
Information Technology and Control 2019/3/48432

Study of the Performance of
Various Classifiers in Labeling
Non-Functional Requirements

ITC 3/48
Journal of Information Technology
and Control
Vol. 48 / No. 3 / 2019
pp. 432-445
DOI 10.5755/j01.itc.48.3.21973

Study of the Performance of Various Classifiers in Labeling
Non-Functional Requirements

Received 2018/09/30 Accepted after revision 2019/07/29

 http://dx.doi.org/10.5755/j01.itc.48.3.21973

Corresponding author: premissa@inf.u-szeged.hu

László Tóth
Department of Software Engineering, University of Szeged, Hungary; e-mail: premissa@inf.u-szeged.hu

László Vidács
MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Hungary; e-mail: lac@inf.u-szeged.hu

Software systems are to be developed based on expectations of the customers. These expectations are expressed
using natural languages. To design software meeting the needs of the customer and the stakeholders, the inten-
tions, feedback and reviews are to be understood accurately and without ambiguity. These textual inputs often
contain inaccuracies, contradictions and are seldom given in a well-structured form. The issues mentioned in
the previous thought frequently result in the program not satisfying the expectation of the stakeholders. In par-
ticular, for non-functional requirements, clients rarely emphasize these specifications as much as they might
be justified. Identifying, classifying and reconciling the requirements is one of the main duty of the System An-
alyst, which without using a proper tool, can be very demanding and time-consuming. Tools which support text
processing are expected to improve the accuracy of identification and classification of requirements even in an
unstructured set of inputs. System Analysts can also use them in document archeology tasks where many docu-
ments, regulations, standards, etc. have to be processed. Methods elaborated in natural language processing and
machine learning offer a solid basis. However, their usability and the possibility to improve the performance
utilizing the specific knowledge from the domain of the software engineering are to be examined thoroughly. In
this paper, we present the results of our work adapting natural language processing and machine learning meth-
ods for handling and transforming textual inputs of software development. The major contribution of our work
is providing a comparison of the performance and applicability of the stateof-the-art techniques used in natural
language processing and machine learning in software engineering. Based on the results of our experiments,
tools which can support System Analysts working on textual inputs can be designed.
KEYWORDS: Requirements Engineering, Feedback processing, Natural Language Processing, Machine
Learning.

mailto:obodovskiy58@gmail.com

433Information Technology and Control 2019/3/48

1. Introduction
Software systems are made based on specifications
composed of functional and non-functional require-
ments. The needs and expectations of the customers
are expressed by requirements mostly given in a natu-
ral language form. These textual documents are often
ambiguous and sometimes also contain contradic-
tions. To use the collected requirements for software
design, they must be formalized and any inconsisten-
cies need to be removed. These tasks, without using a
proper tool, can be demanding and time-consuming.
Tools supporting System Analysts in requirements
engineering provide templates, checklists, traceabil-
ity, management and reporting environment to facil-
itate their work, but these tools can support process-
ing of requirements given in textual form only to a
limited extent [8].
Non-functional requirements (NFRs) are also cru-
cial factors for software design [18]. The lack of a
well-structured set of non-functional requirements
can lead to an inappropriate software design and
the failure of the project. Security aspects are also
a critical part of the design, and their significance is
growing steadily today. Every requirement related to
security is to be taken into consideration, but it can
be difficult without the corresponding non-function-
al requirements. Many NFRs are out of the analysis
and those non-functional requirements considered
during analysis are often weakly elaborated. Incom-
plete or ambiguous specifications can lead the system
into an undefined state.
The quality of requirements is the primary factor of
the success of a software project. Though, there are
several problems to be faced with regarding the re-
quirements. Firesmith in his article issued in Journal
of Object Technology in 2007 has collected the most
common issues related to requirements engineering
along with some practice to solve these problems [17].
Although steps have been taken to improve the qual-
ity of the specifications, unsuccessful software proj-
ects are still being attributed largely to the inadequate
requirements engineering [21].
As mentioned above, the requirements are available
mainly in textual form. However, this is valid for ev-
ery customer feedback, error ticket and specification.
In the case of a complex project, various requirements
are collected from documents, regulations reports, so

System Analyst has to process a lot of documents.
These documents are well-structured and use busi-
ness language. The main challenge for processing
business documents is to manage texts and to iden-
tify information relevant to the application being
made. In addition to the business documents, the
basic sources of the requirements are the interviews
with clients and stakeholders. The memos or records
created during interviews are often unstructured or
semi-structured and often contain ambiguities, logi-
cal fallacies. Non-functional requirements are most-
ly given as a part of the text but sometimes they are
expressed superficially. Identifying and classifying
requirements from this collection of different doc-
uments can be demanding and error-prone. Several
investigations have been accomplished with remark-
able results to support the identification and classifi-
cation process using natural language processing and
machine learning methods [1, 3, 4, 9, 24, 25, 33, 34].
Some researchers investigated the use of ontologies,
which have been created based on the standards [3,
33]. Some researchers like Lu and Liang [25] or Abad
et al. [1] utilized supervised learning methods, others
utilized semisupervised learning techniques such as
Expectation Maximization strategy [9]. Abad et al.
applied also clustering techniques to identify the best
method for processing requirements sentences [1].
These studies have shown that natural language pro-
cessing and machine learning methods can be utilized
successfully also for requirements engineering.
To apply machine learning along with natural lan-
guage processing (NLP) methods, several learning
examples have to be available, however, there are only
a few labeled examples that can be accessed via the
Internet. This is especially true for the collection of
non-functional requirements which are often over-
looked during the requirements elicitation. The ma-
jority of researchers have used the Tera Promise NFR
dataset which was created by the students of DePaul
University [7, 13]. This dataset contains 625 examples
of 15 projects classified into 12 classes. Some classes
contain only very few examples which is detrimental
to machine learning methods.
One possible direction for overcoming the shortage
of labeled examples is using semi-supervised meth-
ods which can give better results at these conditions

Information Technology and Control 2019/3/48434

as shown by Casamayor et al. [9]. Using ontologies as
a background knowledge representation is another
possible solution [3, 33], but building a proper ontol-
ogy-based database is a tedious and time-consuming
task. Rashwan et al. have created an ontology based
on the ISO/IEC 9126-1:2001.1 In addition to these
strategies, corpus of requirements also can be built.
Software repositories make available various open
source software which can provide also sources of
requirements related to the specific software [31, 32].
Extracting requirements from these repositories and
building corpus can support the usage of machine
learning processes effectively.
Applying NLP and machine learning methods for
requirements engineering is based on the assump-
tion that these methods can facilitate the work of
System Analysts as reducing the amount of manual
work, therefore, reduce the time needed for elicita-
tion and the cost of the analysis. This assumption has
also been confirmed by Groen et al. in their investi-
gation [19]. To support System Analysts in choosing
the appropriate procedure, investigations have been
proceeded for comparison of the performance of the
methods [1, 9, 25, 38]. The researchers found that
Multinomial Naive Bayes and the Support Vector
Machine (SVM) using the linear kernel had given the
best performance using only a few labeled examples
such as the NFR dataset.
Our work is focusing on comparison the methods in-
cluding the application of the simplest deep neural net-
work. In our former work, we have compared methods
implemented in scikit-learn library [30] using the NFR
dataset [38]. Our work has confirmed that the Multino-
mial Naive Bayes and the SVM might be the best choice
if there are only a few labeled examples available. The
scikit-learn library contains also a Multilayer Percep-
tron (MLP) classifier which has produced the worst
result in our experiment owing to the small dataset. To
ensure that the small dataset does not hinder the ex-
periments, we have collected tagged posts from Stack
Overflow and used them in our examinations. We have
repeated the former experiments with the new dataset
and also the Fully Connected Network constructed us-
ing Keras library have been tested and compared to the
non-deep learning methods. The applicability and the
restrictions of our methodology is shown in detail in
the background section.

1 This standard has been revised and a new standard was pub-
lished in 2011 as the ISO/IEC 25010:2011.

The contribution of our work is providing a com-
parison of the performance and applicability of the
stateof-the-art techniques used in natural language
processing and machine learning in software engi-
neering. Additionally, the effects of the size of the
dataset are also demonstrated.
The paper is organized as follows. The next section in-
troduces our approach and analysis model. In Section
3, we introduce the dataset of non-functional require-
ments and compare it to the dataset from Stack Over-
flow. Section 4 provides the findings of our analysis
produced by various classifiers and compares closely
related work. The related literature is briefly presented
in Section 5 and we conclude the paper in Section 6.

2. Background
The source of the requirements is the collection of
business documents, laws, regulations, and records of
interviews. These documents contain texts written in
natural languages. In order to be able to classify these
texts, they have to be pre-processed. This transforma-
tion process converts the raw text into a vectorized
form which can be used for machine learning proce-
dures. The procedure involves common natural lan-
guage techniques such as tokenization and filtering.
At the end of the procedure, the input is converted into
a vectorized form. The most common representation
is the tf-idf model which was used also in our experi-
ments. This representation measures the importance
of a given word in a given document and produces a
sparse matrix as the representation of the whole text.
The measure of tf-idf is formulated as:

tfidf(t,d,D) = tf(t,d) ∗ idf(t,D),

where t denotes terms (words in our case), d denotes
the document (sentences or Stack Overflow posts in
our case) and D denotes the collection of documents
(the set of sentences or set of posts in our case). The
tf(t,d) is the term frequency in a given document. The
idf (inverse document frequency) is formulated as:

.

For tokenization, we used the Keras Tokenizer [11]
which applies filtering, lower case converting and

435Information Technology and Control 2019/3/48

splitting words before the conversion into tf-idf based
vector.
Two different datasets were applied to our experi-
ments. For the first tests, we used the Tera Promise
NFR dataset which was constructed by the MS stu-
dents of DePaul University [7, 13]. This dataset con-
tains 625 requirements collected from 15 different
projects. The sentences containing the requirements
are classified into 12 classes from which one class rep-
resents functional requirements and the other 11 class-
es correspond to various types of non-functional re-
quirements. The statistics about the classification and
the related projects is shown in Table 1 and Figure 1.

Figure 1
Distribution of the Promise NFR dataset

The source of the second series of our experiments
was a dataset queried from Stack Overflow. The data-
set is composed of a sequence of tagged posts. Posts
contain English texts and sometimes code fragments
are occurring. Stack Overflow is an important source
also for researchers. Extracting topics related to
non-functional requirements is also common [5, 6, 39,
40]. We have chosen posts tagged with performance
or test related labels for our experiments. Testability
and the performance are very important factors for
software quality and these topics are also discussed
thoroughly via Stack Overflow. This dataset contains
50000 posts where 20166 posts correspond to per-
formance and 30753 posts correspond to test. Stack
Overflow posts are multi-labeled so 919 posts are la-
beled both test and performance.
There were two different experiment series conduct-
ed. The first series used the Tera Promise NFR data-
set and applied a set of classifiers from scikit-learn
library [38]. The second series used the dataset from
Stack Overflow and also applied classifiers provided
by scikit-learn and supplemented by a classifier based
on a simple Neural Network solution using Keras and
Tensorflow [2] background.
For evaluation, we have employed precision, recall
and F1 metrics. The precision is formulated as:

,

Table 1
Requirement labels in the 15 projects of the Promise NFR dataset

Requirement type
Project No

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Functional (F) 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Availability (A) 1 2 2 0 2 1 0 5 1 1 2 1 1 1 1 21
Fault tolerance (FT) 0 4 0 0 0 2 0 2 0 0 0 2 0 0 0 10
Legal (L) 0 0 0 6 3 0 1 3 0 0 0 0 0 0 0 13
Look and feel (LF) 1 4 0 2 3 2 0 6 0 7 2 2 4 3 2 38
Maintainability (MN) 0 0 0 0 0 4 0 2 1 0 1 3 2 2 2 17
Operational (O) 0 0 7 6 10 15 3 9 2 0 0 2 2 3 3 62
Performance (PE) 2 6 2 2 4 1 2 17 4 4 3 5 0 1 1 54
Portability (PO) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Scalability (SC) 0 3 4 0 3 4 0 4 0 0 0 1 2 0 0 21
Security (SE) 1 3 10 10 7 5 2 15 0 1 3 3 2 2 2 66
Usability (US) 3 6 8 4 5 13 0 10 0 2 2 3 6 4 1 67
Total NFRs 8 29 33 30 37 47 8 73 8 15 13 22 19 16 12 370
Functional 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Total Requirements 28 40 80 55 73 74 23 93 24 53 13 22 19 16 12 625

Information Technology and Control 2019/3/48436

where tp is the true positive which is the number of
correct positive classification, fp denotes the false
positive which is the case when classifier accepts
the example but it has to be rejected. This measure is
called also as Type I error.
Recall can be formulated as:

,

where fn denotes the false negative which is the case
when classifier rejects the example but it has to be ac-
cepted. This measure is called also as Type II error.
The recall is also an important metric for our purpose
because one of the most important usage of our work
might be the identification of non-functional require-
ments from their textual context and in this case, it is
crucial to find them in the input. However, the preci-
sion is as the essential metric as the recall. Taking into
account the purpose of the classifier of non-function-
al requirements the most adequate metric is the F1.
F1 is formulated as:

.

Note: F1 is a special case of F-measure with β = 1 val-
ue. The F-measure is formulated as:

.

During the Stack Overflow based experiments, the
calculation of the metrics has been performed using
classification reports provided by the scikit-learn li-
brary. The report uses the calculation methods which
were applied directly in Promise based experiments.
For this former dataset, the averaged measures were
calculated manually but, for dataset obtained from
Stack Overflow, the average values were produced by
the classification report. Four types of averages were
calculated by the report which are the micro, macro,
weighted and samples averages.
Let denote yl the set of label l predicted by a classifier
and yˆl the set of classes with true label l. Let y = ∪yl
and yˆ = ∪yˆl, where l ∈ L and L is the set of labels. Then
the micro average of precision can be given as

.

The same is done for recall:

.

For macro averages, the formulas are the following:

.

Similar formulas can be used for sample averages,
where S denotes the set of samples:

.

For weigted averages, the following formulas can be
applied:

.

3. Experiments
As we have mentioned in the previous section, two
series of experiments were performed with two dif-
ferent datasets. Before the experiments datasets were
preprocessed. During this transformation filtering
and tokenization were applied and the resulted text
was transformed into tf-idf representation.
The Promise NFR dataset contains only one label for
each example but the dataset extracted from Stack
Overflow is multilabeled. We selected only two la-
bels (performance and test) for extraction to obtain

437Information Technology and Control 2019/3/48

a well-balanced input. During the preprocessing the
labels of dataset from Stack Overflow were also trans-
formed using one-hot encoding and the labels differ-
ent from our interest were filtered out.
In the first experiments, we accomplished classifi-
cation processes using algorithms implemented in
scikit-learn library on the dataset of Promise NFR
and compared the results each other and the results
obtained by Cassamayor et al. in their experiments
[9]. The objective of these experiments was to deter-
mine the best algorithm of classification implement-
ed in scikit-learn for requirements classification
tasks considering precision, recall and F-measure,
complemented by execution time. For these first se-
ries of experiments, we applied the following classi-
fiers: Multinomial-, Gaussian- and Bernoulli Naive
Bayes, Support Vector Machine with linear kernel,
Linear Logistic Regression, Label Propagation, La-
bel Spreading, Decision Tree, Extra Tree, K-Nearest
Neighbour and Multi Layer Perceptron. The selection
process was also influenced by the resource require-
ments of the classifiers.
The experiments were executed using repeated
K-Fold cross-validation method. Both the number of
groups and the repetition number were set to 10. The
classification was performed using one-versus-rest
strategy for each class. Using this strategy, the exam-
ined class is fitted against the other classes. Preci-
sion, recall and F-measure were calculated for each
test and each class by the corresponding scikit-learn
method and the results were averaged for each classi-
fier. Averaged variance was calculated as well and also
the F-measure value was computed for every classifi-
er using the averaged precision and recall because the
averaged F-measure does not hold any useful infor-
mation using this method of calculation.
The Stack Overflow based experiments applied
Multinomial, Gaussian- and Bernoulli Naive Bayes,
Support Vector Machine with linear kernel, Linear
Logistic Regression, Decision Tree, Extra Tree, and
K-Nearest Neighbour classifiers from scikit-learn li-
brary, and the experiments were supplemented using
a fully connected neural network with Keras and Ten-
sorflow back-end. The MLP test was removed from
this series because the implemented fully connected
network gives better scalability and the applied strat-
egy is similar in the two cases. The LabelPropagation

and the LabelSpreading were also removed because
we experienced performance issues applying it on the
Stack Overflow dataset.
The original dataset extracted from Stack Overflow
contains 50000 examples which were split to a train-
and a test-set. The train-set contains 35000 train-
posts whereas the test-set contains 15000 posts.
The classifiers from scikit-learn were applied using
one-versus-rest strategy. The precision, recall and the
F1-measure were calculated for each class and the av-
erages were also determined as we described it in the
previous section.
The Fully Connected Network was constructed using
Keras libraries and Tensorflow back-end. Our model
contains 1024 units in the first layer. The number of
units and the input shape can be varied, the shape has
to be aligned with the dimension of tf-idf vectors. In
our case, this dimension is 3000 which is the number
of the selected most frequent words from the input
dataset. As mentioned before, this hyperparameter
can be varied, however, our experiments did not yield
better results in case of the bigger dimension. In gen-
eral, this parameter depends on the size of the vocab-
ulary of the dataset in question.
For the purpose of the regularization, the dropout
technique was applied. The dropout regularization
selects a given proportion of the units randomly and
inactivates them during the learning phase. The ratio
of the neurons is to be inactivated is a hyperparame-
ter which can be tuned during the experiments. The
activation function of the first layer is the ReLU (Rec-
tified Linear Unit). This function produces 0 for every
negative input and any positive x it returns with that
value. (Formula: f(x) = max(0,x)). The second layer is
a softmax layer whose output size is the same as the
number of classes under investigation. The softmax
function can be written as:

,

where K is the number of classes. The formula provides
a probability value for every class used in the model.
The network was trained using the categorical
cross-entropy as a loss function and the adam opti-
mizer [23] was applied. The equiation of categorical
cross-entropy is:

Information Technology and Control 2019/3/48438

,

Adam (Adaptive Moment Estimation) is a gradi-
ent-based optimizer for stochastic objective func-
tions which applies adaptive estimation of lower-or-
der moments which help the algorithm to not stuck in
a local optimum. The optimizer combines the advan-
tages of AdaGrad and RMSProp methods [23]. The
update rule of Adam is:

,

where m̂ t and v̂t are the second order moments which
are calculated as:

,

where mt and vt are the first-order moments which are
updated as:

mt = β1mt−1 + (1 − β1)gt vt = β2vt−1 + (1 − β2)gt
2.

For β1, 0.9 is proposed by the authors as the default
value, whereas, for β2, 0.999 and 10−8 for [23]. We used
the default values for our experiments.
In addition to the performance of classifiers, the ex-
ecution time was also measured during the experi-
ments.

4. Results
In Table 2, the measured averages of Precision, Recall
and F-measure related to the first series of our exper-
iments based on the Tera Promise NFR dataset with
their averaged variance are presented. As mentioned
in the previous section, averaging F-measure does not
hold valuable information so F-measure was comput-
ed based on averages precision and recall. The averag-
es of precision, recall and F-measure values and their
variance are illustrated in Figure 2. For comparison
purpose, the results are illustrated using line dia-
grams. The results show that the SVM has produced
the best precision value, however, the recall is only
65% which is the median value of the results. The
Multinomial Naive Bayes and Logistic Regression
have produced the best F1 values but the F1 value of
the SVM is only 1% lower. As one can see in the chart,
the MLP has produced the worst result. The size of

Table 2
Precision, recall and F-measure values during the classification of the Promise NFR

Classifier
Average Comp Variance

P R F F P R F

BernoulliNB 0.43 0.22 0.25 0.29 0.18 0.09 0.06

DT 0.66 0.64 0.62 0.65 0.01 0.03 0.01

ET 0.63 0.62 0.59 0.62 0.01 0.04 0.02

ETs 0.63 0.63 0.59 0.63 0.01 0.04 0.02

GNB 0.72 0.69 0.67 0.70 0.02 0.02 0.02

KNeighbours 0.71 0.52 0.55 0.60 0.08 0.07 0.05

LabelPropagation 0.70 0.68 0.65 0.69 0.02 0.03 0.02

LabelSpread 0.70 0.67 0.65 0.68 0.02 0.03 0.02

Logistic 0.87 0.67 0.72 0.76 0.01 0.05 0.03

MLP 0.38 0.66 0.36 0.48 0.01 0.03 0.01

MultinomialNB 0.84 0.68 0.72 0.75 0.02 0.03 0.02

SVM 0.89 0.65 0.71 0.75 0.01 0.05 0.02

439Information Technology and Control 2019/3/48

the dataset is too small for applying the Multilayer
Perceptron classifier, but this result can be explained
with the underfitted model.
The variance of the measures can be seen on the right
side of the chart. As one can see the Bernoulli Naive
Bayes and the KNeighbours have resulted in the larg-
est variance, but the top 3 classifiers (Logistic Regres-
sion, Multinomial Naive Bayes and SVM) have a small
variance. The average variance is relatively low, the
values are lower than 5% for every metrics.
As the results of our first-series experiments pres-
ent, regarding the precision the Multinomial Naive
Bayes Classifier, Support Vector Machine with linear
kernel and Linear Logistic Regression have produced
the best values. The Naive Bayes Classifier was found
also in former researches as the best classifier for
classification of requirement sentences comparing it
to other classifiers such as the tf-idf classifier [9], the
k-Nearest Neighbour [1, 9], the Bittern Topic Model
(BTM) or the Latent Dirichlet Allocation (LDA) [1].
Lu and Liang have found that the SVM classifier has
performed best during their research [25].
The second series of the experiments used dataset
obtained from Stack Overflow. This dataset is large
enough for machine learning purpose. While the
Promise NFR contains 625 examples, this dataset
contains 50000 examples. The main drawback re-

garding Stack Overflow dataset is its noisy nature.
Noisiness means in our case that there are several
false or off-topic posts presents in the database. Nois-
iness also means that there are many code-fragments
presented which have to be also filtered out.
The results of the second series of experiments (Stack
Overflow) are presented in Table 3 and Table 4, re-

Figure 2
Precision, recall, f-measures (left) and their variance (right) during classification of the Promise NFR

 Table 2. Precision, recall and F-measure values during the classification of the Promise NFR
Classifier Average Comp Variance

 P R F F P R F

BernoulliNB 0.43 0.22 0.25 0.29 0.18 0.09 0.06
DT 0.66 0.64 0.62 0.65 0.01 0.03 0.01
ET 0.63 0.62 0.59 0.62 0.01 0.04 0.02
ETs 0.63 0.63 0.59 0.63 0.01 0.04 0.02
GNB 0.72 0.69 0.67 0.70 0.02 0.02 0.02
KNeighbours 0.71 0.52 0.55 0.60 0.08 0.07 0.05
LabelPropagation 0.70 0.68 0.65 0.69 0.02 0.03 0.02
LabelSpread 0.70 0.67 0.65 0.68 0.02 0.03 0.02
Logistic 0.87 0.67 0.72 0.76 0.01 0.05 0.03
MLP 0.38 0.66 0.36 0.48 0.01 0.03 0.01
MultinomialNB 0.84 0.68 0.72 0.75 0.02 0.03 0.02
SVM 0.89 0.65 0.71 0.75 0.01 0.05 0.02

Figure 2. Precision, recall, f-measures (left) and their variance (right) during classification of the Promise NFR

Table 3. Precision, recall and F-measure values during the classification of the dataset from Stack Overflow

Classifier micro average macro average

 P R F P R F

BernoulliNB 0.91 0.91 0.91 0.90 0.90 0.90
GaussianNB 0.82 0.81 0.81 0.84 0.84 0.81
MultinomialNB 0.92 0.91 0.92 0.92 0.92 0.92
DecisionTree 0.91 0.91 0.91 0.91 0.90 0.90
ExtraTree 0.84 0.84 0.84 0.83 0.83 0.83
LogisticRegr 0.95 0.95 0.95 0.95 .95 0.95
KNeighbours 0.80 0.80 0.80 0.82 0.76 0.77
SVM 0.95 0.94 0.94 0.94 0.94 0.94
FullyConnected 0.96 0.94 0.95 0.96 0.94 0.95

Table 3
Precision, recall and F-measure values during the classification
of the dataset from Stack Overflow

Classifier
micro

average
macro

average

P R F P R F

BernoulliNB 0.91 0.91 0.91 0.90 0.90 0.90

GaussianNB 0.82 0.81 0.81 0.84 0.84 0.81

MultinomialNB 0.92 0.91 0.92 0.92 0.92 0.92

DecisionTree 0.91 0.91 0.91 0.91 0.90 0.90

ExtraTree 0.84 0.84 0.84 0.83 0.83 0.83

LogisticRegr 0.95 0.95 0.95 0.95 .95 0.95

KNeighbours 0.80 0.80 0.80 0.82 0.76 0.77

SVM 0.95 0.94 0.94 0.94 0.94 0.94

FullyConnected 0.96 0.94 0.95 0.96 0.94 0.95

Information Technology and Control 2019/3/48440

Table 4
Precision, recall and F-measure values during the
classification of the dataset from Stack Overflow

Classifier
weighted
average

samples
average

P R F P R F

BernoulliNB 0.91 0.91 0.91 0.91 0.91 0.91

GaussianNB 0.87 0.81 0.81 0.82 0.82 0.81

MultinomialNB 0.92 0.91 0.92 0.93 0.92 0.92

DecisionTree 0.91 0.91 0.91 0.90 0.91 0.90

ExtraTree 0.84 0.84 0.84 0.80 0.85 0.80

LogisticRegr 0.95 0.95 0.95 0.95 0.96 0.95

KNeighbours 0.80 0.80 0.79 0.80 0.80 0.80

SVM 0.95 0.95 0.94 0.94 0.95 0.94

FullyConnected 0.96 0.94 0.95 0.96 0.95 0.95

spectively. The results are also illustrated in Figure 3
and in Figure 4. According to the results of the Logis-
tic Regression, the SVM and the FCN have produced
the best values. The FCN has yielded the strongest
values of precision and F-measure in all calculated
averages. However, regarding the F-measure the re-
sults of Logistic Regression are the same as those of
the FCN. In the case of the recall, the Logistic Regres-
sion has outperformed the other classifiers, however,
the results of the FCN are only 0.1% lower.

Figure 3
Average precision, recall values during classification of the
dataset from Stack Overflow

Table 4. Precision, recall and F-measure values during the classification of the dataset from Stack Overflow
Classifier weighted average samples average

 P R F P R F

BernoulliNB 0.91 0.91 0.91 0.91 0.91 0.91
GaussianNB 0.87 0.81 0.81 0.82 0.82 0.81
MultinomialNB 0.92 0.91 0.92 0.93 0.92 0.92
DecisionTree 0.91 0.91 0.91 0.90 0.91 0.90
ExtraTree 0.84 0.84 0.84 0.80 0.85 0.80
LogisticRegr 0.95 0.95 0.95 0.95 0.96 0.95
KNeighbours 0.80 0.80 0.79 0.80 0.80 0.80
SVM 0.95 0.95 0.94 0.94 0.95 0.94
FullyConnected 0.96 0.94 0.95 0.96 0.95 0.95

 Figure 3. Average precision, recall values during classification of the dataset from Stack Overflow

Figure 4. Average F1-measure during the classification of the dataset from Stack Overflow

0
1 , 0

0 , 2
0 , 3
0 , 4
0 , 5
0 , 6

7 0 ,
, 8 0
9 , 0
1

F1 - measure

micro
macro
weighted
sample

Table 4. Precision, recall and F-measure values during the classification of the dataset from Stack Overflow
Classifier weighted average samples average

 P R F P R F

BernoulliNB 0.91 0.91 0.91 0.91 0.91 0.91
GaussianNB 0.87 0.81 0.81 0.82 0.82 0.81
MultinomialNB 0.92 0.91 0.92 0.93 0.92 0.92
DecisionTree 0.91 0.91 0.91 0.90 0.91 0.90
ExtraTree 0.84 0.84 0.84 0.80 0.85 0.80
LogisticRegr 0.95 0.95 0.95 0.95 0.96 0.95
KNeighbours 0.80 0.80 0.79 0.80 0.80 0.80
SVM 0.95 0.95 0.94 0.94 0.95 0.94
FullyConnected 0.96 0.94 0.95 0.96 0.95 0.95

 Figure 3. Average precision, recall values during classification of the dataset from Stack Overflow

Figure 4. Average F1-measure during the classification of the dataset from Stack Overflow

0
1 , 0

0 , 2
0 , 3
0 , 4
0 , 5
0 , 6

7 0 ,
, 8 0
9 , 0
1

F1 - measure

micro
macro
weighted
sample

Figure 4
Average F1-measure during the classification of the
dataset from Stack Overflow

Table 4. Precision, recall and F-measure values during the classification of the dataset from Stack Overflow
Classifier weighted average samples average

 P R F P R F

BernoulliNB 0.91 0.91 0.91 0.91 0.91 0.91
GaussianNB 0.87 0.81 0.81 0.82 0.82 0.81
MultinomialNB 0.92 0.91 0.92 0.93 0.92 0.92
DecisionTree 0.91 0.91 0.91 0.90 0.91 0.90
ExtraTree 0.84 0.84 0.84 0.80 0.85 0.80
LogisticRegr 0.95 0.95 0.95 0.95 0.96 0.95
KNeighbours 0.80 0.80 0.79 0.80 0.80 0.80
SVM 0.95 0.95 0.94 0.94 0.95 0.94
FullyConnected 0.96 0.94 0.95 0.96 0.95 0.95

 Figure 3. Average precision, recall values during classification of the dataset from Stack Overflow

Figure 4. Average F1-measure during the classification of the dataset from Stack Overflow

0
1 , 0

0 , 2
0 , 3
0 , 4
0 , 5
0 , 6

7 0 ,
, 8 0
9 , 0
1

F1 - measure

micro
macro
weighted
sample

The averages were calculated using the micro, macro,
weighted and samples calculation method. The for-
mulas of these methods are presented in the Section
2 of this paper. The suitability of these methods de-
pends on the input. Macro averages take the values
calculated for every class and calculate their average.
In the case of a well-balanced dataset, this average
can be useful, but when the size of the classes varies,
this method is not recommended. The micro average
can be applied for any cases and it is the best choice if
the size of the classes varies. If the size of the classes
is also an important factor, weighted averages can be
proposed. Sample averages calculate the averages of
the values of the instances. As one can see in Figures
3 and 4, these values differ but can be used in a similar
way to characterize classifiers.
The significance of the difference was tested using
the first five classifiers, the FCN, the SVM, the Lo-
gistic Regression, the Multinomial Naive Bayes and

441Information Technology and Control 2019/3/48

the Decision Tree Classifier. For the significance test,
we have applied one-way repeated measures ANOVA
test. The p-value of the test is 0.000575, which is sig-
nificant at p<0.05. Because the assumptions of ANO-
VA as the samples are drawn from a normal distribu-
tion and the variance homogeneity is not held, we also
performed a repeated measures Friedman Test [14].
The p-value in this case is 0.10739 which is not sig-
nificant at p<0.05. As mentioned before, the value of
the F-measure is the same of the FCN and the Logistic
Regression.
The variance was also calculated, however, only two
classes were included in the classification. The re-
sults of the calculation are shown in Table 5 and in
Figure 5. The results show that Gaussian Naive Bayes
has produced the biggest variance regarding the pre-
cision whereas the KNN yielded the biggest value re-
garding to the recall. Those classifiers, which present-
ed the best values, produced also a small variance.
The results of the second series of the experiments
(Stack Overflow based) confirmed the result of the
first series (Tera Promise based) as the SVM and the
Logistic Regression have produced the best values us-
ing scikit-learn classifiers. However, Multinomial Na-
ive Bayes has also given good results, its performance
appeared to be a bit worse than the results of the top
three. These values suggest that the linear classifiers
can be applied for classifying, labeling or tagging re-
quirements given in natural language form. The result
of the FCN shows that if there are enough examples

Table 5
Variance statistics during the classification of the dataset
from Stack Overflow

Classifier
Variance

P R F

BernoulliNB 0.045 0.045 0.045

GaussianNB 3.200 3.645 0.005

MultinomialNB 0.320 0.020 0.045

DecisionTree 0.045 0.080 0.045

ExtraTree 0.405 0.500 0.405

LogisticRegr 0.020 0.020 0.020

KNeighbours 0.320 6.480 1.125

SVM 0.045 0.320 0.320

FullyConnected 0.020 0.020 0.020

Figure 5. Variance statistics during the classification of the dataset from Stack Overflow

Table 5. Variance statistics during the classification
of the dataset from Stack Overflow

Classifier Variance

 P R F

BernoulliNB 0.045 0.045 0.045
GaussianNB 3.200 3.645 0.005
MultinomialNB 0.320 0.020 0.045
DecisionTree 0.045 0.080 0.045
ExtraTree 0.405 0.500 0.405
LogisticRegr 0.020 0.020 0.020
KNeighbours 0.320 6.480 1.125
SVM 0.045 0.320 0.320

FullyConnected 0.020 0.020 0.020

examples available, the neural network models can
outperform the classic models of machine learning.

During the FCN test, we applied a simple fully
connected network with the dropout regularization
and the Adam optimizer. The hyperparameters such
as the number of neurons, the dropout keep ratio,
the batch size or the number of epochs were also
adjusted, and the results were checked. The best
results were achieved using 1024 neurons in the
first layer, the 0.1 value for dropout parameter and

0
1 , 0

0 , 2
0 , 3
0 , 4
0 , 5
0 , 6

7 0 ,
, 8 0
9 , 0
1

F1 - measure

micro
macro
weighted
sample

0
1
2
3
4
5
6
7

Variance

Precision
Recall
F - measure

Figure 5
Variance statistics during the classification of the dataset
from Stack Overflow

available, the neural network models can outperform
the classic models of machine learning.
During the FCN test, we applied a simple fully con-
nected network with the dropout regularization and
the Adam optimizer. The hyperparameters such as
the number of neurons, the dropout keep ratio, the
batch size or the number of epochs were also adjust-
ed, and the results were checked. The best results
were achieved using 1024 neurons in the first layer,
the 0.1 value for dropout parameter and 100 for batch
size. The training phase contained 3 epochs. The
maximum difference between the worst and the best
results was only 0.2% during the parameter changes.
As mentioned in the previous sections, the execution
time was also measured for every classifier during
both series of the experiments. Execution time is
also an important factor for practice which can help
System Analyst to choose the appropriate tool for
requirement elicitation. The values of the execution
time of the second series of our experiments are pre-
sented in Table 6. The two series of the experiments
were performed in a different hardware context,
therefore, the results cannot be compared. The sec-
ond series, however, provides useful information
about the expectable execution time using a standard
desktop environment with Intel I7-3770 3.9 GHz CPU
and 8 GB RAM with 240 GB SSD. The operating sys-
tem is Windows 10 64 bit.
The execution times are given in seconds. However, the
actual execution time depends on the dataset under in-

Information Technology and Control 2019/3/48442

Table 6
Execution time of the learning process using the dataset from
Stack Overflow

BernoulliNB 3.80

GaussianNB 6.67

MultinomialNB 0.99

DecisionTree 162.26

ExtraTree 3.33

LogisticRegression 11.18

KNeighbours 4290.83

SVM 10.91

FCN 50.92

vestigation, these results can give a hint for the choice
in case the running time is an important factor. The
best result has been presented using Multinomial Na-
ive Bayes. This classifier was also the winner regarding
the execution time also in our first experiments. The
worst result has been produced by KNeighbours clas-
sifier. This epoch lasted 4290.83 seconds which is very
high comparing to other classifiers. The execution time
of the FCN is also a reasonable result which implies
that it is worth to move to the area of the Deep Learn-
ing also in classification non-functional requirements.

5. Related Work
The problem of processing requirements documents
using natural language processing and machine learn-
ing methods has been a research topic for decades [4].
Although non-functional requirements are less de-
pendent on the application domain, it is not a trivial
problem to set up a general list of NFR types. The types
identified in the literature are widespread, for example,
Chung et al. [12] identified 156 NFR categories, while
Mairiza et al. [28] separated 114 different NFR classes
in their work, on the contrary to the 6 high-level cate-
gories defined by the ISO/IEC 25010:2011 standard.
A fundamental study of NFR classification is pub-
lished relatively lately in 2006 by Cleland-Huang et
al. [13]. They used 14 NFR categories separated from
functional requirements. More than 600 require-
ments from 15 projects were collected and manual-
ly categorized to train and test their categorization

methods. Cleland-Huang et al. achieved high recall
with the tradeoff of really low precision. This exper-
iment was reproduced by several researchers in the
past [10, 37]. Casamayor et al. [10] employed multino-
mial Naive Bayes classifier coupled with an Expecta-
tion Maximization algorithm.
Requirements traceability is a related field, where
NLP and information retrieval techniques are fre-
quently applied [26, 27, 41]. Hindle et al. [20] used top-
ic modeling to link NFRs to topics found in commit
messages. Falessi et al. [16] conducted a largescale ex-
periment with various NLP techniques including dif-
ferent algebraic models, term weightings and similar-
ity metrics in order to detect identical nonfunctional
requirements.
Sharma et al. [36] addressed the NFR extraction prob-
lem with a rule-based approach. They implement-
ed a framework for NFR analysis including a DSL
language. Sawyer et al. have focused on document
archaeology and created an NLP based tool called
REVERE to support business analysts in the inves-
tigation of different documents containing require-
ments [35]. This tool has utilized some standard NLP
techniques like part-of-speech tagging or semantic
tagging and determination of modality.
Denger et al. examined the ambiguity of require-
ments sentences and investigated the use of language
patterns for rewriting these requirements into less
ambiguous sentences [15]. The ambiguity of require-
ments is one of the most prominent issues in require-
ments engineering which has to be resolved as pointed
by Firesmith in his paper [17]. Ambiguity, complete-
ness, conformity of requirements were examined and
discussed also by Kang and Park using linguistics
viewpoint [22]. The researchers developed a require-
ment-grammar and also applied error patterns for
developing a tool for parsing the manually annotated
corpus built by system-engineering related texts. The
annotated corpus can be then used for training error
model which can be applied to check the exactness of
the requirements.
From the perspective of mining software reposito-
ries, Paixao et al. [29] investigated the relationship
between built results obtained from continuous inte-
gration tools with non-functional requirements.
To overcome the scarcity of the labeled examples
available via the Internet, extracting requirements re-

443Information Technology and Control 2019/3/48

lated information from social networks has become a
frequently examined area. Portugal and do Prado Leite
[31] applied the pattern-search method and extracted
requirements related information from GitHub. They
have also built a corpus of requirements based on the
information retrieved from README files located
on GitHub repository [32]. Stack Overflow is also a
popular repository among the researchers. Zou et al.
examined the repository via utilizing the Latent Di-
richlet Allocation (LDA) to discover the main topics
of discussion. [39]. These topics are related to various
NFR which were also identified by the researchers.
The topics which are the focus of developers was in-
vestigated also by Barua et al. [6] using LDA on Stack
Overflow textual database.

6. Conclusions
Identifying and classifying non-functional require-
ments is a crucial duty of System Analysts which can
be a demanding and error-prone task without using
a proper tool. The collection of the requirements ex-
pressed using natural language form are originated
from customers and stakeholders. Natural Language
Processing techniques along with Machine Learning
can support the processing of the requirements given
in the textual form.
In this paper, we have demonstrated the usability of
various machine learning methods along with the
transformation of the textual input into an appropri-
ate form which is processable by implemented ma-

chine learning algorithms. The methods have been
compared with each other using precision, recall and
F1 metrics and also a significance test has been per-
formed. Two series of experiments were executed. We
used the small-sized Tera Promise NFR dataset to the
first series and the large dataset extracted from Stack
Overflow for the second series of experiments. The
results are presented in the results section.
The results of our experiments show that the linear
classification algorithm produced the best values us-
ing both of the small and the large datasets. The win-
ners are Multinomial Naive Bayes, Support Vector
Machine and the Logistic Regression but Decision
Tree also produced good results. Using the dataset
from Stack Overflow, the Fully Connected Network
produced the best values and outperformed the other
classifiers.
The performance metrics along with execution times
present that using NLP and machine learning tech-
niques provides a reasonable solution for the base
technology of tools supporting System Analysts in re-
quirement elicitation process. The precision and re-
call can be both above the 95 % which is a good start-
ing point for practical usage, however, these values
are to be improved.
Our future research plans are to continue studying
neural networks by involving deep networks and
recurrent networks. Examinations will be extend-
ed using another representation of inputs such as
embedding techniques which can represent also the
contextual information of a textual element and also
some grammatical features can be also captured.

References
1. Abad, Z. S. H, Karras, O., Ghazi, P., Glinz, M., Ruhe, G.,

Schneider, K. What Works Better? A Study of Classifying
Requirements. Proceedings 2017 IEEE 25th Interna-
tional Requirements Engineering Conference, RE 2017,
2017, 496-501. https://doi.org/10.1109/RE.2017.36

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Tal-

war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vié-
gas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems, 2015.

3. Al Balushi, T. H., Sampaio, P. R. F., Dabhi, D., Louco-
poulos, P. ElicitO: A Quality Ontology-Guided NFR
Elicitation Tool. Requirements Engineering: Foutn-
dation for Software Quality, 2007, 306319. https://doi.
org/10.1007/978-3-540-73031623.

4. Ambriola, V., Gervasi, V. Processing Natural Language
Requirements. Proceedings 12th IEEE International

https://doi.org/10.1109/RE.2017.36

Information Technology and Control 2019/3/48444

Conference Automated Software Engineering, 1997,
36-45.

5. An, L., Mlouki, O., Khomh, F., Antoniol, G. Stack Over-
flow: A Code Laundering Platform? SANER 2017 - 24th
IEEE International Conference on Software Analysis,
Evolution, and Reengineering, 2017, 283-293. https://
doi.org/10.1109/SANER.2017.7884629

6. Barua, A., Thomas, S. W., Hassan, A. E. What Are Devel-
opers Talking About? An Analysis of Topics and Trends
in Stack Overflow. Empirical Software Engineering,
2014, 19(3), 619-654. https://doi.org/10.1007/s10664-
012-9231-y

7. Caglayan, B., Kocaguneli, E., Krall, J., Peters, F., Turhan,
B. The PROMISE Repository of Empirical Software
Engineering Data, 2012.

8. Carrillo de Gea, J. M., Nicolás, J., Alemán, J. L. F., Toval,
A., Ebert, C., Vizcaíno, A. Requirements Engineering
Tools. IEEE Software, 2011, 28(4), 86-91. https://doi.
org/10.1109/MS.2011.81

9. Casamayor, A., Godoy, D., Campo, M. Identification of
NonFunctional Requirements in Textual Specifica-
tions: A Semi-supervised Learning Approach. Infor-
mation and Software Technology, 2010, 52(4), 436-445.
https://doi.org/10.1016/j.infsof.2009.10.010

10. Casamayor, A., Godoy, D., Campo, M. Functional Group-
ing of Natural Language Requirements for Assistance
in Architectural Software Design. Knowledge-Based
Systems, 2012, 30, 78-86. https://doi.org/10.1016/j.kno-
sys.2011.12.009

11. Chollet, F. K., 2015. https:// github.com/fchollet/keras.

12. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J. Non-Func-
tional Requirements in Software Engineering, 2000.
https://doi.org/10.1007/978-1-4615-5269-7

13. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P. Automat-
ed Classification of Non-Functional Requirements. Re-
quirements Engineering, 2007, 12(2), 103-120. https://
doi.org/10.1007/s00766-007-0045-1

14. Demšar, J. Statistical Comparisons of Classifiers over
Multiple Data Sets, 2006. Technical report, 2006.

15. Denger, C., Berry, D. M., Kamsties, E. Higher Quality Re-
quirements Specifications through Natural Language
Patterns. Proceedings of the IEEE International Con-
ference on Software - Science, Technology & Engineer-
ing (SwSTE’03), 2003, 1-11.

16. Falessi, U., Cantone, G., Canfora, G. A Comprehensive
Characterization of NLP Techniques for Identifying
Equivalent Requirements. Proceedings of the 2010

ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement ESEM’10,
2010, 1-10. https://doi.org/10.1145/1852786.1852810

17. Firesmith, D. Common Requirements Problems, their
Negative Consequences, and the Industry Best Prac-
tices to Help Solve Them. Journal of Object Tech-
nology, 2007, 6(1), 17-33. https://doi.org/10.5381/
jot.2007.6.1.c2

18. Glinz, M. On Non-Functional Requirements. 15th IEEE
International Requirements Engineering Confer-
ence (RE 2007), 2007, 21-26. https://doi.org/10.1109/
RE.2007.45

19. Groen, E. C., Schowalter, J., Kopczynska, S., Polst, S., Al-
vani, S. Is There Really a Need for Using NLP to Elicit
Requirements? A Benchmarking Study to Assess Scal-
ability of Manual Analysis. CEUR Workshop Proceed-
ings, 2018.

20. Hindl, A., Ernst, N. A., Godfrey, M. W., Mylopoulo, J.
Automated Topic Naming. Empirical Software Engi-
neering, 2013, 18(6), 1125-1155. https://doi.org/10.1007/
s10664-012-9209-9

21. Hussain, A., Mkpojiog, E., Kama, F. The Role of Require-
ments in the Success or Failure of Software Projects. EJ
Econjournals, 2016, 6(7S), 6-7.

22. Kang, J., Par, J. Generating a Linguistic Model for Re-
quirement Quality Analysis. Proceedings of the 30th
Pacific Asia Conference on Language, Information and
Computation (PACLIC 30), Seoul, Republic of Korea,
October 28-30, 2016, 439-447.

23. Kingma, D. P., Ba, J. Adam: A Method for Stochastic Op-
timization. 3rd International Conference for Learning
Representations, 2015, 1-15.

24. Li, Y., Guzman, E., Tsiamoura, K., Schneide, F., Bruegge,
B. Automated Requirements Extraction for Scientific
Software. Procedia Computer Science, 2015, 51, 582-
591. https://doi.org/10.1016/j.procs.2015.05.326

25. Lu, M., Liang, P. Automatic Classification of Non-Func-
tional Requirements from Augmented App User Re-
views. Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software
Engineering EASE’17, 2017, 344-353. https://doi.
org/10.1145/3084226.3084241

26. Mahmoud, A. An Information Theoretic Approach
for Extracting and Tracing NonFunctional Require-
ments. 2015 IEEE 23rd International Requirements
Engineering Conference (RE), 2015, 36-45. https://doi.
org/10.1109/RE.2015.7320406

https://doi.org/10.1109/SANER.2017.7884629
https://doi.org/10.1109/SANER.2017.7884629
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1109/MS.2011.81
https://doi.org/10.1109/MS.2011.81
https://doi.org/10.1016/j.infsof.2009.10.010
https://doi.org/10.1016/j.knosys.2011.12.009
https://doi.org/10.1016/j.knosys.2011.12.009
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.1145/1852786.1852810
https://doi.org/10.5381/jot.2007.6.1.c2
https://doi.org/10.5381/jot.2007.6.1.c2
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.1007/s10664-012-9209-9
https://doi.org/10.1007/s10664-012-9209-9
https://doi.org/10.1016/j.procs.2015.05.326
https://doi.org/10.1145/3084226.3084241
https://doi.org/10.1145/3084226.3084241
https://doi.org/10.1109/RE.2015.7320406
https://doi.org/10.1109/RE.2015.7320406

445Information Technology and Control 2019/3/48

27. Mahmoud, A., Williams, G. Detecting, Classifying, and
Tracing NonFunctional Software Requirements. Re-
quirements Engineering, 2016, 21(3), 357-381. https://
doi.org/10.1007/s00766-016-0252-8

28. Mairiza, D., Zowghi, D, Nurmulian, N. An Investi-
gation into the Notion of NonFunctional Require-
ments. Proceedings of the 2010 ACM Symposium on
Applied Computing - SAC’10, 2010, 311. https://doi.
org/10.1145/1774088.1774153

29. Paixao, K. V. R., Felicio, C. Z., Delfim, F. M., Maia, M. D.
A. On The Interplay between Non-Functional Require-
ments and Builds on Continuous Integration. IEEE In-
ternational Working Conference on Mining Software
Repositories, 2017, 479-482. https://doi.org/10.1109/
MSR.2017.33

30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.
Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 2011, 12, 2825-2830.

31. Portugal, R. L. Q., do Prado Leite, J. C. S. Extracting Re-
quirements Patterns from Software Repositories. 2016
IEEE 24th International Requirements Engineering
Conference Workshops (REW), 2016, 304-307. https://
doi.org/10.1109/REW.2016.056

32. Portugal, R. L. Q, Roque, H., do Prado Leite, J. C. S. A
Corpus Builder: Retrieving Raw Data from Github for
Knowledge Reuse in Requirements Elicitation. CEUR
Workshop Proceedings, 2016, 48-54.

33. Rashwan, A., Ormandjieva, O., Witte, R. Ontology-Based
Classification of Non-Functional Requirements in Soft-
ware Specifications: A New Corpus and SVM-Based
Classifier. 2013 IEEE 37th Annual Computer Software
and Applications Conference, 2013, 381-386. https://
doi.org/10.1109/COMPSAC.2013.64

34. Sampaio, A., Loughran, N., Rashi, A., Rayson, P. Mining
Aspects in Requirements. Early Aspects 2005: Aspec-
tOriented Requirements Engineering and Architecture
Design Workshop, 2005.

35. Sawyer, P., Rayson, P., Garsid, R. REVERE: Support for
Requirements Synthesis from Documents. Information
Systems Frontiers, 2002, 4(3), 343-353. https://doi.
org/10.1023/A:1019918908208

36. Sharma, V. S., Ramnani, R. R., Sengupta S. A Frame-
work for Identifying and Analyzing Non-function-
al Requirements from Text. Proceedings of the
4th International Workshop on Twin Peaks of Re-
quirements and Architecture, 2014, 1-8. https://doi.
org/10.1145/2593861.2593862

37. Slankas, J., Williams, L. Automated Extraction of
Non-Functional Requirements in Available Documen-
tation. 2013 1st International Workshop on Natural
Language Analysis in Software Engineering (Nat-
uraLiSE), 2013, 916. https://doi.org/10.1109/NAtu-
raLiSE.2013.6611715

38. Tóth, L., Vidác, L. Study of Various Classifiers for
Identification and Classification of Non-Functional
Requirements. Proceedings of the 18th Internation-
al Conference on Computational Science and Its Ap-
plications (ICCSA 2018), 2018, 492-503. https://doi.
org/10.1007/978-3-319-95174-4_39

39. Zou, J., Xu, L., Guo, W., Yan, M., Yang, D., Zhang, X.
Which Non-functional Requirements Do Developers
Focus On? An Empirical Study on Stack Overflow Using
Topic Analysis. 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories, 2015, 446-449.
https://doi.org/10.1109/MSR.2015.60

40. Zo, J., Xu, L., Yang, M., Zhang, X., Yang, D. Towards Com-
prehending the Non-functional Requirements Through
Developers Eyes. Information and Software Technol-
ogy, 2017, 84(C), 19-32. https://doi.org/10.1016/j.inf-
sof.2016.12.003

41. Zou, X., Settimi, R., ClelandHuang, J. Improving Auto-
mated Requirements Trace Retrieval: A Study of Term-
Based Enhancement Methods. Empirical Software En-
gineering, 2010, 15(2), 119-146. https://doi.org/10.1007/
s10664-009-9114-z

https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.1145/1774088.1774153
https://doi.org/10.1145/1774088.1774153
https://doi.org/10.1109/MSR.2017.33
https://doi.org/10.1109/MSR.2017.33
https://doi.org/10.1109/REW.2016.056
https://doi.org/10.1109/REW.2016.056
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1023/A:1019918908208
https://doi.org/10.1023/A:1019918908208
https://doi.org/10.1145/2593861.2593862
https://doi.org/10.1145/2593861.2593862
https://doi.org/10.1109/NAturaLiSE.2013.6611715
https://doi.org/10.1109/NAturaLiSE.2013.6611715
https://doi.org/10.1007/978-3-319-95174-4_39
https://doi.org/10.1007/978-3-319-95174-4_39
https://doi.org/10.1109/MSR.2015.60
https://doi.org/10.1016/j.infsof.2016.12.003
https://doi.org/10.1016/j.infsof.2016.12.003
https://doi.org/10.1007/s10664-009-9114-z
https://doi.org/10.1007/s10664-009-9114-z

