1. (5.21)

For higher grades, the matrix elements ba,a+k , k = 2, . . . , n − a, read as follows:

ba,a+k = Ia,a+kSa,a+k +
∑

m=2,...,k
(i1,...,im)∈Nm

i1+···+im=k

m∏
α=1

Ia,a+i1+···+iαSa+i1+···+iα−1,a+i1+···+iα . (5.22)

It is understood that i0 = 0 and the S-factor for α = 1 is Sa,a+i1 . We omit the inductive verifi-
cation of this formula, which can be done using that the form of ba,a+k , for a + k ≤ n, does not 
depend on n.

By substituting (5.16) and (5.22) into tr(bRb
†
R) we obtain the expansion

Hred(e
iq,p,S) = tr(bRb

†
R) =

n∑
a=1

e2pa +
n−1∑
a=1

e2pa

n−a∑
k=1

|Ia,a+kSa,a+k|2 +higher order terms,

(5.23)

where the higher order terms are at-least-cubic polynomials in the matrix elements of S and their 
complex conjugates. Since Qa = eiqa , we have
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|Ia,a+k|2 = 1

4 sin2((qa+k − qa)/2)
, (5.24)

and therefore

Hred(e
iq,p,S) =

n∑
a=1

e2pa + 1

4

n−1∑
a=1

e2pa

n−a∑
k=1

|Sa,a+k|2
sin2((qa+k − qa)/2)

+ higher order terms.

(5.25)

This generalizes the corresponding spin Sutherland Hamiltonian, since

Hred(e
iq,p,S) − n = 2

n∑
a=1

p2
a + 1

4

n−1∑
a=1

n−a∑
k=1

|Sa,a+k|2
sin2((qa+k − qa)/2)

+ · · · (5.26)

with the dots standing for terms whose total degree in p, S and S∗ is at least 3.
Since by (5.22) we have solved the constraints, we could write a fully explicit formula for the 

reduced main Hamiltonian (5.23), represented as a T -invariant function on Z (4.26). We present 
it as an illustration in the simplest n = 3 case, for which we have

b1,2 = I1,2S1,2, b2,3 = I2,3S2,3, b1,3 = I1,3
(
S1,3 + I1,2S1,2S2,3

)
(5.27)

and, with p1 + p2 + p3 = 0,

Hred = (e2p1 + e2p2 + e2p3) + e2p1
(
|I1,2S1,2|2 + |I1,3S1,3|2

)
+ e2p2 |I2,3S2,3|2

+2e2p1 |I1,3|2 Re
(
I1,2S1,2S2,3S

∗
1,3

)
. (5.28)

In principle, the structure of the reduced Poisson algebra can be made explicit too, using that 
the Poisson structure of B can be described in terms of the matrix elements of the freely varying 
b ∈ B . As one can check, and is well-known, this structure is given by

{bm,j , bk,l}B = ibk,j bm,l

[
δm,k + 2θ(m − k) − δl,j − 2θ(l − j)

]
, (5.29)

where θ is the step function (+1 for positive arguments, and 0 for non-positive ones), and

{bm,j , b
∗
k,l}B = ibm,j b

∗
k,l[δm,k − δj,l]+ 2i

⎡
⎣δm,k

∑
β>m

bβ,j b
∗
β,l − δj,l

∑
α<j

bm,αb∗
k,α

⎤
⎦ . (5.30)

This fixes the real Poisson brackets of the real and imaginary parts of the matrix elements, and 
allows us to find the Poisson algebra of their T -invariant polynomials.

6. Reduced Hamiltonian flows and integrability

Here, we derive the equations of motion of the reduced system and present an algorithm for 
obtaining its solutions. We then point out the connection between our construction and the work 
of L.-C. Li [29,30]. Finally, we briefly discuss the integrability of the system.
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6.1. Equations of motion and solutions by projection

For any G-invariant function H on M, the reduced Hamiltonian flow can be obtained by 
first restricting the original flow to the moment map constraint surface, and then projecting it 
to Mred. The reduced Hamiltonian vector field can be obtained in an analogous manner. If the 
reduced phase space is realized via gauge fixing, this means that in general we have to add to the 
Hamiltonian vector field of H a point dependent infinitesimal gauge transformation4 that ensures 
that the additional constraints are preserved. We can apply the same procedure to partial gauge 
fixings as well, like the ‘diagonal gauge’ Z (4.20), where gR belongs to T o.

The determination of the ‘compensating gauge transformation’ relies on the following. Let 
XM be the vector field on M that gives the infinitesimal action of X ∈ G generated by the 
moment map �. Regarding bR , gR , S etc as evaluation functions on M, their Lie-derivatives 
with respect to this vector field can be easily evaluated. We obtain

LXM(bR) = dress
(b−1

L XbL)G
(bR), LXM(gR) = [(b−1

L XbL)G, gR]. (6.1)

The first formula and (3.9) imply

LXM(bRb
†
R) = [(b−1

L XbL)G, bRb
†
R], (6.2)

and for completeness we also record

LXM(S) = dress
(b−1

R b−1
L XbLbR)G

(S), LXM(bRS) = dress
(b−1

L XbL)G
(bRS). (6.3)

Note that X �→ (b−1
L XbL)G is an invertible map on G. Therefore, any point dependent in-

finitesimal gauge transformation can be represented as a vector field of the above form, where 
(b−1

L XbL)G is replaced by some G-valued function, called Y below, on the phase space.
Now, consider a function H ∈ C∞(M)G of the form H(K, S) = h(bR), and denote

(dLh)(bR) =: V(L) with L := bRb
†
R. (6.4)

Before reduction, the Hamiltonian vector field of H can be symbolically written as

ġR = V(L)gR, ḃR = 0, Ṡ = 0. (6.5)

For the description of the reduced symplectic structure, it was appropriate to use the variables 
Q = eiq , p and S, but the equations of motion are more conveniently expressed in terms of Q
and L. Since we work in the diagonal gauge, p can be uniquely recovered from bR , which itself 
is uniquely determined by L, via either of the unique decompositions

bR = epb+ = n+ep with b+, n+ ∈ B+. (6.6)

Taking advantage of the moment map constraint (4.25), S = S+ is determined by the formula

S = b−1
R Q−1bRQ. (6.7)

Thus, it is enough to find the time development of Q and L, and then recover p and S by the 
above algebraic relations.

Corresponding to G = T + T ⊥, we decompose the G-valued functions V and Y as

V = VT + V⊥ and Y = YT + Y⊥. (6.8)

Then we can state

4 This ‘compensation’ is needed if the restricted Hamiltonian vector field is not tangent to the gauge slice.
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Proposition 6.1. The projection of the Hamiltonian vector field (6.5) to the diagonal gauge Z
(4.20) gives

Q̇ = VT (L)Q and L̇ = [YT + Y⊥(Q,L),L], (6.9)

where

Y⊥(Q,L) = (
AdQ − id

)−1
(V⊥(L)) (6.10)

and YT is arbitrary, reflecting the residual gauge transformations.

Proof. By restriction to Z , where gR = Q, and addition of a vector field tangent to the gauge 
orbits, we obtain from (6.5) and (6.1), (6.2) the ‘corrected’ derivatives

Q̇ = V(L)Q + [Y,Q], L̇ = [Y,L]. (6.11)

The tangency to Z means that Q̇Q−1 must belong to T , which is equivalent to

QY⊥Q−1 − Y⊥ = V⊥(L). (6.12)

Since Q ∈ T o is regular, (AdQ − id) is invertible on T ⊥, and therefore Y⊥ is uniquely found to 
be given by (6.10). The constituent YT of Y is left undetermined, since we have not fixed the 
residual gauge transformations that map Z to Z . �

In principle, one can construct the solutions of the equations of motion by projecting the 
unreduced flow (3.11) as follows. Pick any initial values Q(0), L(0) defined by a point of Z . 
Then, there exists η(t) ∈ G and unique Q(t), in general from the closure of the Weyl alcove T o, 
verifying

Q(t) = η(t) exp(tV(L(0)))Q(0)η(t)−1. (6.13)

If exp(tV(L(0)))Q(0) belongs to Greg, which certainly holds for small t , then one can choose 
η(t) in such a way to depend analytically on t and on the initial values. The resulting Q(t) ∈T o

and L(t) = η(t)L(0)η(t)−1 solve the equations of motion (6.9). Along this solution, one has

Y(t) = η̇(t)η(t)−1. (6.14)

We note that V(L(t)) = η(t)V(L(0))η(t)−1 follows, since h ∈ C∞(B)G (see (6.4))). As η(t) can 
be replaced by T (t)η(t) with an arbitrary function T (t) ∈ T , one can eliminate YT for any given 
solution.

According to (6.6), the time development of p can be recovered from the decomposition

L(t) = bR(t)bR(t)† = n+(t)e2p(t)n+(t)†, with n+(t) ∈ B+. (6.15)

After finding Q(t), and bR(t) from L(t), the time development of S follows from (6.7).
It requires further delicate analysis to see whether and for which dressing orbits can the tra-

jectory gR(t) = exp(tV(L(0))Q(0) leave the set of regular elements. Then some aspects of our 
analysis break down, although Q in the closure of T o still remains a well-defined gauge invariant 
object. Moreover, it follows from general results [49,50] that the reduced Hamiltonian flows are 
all complete, and they stay inside the symplectic strata of the full reduced phase space. We plan 
to investigate this issue, first in examples, in a future work.
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Remark 6.2. For regular Q = eiq , let R(Q) ∈ End(G) be the following linear operator:

R(Q)|T := 0, R(Q)|T ⊥ := 1

2
(AdQ + id)

(
(AdQ − id)|T ⊥

)−1 = 1

2
coth

(
1

2
(adiq)|T ⊥

)
.

(6.16)

Viewing it as a function of iq ∈ Treg, this is a solution of the modified classical dynamical Yang–
Baxter equation [13]. The equations of motion (6.9) admit the equivalent form

Q̇ = VT (L)Q and L̇ = [Y ′
T + R(Q)(V(L)),L]. (6.17)

Here, Y ′
T = YT + 1

2VT (L), which is as arbitrary as YT is, and we used that, in consequence of 
the definitions, [V(L), L] = 0. We recall [17] that the same dynamical R-matrix features in the 
equations of motion of the spin Sutherland models of Section 2. However, for those models the 
Lax matrix belongs to iG, while our L lies in exp(iG).

As an illustration, let us consider

h := tr(bRb
†
R) (6.18)

for GC
R = SL(n, C). The form of the corresponding reduced Hamiltonian was presented in the 

preceding section. To display the reduced equations of motion, note that in this case

V(L) = 2iL − 2i

n
tr(L)1n. (6.19)

Writing Q = exp (diag(iq1, . . . , iqn)), (6.10) gives

Yjk =
(

cot
qj − qk

2
− i

)
Ljk for 1 ≤ j �= k ≤ n. (6.20)

Substitution into (6.9) yields the equations of motion:

q̇j = 2Ljj − 2

n
tr(L), L̇jj = 2

∑
��=j

|Lj�|2 cot
qj − q�

2
, (6.21)

and, for 1 ≤ j �= k ≤ n,

L̇jk =
∑
��=j

Lj�L�k cot
qj − q�

2
−

∑
��=k

Lj�L�k cot
q� − qk

2

+(Yjj − Ykk + iLjj − iLkk)Ljk. (6.22)

Since the diagonal entries of Y are arbitrary, one can choose them in such a way to get rid of the 
second line in L̇jk . After analytic continuation from trigonometric to hyperbolic functions, these 
equations coincide with Eq. (15) in [5] as well as with Eq. (5.15) in [29]. They are also special 
cases of Eq. (3.36) in [3] if the ‘potential’ that appears there is taken to be simply cot(q) instead 
of cot(q) − cot(q + γ ), i.e., if we omit the term containing the coupling constant γ .

Remark 6.3. In the papers [29,30], L.-C. Li constructed certain hyperbolic spin RS type models. 
The construction begins with Hamiltonian systems on T C

reg × GC
R × T C

reg, which is a coboundary 
dynamical Poisson groupoid based on a classical dynamical R-matrix. The R-matrix in question 
is a map from T C

reg to End(GC) that can be chosen to be a natural extension of the R-matrix in 
R
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(6.16). The next step involves restriction to the fixed point set of a suitable Poisson involution, 
and subsequent Hamiltonian reduction. In the case described in most detail in [30], the fixed 
point set has the form iTreg × H, where H ⊂ GC

R is the fixed point set of the inverse of the Car-
tan involution, i.e., the set of Hermitian elements. Upon analytic continuation from hyperbolic 
to trigonometric functions, the equations of motion, worked out in [29,30] for GC = SL(n, C), 
coincide with the equations presented above. Moreover, commuting Hamiltonians are obtained 
in [30] from the G-invariant functions on H, similarly to our usage of C∞(P)G. However, be-
cause the constructions are very different, it is not clear at present whether the reduced Poisson 
structures are also related by analytic continuation. We expect that this is the case, but it requires 
further effort to show it. We note that neither the distribution of the variables as q, p and S, nor 
the connection between the spin RS type models and spin Sutherland models appear in [29,30].

6.2. Integrals of motion and Lax equations

We noted in Section 4 that the unreduced free system is degenerately integrable. The unre-
duced free Hamiltonians form the Abelian Poisson algebra

CI (M) = �∗
R

(
C∞(B)G

)
. (6.23)

The elements of CJ (M) (4.3) represent integrals of motion, since they Poisson commute with 
every element of CI (M) ⊂ CJ (M). It is known that, generically, degenerate integrability is 
inherited under Hamiltonian reduction based on a compact symmetry group. In the C∞ category, 
it is also known that degenerately integrable systems are integrable in the usual Liouville sense, 
too. For precise statements, see the reviews [23,56] and references therein. The arguments of 
Reshetikhin [41,42], which show degenerate integrability by proving the existence of enough 
analytic integrals of motion on a dense open subset of the reduced phase space, can be also 
adapted to our case.

However, for a concrete integrable system one is not content with existence statements, but 
would like to obtain the required integrals of motion in explicit form. The elements of CI(M) are 
the G-invariant functions of the ‘unreduced Lax matrix’ bRb

†
R , and they descend to the reduced 

phase space, since CI (M) ⊂ C∞(M)G. Now we exhibit a large class of G-invariant elements 
of CJ (M). To this end, let us consider an arbitrary polynomial

P(bRb
†
R,g−1

R bRb
†
RgR) (6.24)

in the two non-commutative variables that belong to P (3.13). Take an arbitrary finite dimen-
sional representation ρ of GC

R , whose restriction to G is unitary. Then the real an imaginary 
parts of the function F , given on M by

F(K,S) := trρ
(
P(bRb

†
R,g−1

R bRb
†
RgR)

)
, (6.25)

are G-invariant elements of CJ (M). In order to see this, one may use the relation

g−1
R bRb

†
RgR = b−1

L (b−1
L )†, (6.26)

which follows from (3.4), and the fact that bRb
†
R transforms in the same way as gR (4.28). These 

G-invariant integrals of motion descend to smooth (even real analytic, and in a certain sense 
algebraic) functions on the full reduced phase space. They are generalizations of the conserved 
quantities trρ(P(J, gJg−1)) displayed in Section 2.
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Upon imposing the moment map constraint and working in the diagonal gauge, where gR =
Q ∈ T o, we obtain

g−1
R bRb

†
RgR = Q−1LQ with L ≡ bRb

†
R. (6.27)

Thus the above constants of motion take the form trρ
(
P(L,Q−1LQ)

)
. Special cases of these 

conserved quantities can be generated by evaluation of the trace on powers of the following 
spectral parameter (denoted by λ) dependent Lax matrix:

L := L + λQ−1LQ. (6.28)

Working in the diagonal gauge, the Hamiltonian vector field of H ∈ CI (M), for which 
H(K, S) = h(bR), implies the Lax equation

L̇ = [Y,L]. (6.29)

Here, Y is the G-valued function responsible for consistency with the (partial) gauge fixing. 
Equation (6.29) follows directly from (6.11) using that [V(L), L] = 0 because h ∈ C∞(B)G.

It is an open problem if the above exhibited integrals of motion are sufficient for the degenerate 
integrability of the reduced system. The question of Liouville integrability with real analytic 
integrals of motion also requires further study.

7. Discussion and outlook

In this paper we applied Hamiltonian reduction to ‘free systems’ on Heisenberg doubles, 
generalizing the derivation of the trigonometric spin Sutherland models (1.1) based on the cor-
responding cotangent bundles. The reduced systems that we obtained appear to be related by 
analytic continuation to certain hyperbolic spin RS type models introduced earlier by L.-C. Li in 
[30].5 The different approaches have various advantages with respect to each other.

Our approach can, in principle, accommodate action-angle duals of all of our systems. In-
deed, the unreduced phase space M supports two natural Abelian Poisson algebras, namely 
�∗

R(C∞(B)G) and �∗
R(C∞(G)G), which define two degenerately integrable systems. We 

worked out a model of the reduced phase space whereby the reduction of �∗
R(C∞(B)G) rep-

resents many-body Hamiltonians of spin RS type, and �∗
R(C∞(G)G) reduces to their position 

variables. There should exist another model of the same reduced phase space, making it possible 
to view the reduction of �∗

R(C∞(G)G) as many-body Hamiltonians with their position variables 
descending from �∗

R(C∞(B)G). This is the standard way to produce pairs of many-body sys-
tems in action-angle duality via reduction, see e.g. [3,15,37,41]. Another potential advantage of 
our method is that it automatically leads to complete flows of the interesting Hamiltonians on the 
full reduced phase space, simply since the unreduced flows are complete. This may not hold in 
the framework of [29,30], since it relies on dynamical R-matrices, whose domain of definition 
requires a restriction of the variables. In our present work, the restriction to regular elements of G
was merely a technical convenience, and we shall investigate the global features of our reduced 
systems in the future.

Here, it is proper to stress that the method of [29,30] is applicable for a large class of dy-
namical R-matrices, not only for the standard trigonometric R-matrix, which is related to our 

5 Incidentally, we noticed the connection with [30] only during the completion of this manuscript.
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case. We plan to report the precise relationship between our systems and those in [30] in a future 
publication.

In passing, we wish to mention that other approaches are also available for constructing 
trigonometric/hyperbolic spin RS type systems. In particular, the moduli space of flat GC con-
nections on a torus with a hole is believed to support such systems at arbitrary monodromy. These 
moduli spaces can be described, e.g., by quasi-Hamiltonian reduction or by the approach of Fock 
and Rosly [19]. See also Section 6 in [42], and references therein. Our systems should be related 
to real forms of these holomorphic systems.

We gave a linear algebraic algorithm for obtaining the solutions of our spin RS type models, 
and advanced some arguments in favor of their degenerate integrability. It could be interesting to 
further explore their integrability properties. The ultimate aim would be to exhibit the required 
number of (real analytic) integrals of motion in explicit form on every symplectic strata [49,50]
of Mred.

The present work can be generalized in such a way to obtain Poisson-Lie analogues of the 
spin Sutherland models based on the cotangent lifts of twisted conjugations acting on G [17]. 
Moreover, it should be possible to use our approach as the starting point for developing the 
quantum mechanics of the spin RS type systems. For this, one should generalize the quantization 
of the spin Sutherland models that proceeds via quantum Hamiltonian reduction and related 
methods of harmonic analysis [12,18].

Another organic continuation of the present work, whose implementation is in progress in col-
laboration with I. Marshall, consists in deriving Poisson-Lie analogues of the real, trigonometric 
Gibbons–Hermsen model [20]. For this purpose, one needs to reduce a phase space of the form

GL(n,C) ×Cn × · · · ×Cn (7.1)

with an arbitrary number, k ≥ 2, of copies of Cn. Here, GL(n, C) is the Heisenberg double of 
the Poisson-Lie group U(n), and Cn carries a symplectic structure that enjoys U(n) Poisson-Lie 
symmetry [54]. The pertinent moment map constraint can be written as

�L�R�Cn

1 �Cn

2 · · ·�Cn

k = eγ 1n, (7.2)

where γ is a non-zero real constant, and the �Cn

i (i = 1, . . . , k) are Poisson-Lie moment maps 
on the independent copies of Cn. At the level of the equations of motion, we have proved that 
this construction yields the trigonometric real form of the spin RS systems studied earlier in [3,
28,40], but still have not completed the description of the resulting reduced Poisson brackets. For 
recent derivations of the Poisson structure of the Krichever–Zabrodin type trigonometric spin RS 
models in the complex holomorphic case, we refer to the papers [9,4]. Our construction should 
lead to a real form of the Poisson structure obtained in these papers.
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