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Three new dimeric naphthoquinones, 5,4′-dihydroxy-1′-methoxy-6,6′-dimethyl-
7,3′-binaphthyl-1,4,5′,8′-tetraone (1), 5′,8′-dihydroxy-5-methoxy-6,6′-dimethyl-7,3′-
binaphthyl-1,4,1′,4′-tetraone (2) and 8,5′,8′-trihydroxy-6,6′-dimethyl-7,3′-binaphthyl-
1,4,1′,4′-tetraone (3), were isolated from the roots of Diospyros lotus. Their structures
were elucidated by spectroscopic techniques, including 1D and 2D NMR, such as
HSQC, HMBS, NOESY, and J-resolved. Compounds 1–3 were evaluated for their
effects on the reversion of multidrug resistance (MDR) mediated by P-glycoprotein
through use of the rhodamine-123 exclusion screening test on human ABCB1 gene
transfected L5178Y mouse T-cell lymphoma. Compounds 1–3 were also assessed
for their antiproliferative and cytotoxic effects on L5178 and L5178Y mouse T-cell
lymphoma lines. Both 1 and 2 exhibited promising antiproliferative and MDR-reversing
effects in a dose-dependent manner. The effects of the tested compounds on the
activity of doxorubicin were observed to vary from slight antagonism to antagonism.

Keywords: Diospyros lotus, naphthoquinones, P-glycoprotein, human ABCB1 gene transfected mouse T-cell
lymphoma, antiproliferative, MDR

INTRODUCTION

The Diospyros genus in the Ebenaceae family consists of about 500 species. This genus is
widely distributed in tropical and subtropical regions throughout the world and is native to
the Himalayan region (Uddin et al., 2011). Diospyros lotus grows up to 9 m in height in
semi-shaded areas (Uddin et al., 2014). Diospyros species are known for their multiple uses
in therapeutic and folk medicine. Different parts of this plant are used for different diseases:
the leaves are used to treat lumbago, the fruits as a carminative to cure biliousness, the
seeds as a sedative, and the bark as an astringent and febrifuge (Rauf et al., 2014). A leaf
extract of D. kaki (Japanese persimmon) in combination with jasmine is used in anti-tobacco
smoking candies (Uddin et al., 2013). Various triterpenoids of the lupane, oleanane, and
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FIGURE 1 | Structures of compounds 1–3.

ursane series have been isolated and proved to exhibit anti-
inflammatory activity (Uddin et al., 2013). Diospyros species are
used as traditional medicines, e.g., as an antifungal, to treat
hiccough, for internal hemorrhage, for bedwetting in children,
as a woman’s drug for insomnia, as an antihypertensive, to treat
dyspnea, as a vermicide and vermifuge, as a sedative, as an
antifebrile, and as a bactericide (Tezuka et al., 1973; Ganapaty
et al., 2006). AD. lotus extract and isolated compounds have been
reported to display promising antiproliferative activity (Loizzo
et al., 2009).

Quinone moieties are present in many drugs, such as
anthracyclines, daunorubicin, doxorubicin, mitomycin,
mitoxantrones, and saintopin, which are used clinically in
the therapy of solid cancer (Verma, 2006). Moreover, some
naphthoquinones isolated from Diospyros species, such as
plumbagin, exert cytotoxic activity (Padhye et al., 2012).

Multidrug resistance (MDR) is the main clinical challenge
for the active treatment of cancer (chemotherapy; Szabo and
Molnar, 1997). There are numerous mechanisms by which tumor
cells develop resistance to cytotoxic secondary metabolites. One
of them is produced by the overexpression of ATP-binding
cassette (ABC) proteins or breast cancer resistance protein
(BCRP). The ATP-binding cassette transporters represent the
largest family of transmembrane proteins that bind ATP and use
the energy to drive the transport of various molecules across
cell membranes (Gottesman and Ambudkar, 2001; Leonard
et al., 2003). ABC efflux transporters extrude a broad range of

amphiphilic compounds against the concentration gradient in
an energy-dependent fashion. Many of the ABC transporters
have dedicated physiological functions, and afford normal tissue
protection in the brain vessels, liver, and kidney (Gottesman et al.,
2002; Sarkadi et al., 2006; Szakacs et al., 2006).

The firstly identified drug efflux protein was the
P-glycoprotein (P-gp, MDR1, ABCB1), encoded by the
ABCB1 gene. P-gp is composed of 1280 amino acids
(170 kDa) organized in two transmembrane domains
(Szakacs et al., 2006). This protein is overexpressed in
several human tumors and can extrude a wide range of
drugs (anticancer, antibiotics, antidepressants, antihistamines,
antiarrhythmics, immunosuppressants, HIV protease inhibitors
and steroids). Many drug molecules, such as tamoxifen,
valspodar, dexniguldipine, and tariquidar, have been proposed
to suppress the action of P-gp (Germann et al., 1993; Lopez and
Martinez-Luis, 2014).

A second cellular pump is multidrug-resistant protein 1
(MRP1, ABCC1), described in Cole et al. (1992). MRP1 is
an efflux pump originally discovered in doxorubicin-resistant
lung carcinoma cells displaying a multidrug resistant phenotype
without ABCB1 expression.

MRP1 is expressed ubiquitously in higher levels at the blood–
brain barrier, in the intestines and in the oral mucosa (He et al.,
2011). MRP1 expression is higher in the lungs than in any other
organ and it may have protective roles against air pollution
and inhaled toxins (Sakamoto et al., 2013). The physiological
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TABLE 1 | 13C-NMR and 1H-NMR spectral data of compound 1.

Carbon no. δC δH (mult, J, Hz)

1 184.8 –

2 140.1 6.70, d, (J = 10 Hz)

3 137.7 6.89, d, (J = 10 Hz)

4 190.3 –

5 161.8 –

6 144.0 –

7 145.5 –

8 125.7 7.27, s

9 129.4 –

10 114.1 –

11 20.6 2.01, s

12-OCH3 56.7 3.91, s

1′ 158.1 7.64, s

2′ 109.4 7.64, s

3′ 139.5 –

4′ 161.1 –

5′ 190.6 –

6′ 139.5 –

7′ 109.4 6.07, s

8′ 179.5 –

9′ 108.6 –

10′ 112.0 –

11′ 20.2 1.97, s

substrates of MRP1 include bile acids, folic acid, leukotriene
C4, and glutathione conjugates, and it confers resistance to
vincristine, methotrexate, doxorubicin, and etoposide (Cole and
Deeley, 2006; Li et al., 2008).

A third cellular pump type is BCRP, first cloned in the drug-
resistant breast cancer cell line MCF-7 (Doyle et al., 1998).
BCRP is a half-transporter member of the ABCG subfamily
(ABCG2) with a size of 72 kDa. BCRP probably functions as
a homodimer. The expression of BCRP overlaps largely with
that of P-gp, because the protein can be found in tissues such
as the placenta, prostate, small intestine, brain, colon, liver, and
ovary (Doyle et al., 1998). Overexpression of BCRP is associated
with resistance to a wide range of different anticancer agents:
anthracyclines, mitoxantrone, flavopiridol, camptothecins, and
antifolates (Assaraf, 2006; Bihorel et al., 2007; Robey et al., 2007).

FIGURE 2 | Key HBMC correlations of compound 1.

Several studies have demonstrated the frequent occurrence of
drug efflux proteins in cancer tissue. Some authors have reported
significant correlations between the overexpression of P-gp or
MRP-1 and a poor treatment response in solid tumors and some
leukemias (Brinkhuis et al., 2002; Diestra et al., 2003; Larkin et al.,
2004; Damiani et al., 2006), and a prognostic significance for
BCRP overexpression in specific forms of leukemia (Larkin et al.,
2004).

The current study deals with the isolation of three new dimeric
naphthoquinones (1–3) from the chloroform (CHCl3) fraction of
D. lotus. The isolated compounds (1–3) were evaluated for their
effects on the reversion ofMDR inmouse lymphoma and for their
antiproliferative and cytotoxic effects on the L5178 and L5178Y
mouse T-cell lymphoma cell lines. A combination assay was also
applied to study the effects of the drug interactions between the
dimeric naphthoquinone derivatives and the chemotherapeutic
drug doxorubicin on the MDRmouse lymphoma cell line.

MATERIALS AND METHODS

General Procedure
Melting points of compounds (1–3) were determined on a
Bicote melting point apparatus and are uncorrected. UV-visible
spectra were recorded on a Hitachi-U-3200 spectrometer,
IR spectra on an FT-IR instrument (Nicolet 380), UV-
visible spectra on a Shimadzu spectrometer, and 1H-NMR
(500 MHz), 13C-NMR (600 MHz), HMBC (600 MHz)
and HSQC (600 MHz spectra on an AVANCE AV-600

TABLE 2 | 13C-NMR and 1H-NMR spectral data of compound 2.

Carbon no. δC δH (mult, J, Hz)

1 184.6 –

2 140.1 6.70, d, (J = 10.5 Hz)

3 137.6 6.70, d, (J = 10.5 Hz)

4 190.3 –

5 161.9 –

6 146.1 –

7 148.1 –

8 121.7 7.27, s

9 130.4 –

10 114.1 –

11 20.6 1.98, s

12-OCH3 56.6 3.90, s

1′ 184.1 –

2′ 125.6 7.59, s

3′ 137.6 –

4′ 190.6 –

5′ 161.1 –

6′ 148.1 –

7′ 110.3 6.42, s

8′ 159.1 –

9′ 114.1 –

10′ 118.5 –

11′ 20.5 1.97, s
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FIGURE 3 | Key HBMC correlations of compound 2.

Cryoprob NMR instrument in CDCl3. HR-EI-MS spectra
were measured on a JEOL JMS 600H mass spectrometer;
EI source 70 eV. Normal-phase column chromatography
(CC) was performed by using silica gel (Merck). TLC was
run on pre-coated aluminum plates with silica gel 60 (F254;
Merck).

Plant Material
Diospyros lotus roots were collected from Razagram (Khall), Dir,
KPK, Pakistan, inMay 2009. The sample was authenticated byDr.
Abdur Rashid, Department of Botany, University of Peshawar,
Pakistan. A voucher specimen [Bot. 20036(PUP)] has been
deposited at the Herbarium, Department of Botany, University
of Peshawar, Pakistan.

TABLE 3 | 13C-NMR and 1H-NMR spectral data of compound 3.

Carbon no. δC δH (mult, J, HZ)

1 190.2 –

2 140.0 6.66, d, (J = 10 Hz)

3 139.9 6.89, d, (J = 10 Hz)

4 195.3 –

5 121.3 6.94, s

6 149.1 –

7 148.0 –

8 162.0 –

9 130.0 –

10 114.1 –

11-CH3 24.7 1.97, s

1′ 184.8 –

2′ 125.0 7.55, s

3′ 137.6 –

4′ 190.1 –

5′ 161.9 –

6′ 146.5 –

7′ 125.9 7.27, s

8′ 159.0 –

9′ 112.0 –

10′ 121.7 –

11′-CH3 20.7 2.01, s

FIGURE 4 | Key HMBC correlations of compound 3.

Extraction and Isolation
Shade-dried roots of D. lotus (14 kg) were powdered and
repeatedly extracted with methanol (MeOH; 64 L) at room
temperature. The extracts were combined and concentrated by
evaporating the solvent in a rotary evaporator under reduced
pressure at a temperature below 40◦C to obtain a dark red
residue (202 g). This was suspended in water and successively
partitioned into n-hexane, CHCl3, ethyl acetate (EtOAc), and
n-butanol (n-BuOH) to afford n-hexane (30 g), CHCl3 (88 g),
EtOAc (20 g), and n-BuOH (50 g) fractions. The CHCl3 fraction
F-1 (30 g) was subjected to CC on silica gel (Merck silica
gel 60 (0.063–0.200 mm), 5 cm × 60 cm). The column was
eluted with n-hexane-EtOAc (100:0 → 0:100) as solvent system.
A total of 105 fractions, (RF-1 to RF-105) were obtained on
the basis of the TLC profiles. Fractions RF-1 to RF-10 were
combined on the basis of TLC to obtain subfraction SF-1
(2 g), which was further re-subjected to CC with n-hexane
elution to yield a reddish residue of fatty acids, while fractions
RF-11 to RF-105 were combined on the basis of the TLC
profiles to give major subfractions SF-3 (9.89 g) and SF-4
(3.98 g).

Fraction SF-4 (9.89 g) was subjected to CC with n-hexane-
EtOAc (100:0 → 10:15) elution and 60 fractions were obtained
and combined on the basis of the TLC profiles, yielded two
major fractions MF-1 (5.44 g) and MF-2 (3.41 g). Fraction MF-1
(5.44 g) was subjected to preparative TLC silica gel (Merck
silica gel 60 F254), using n-hexane-EtOAc (85:15, RF: 0.45;
84:16, RF: 0.46; 80:20, RF: 0.47), which furnished three new
dimeric naphthoquinones: 5,4′-dihydroxy-1′-methoxy-6,6′-
dimethyl-7,3′-binaphthyl-1,4,5′ ,8′-tetraone (1), 5′,8′-dihydroxy-
5-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′ ,4′-tetraone (2)
and 8,5′,8′-trihydroxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′ ,4′-
tetraone (3) (Figure 1). The structure elucidation of these new

TABLE 4 | Antiproliferative effects of compounds 1–3 on the L5178Y
mouse T-cell lymphoma cell line.

Compounds IC50 (μg/ml) SEM

1 0.05 0.004

2 0.046 0.005

3 0.26 0.01

SEM, standard error of the mean.

Frontiers in Pharmacology | www.frontiersin.org 4 December 2015 | Volume 6 | Article 293

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Rauf et al. Dimeric Naphthoquiones have Multidrug Reversal Activities

FIGURE 5 | Cytotoxic effects of dimeric naphthoquinones on PAR and
MDR mouse. T-cell lymphoma cell lines. The mean IC50 was calculated on
the basis of the results of three independent experiments. SEM, standard
error of the mean.

compounds was based on spectroscopic analysis, including 1D
and 2D NMR.

Anticancer Assays
Cell Cultures
L5178 mouse T-cell lymphoma cells (ECACC cat. no. 87111908,
U.S. FDA, Silver Spring, MD, USA) were transfected with
pHa MDR1/A retrovirus, as previously described (Cornwell
et al., 1987; Bak et al., 1989). The MDR1-expressing cell
line L5178Y was selected by culturing the infected cells with
colchicine. L5178 (parent) mouse T-cell lymphoma cells and the
human MDR1-transfected subline were cultured in McCoy’s 5A
medium supplemented with 10% heat-inactivated horse serum,
200 mM L-glutamine, and a penicillin-streptomycin mixture in
100 U/L and 10 mg/L concentrations, respectively. MDR was
detected with a monoclonal antibody (Bak et al., 1989; Molnar
et al., 1999). The cell lines were incubated in a humidified
atmosphere (5% CO2, 95% air) at 37◦C. The L5178 mouse T-cell
lymphoma cells (PAR; ECACC Cat. No. 87111908, obtained
from FDA, Silver Spring, MD, USA) were transfected with
pHa MDR1/A retrovirus, as previously described by Cornwell
et al. (1987). The ABCB1-expressing cell line L5178Y (MDR)
was selected by culturing the infected cells with colchicine
(Cornwell et al., 1987). L5178 (parent) mouse T-cell lymphoma
cells and the L5178Y human ABCB1-transfected subline were
cultured in McCoy’s 5A medium supplemented with 10% heat-
inactivated horse serum, 200 mM L-glutamine and a penicillin-
streptomycin mixture in concentrations of 100 U/L and 10 mg/L,
respectively.

TABLE 5 | Cytotoxic effects of dimeric naphthoquinones on PAR and MDR
mouse T-cell lymphoma cell lines.

Compounds Mean IC50 (μg/mL)

PAR SEM MDR SEM

1 2.15 0.41 4.49 0.17

2 2.82 0.50 3.93 0.10

3 3.59 0.15 6.29 1.94

SEM, standard error of the mean.

TABLE 6 | Effects of compounds 1–3 on the reversal of multidrug
resistance in mouse lymphoma cells in the presence of low doses (0.1–1
μg/mL).

Compounds Concentration
(μg/mL)

FSC SSC FL-1 FAR MF-1

Verapamil 10 1993 613 10 10.5 12

1 0.1 2003 606 1.63 1.72 0.673

1 1982 619 10.1 10.63 17.2

2 0.1 2008 609 1.05 1.1 0.806

1 2024 582 1.24 1.3 0.698

3 0.1 2029 606 1.1 1.15 0.806

1 2013 636 0.801 0.84 0.673

DMSO 2% v/v 2108 604 0.782 0.82 0.604

FSC, forward scatter count of cells in the samples (cell size ratio); SSC, side scatter
count of cells in the samples; FL-1, mean fluorescence intensity of the cells; FAR,
fluorescence activity ratio; MF-1, maximum fluorescence intensity.

Antiproliferative Assays
The antiproliferative effects of compounds 1–3 were determined
in 96-well flat-bottomed microtiter plates (Molnar et al., 2004b;
Gyemant et al., 2005). The antiproliferative potentials of the
compounds were tested at a concentration of 1 μg/mL, using
the L5178Y mouse T-cell lymphoma MDR cell line in the
experimental model. The cells were distributed into 96-well flat-
bottomed microtiter plates at a concentration of 100 μL in
McCoy’s 5A or RPMI-1640 medium. For the antiproliferative
assay, 6 × 103 mouse T-cell lymphoma cells in 100 μL of
medium were added to each well. The culture plates were
further incubated at 37◦C for 72 h for the antiproliferative effect
assay. At the end of the incubation period, 20 μL of 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT;
Sigma, St. Louis, MO, USA) solution (from a 5 mg/mL stock)
was added to each well. After 4 h, 100 μL of 10% sodium dodecyl
sulfate (SDS; Sigma) in 0.01 M HCl was added to each well. The
culture plates were further incubated at 37◦C overnight. The cell
growth was determined by measuring the optical density (OD) at
550 nm (ref. 630 nm) with aMultiscan EX ELISA reader (Thermo
Labsystem, Cheshire, WA, USA). In the assay, the solvent did not
have any effect on the cell growth at the concentrations used for
half-maximal inhibitory concentration (IC50) calculations. IC50
values and the standard error of the mean (SEM) of triplicate
experiments were calculated by using GraphPad Prism software
version 5.00 forWindows with non-linear regression curve fitting
(GraphPad Software, San Diego, CA, USA1).

Assays for Cytotoxic Effects
The effects of increasing concentrations of the drugs alone on
cell growth were tested in 96-well flat-bottomed microtiter plates.
The compounds were diluted in 100 μL of medium. 1 × 104
mouse T-cell lymphoma cells (PAR orMDR) in 50μL of medium
were then added to each well, with the exception of the medium
control wells. The culture plates were further incubated at 37◦C
for 24 h; at the end of the incubation period, 15 μL of MTT
solution (from a 5 mg/mL stock) was added to each well. After

1www.graphpad.com
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TABLE 7 | Types of interaction between dimeric naphthoquinone
derivatives and doxorubicin in MDR mouse T-cell lymphoma cell line.

Compounds Ratio ED50 CI Interaction

1 1.724:25
1.724:25
0.862:50∗

1.85494
1,77987
1,66629

1.302 Moderate antagonism

2 6.897:25∗
3.448:50
0.862:50

1.24794
1.65175
1.66558

1.175 Slight antagonism

3 6.897:50
3.448:50
3.448:100∗

2.36396
2.49152
1.80217

1.459 Antagonism

CI, combination index. ∗Best ratio.

incubation at 37◦C for 4 h, 100 μL of SDS solution (10% in
0.01 M HCI) was added to each well and the plates were further
incubated at 37◦C overnight. The cell growth was determined
by measuring the OD at 540 nm (ref. 630 nm) with a Multiscan
EX ELISA reader (Thermo Labsystems, Cheshire, WA, USA). In
the assay, the solvent did not have any effect on the cell growth
at the concentrations used for IC50 calculations. IC50 values
and the SEM of triplicate experiments were calculated by using
GraphPad Prism software version 5.00 for Windows with non-
linear regression curve fitting (GraphPad Software, San Diego,
CA, USA2).

Assays for Reversal of MDR in Mouse
Lymphoma Cells
The L5178Y MDR and L5178 parent cell lines were grown
in McCoy’s 5A medium containing 10% heat-inactivated horse
serum, supplemented with L-glutamine and antibiotics. The cells
were adjusted to a density of 2 × 106 mL, resuspended in serum-
free McCoy’s 5A medium and distributed in 0.5 mL aliquots
into Eppendorf centrifuge tubes. The tested compounds were
added at 0.1–1 μg/mL final concentrations, and the samples
were incubated for 10 min at room temperature. Verapamil was
applied as positive control (Cornwell et al., 1987) in 10 μg/mL
concentration. Next, 10 μL (5.2 μM final concentration) of
the indicator rhodamine 123 (Sigma, St Louis, MO, USA) was
added to the samples and the cells were incubated for a further
20 min at 37◦C, washed twice and resuspended in 0.5 mL
of PBS for analysis. The fluorescence of the cell population
was measured with a Partec CyFlow flow cytometer (Munster,
Germany). Verapamil was used as a positive control in the
rhodamine 123 exclusion experiments (Gruber et al., 1988).
The tested compounds were dissolved in DMSO, which was
also used as solvent control. The percentage mean fluorescence
intensity was calculated for the treated MDR and parental cell
lines as compared with the untreated cells. The activity ratio was
calculated via the following equation (Molnar et al., 2004a) on the
basis of the measured fluorescence values:

FAR = MDRtreated/MDRcontrol
parentaltreated/parentalcontrol

2www.graphpad.com

The results presented were obtained from a representative flow
cytometric experiment in which 105 individual cells of the
population were evaluated for the amount of rhodamine 123
retained. The data were analyzed with FlowJo software3.

Checkerboard Combination Assays
A checkerboard microplate method was applied to study
the effects of the drug interactions between the dimeric
naphthoquinone derivatives and the chemotherapeutic drug
doxorubicin on the MDR mouse lymphoma cell line. The
dilutions of doxorubicin were made in a horizontal direction
in 100 μL, and the dilutions of the dimeric naphthoquinone
compounds were made vertically in the microtiter plate in 50 μL.
The cells were resuspended in culture medium and distributed
into each well in 50 μL containing 6 × 103 PC3 MDR mouse
T-cell lymphoma cells. The plates were incubated for 72 h at
37◦C in a CO2 incubator. The cell growth rate was determined
after MTT staining, as described above. The combination index
(CI) values at 50% growth inhibition (ED50) were determined by
using CompuSyn software4 (ComboSyn, Inc., Paramus, NJ. USA)
to plot 4 or 5 data points for each ratio. CI values were calculated
bymeans of the median-effect equation (Chou andMartin, 2005),
where CI< 1, CI= 1, and CI> 1 represent synergism, an additive
effect (or no interaction) and antagonism, respectively.

RESULTS AND DISCUSSION

The whole MeOH extract was suspended in water and
successively partitioned with n-hexane, CHCl3, EtOAc, and
n-BuOH. The CHCl3 fraction was selected for phytochemical
investigation due to the presence of a greater amount of
compounds as indicated by the TLC profile. CC of the CHCl3
fraction (30 g) on silica gel resulted in the isolation of three
new dimeric naphthoquinones (1–3). The structures of these
compounds were elucidated by spectroscopic techniques and
comparisons with literature data.

Compound 1 was isolated as a yellow amorphous powder. It
exhibited the molecular ion peak at m/z; 404.2100 a.m.u. (calcd.
404.2101) corresponding to the molecular formula C23H16O7.
The IR spectrum showed absorption bands at 3550 cm−1 for
OH stretching, 2924 cm−1 for CH stretching, 1643 cm−1 for
CO stretching and 1634, 160, and 1460 cm−1 for CH aromatic
stretching. The UV spectrum exhibited absorptions at 253, 296,
and 435 nm.

1D and 2D NMR studies were carried out to elucidate the
structure of the compound. The assignments of protons and
carbons were carried out by HMBC, HMQC, 1H-1H-COSY and
J-resolved experiments (Table 1). The 1H-NMR spectrum of
1 revealed the presence of two tertiary methyl groups (s, δH
2.01, 1.97, 2 × 3H), a methoxy group (s, δH 3.91, OCH3), three
quinoid protons centered at d, δH 6.70, J = 10 Hz, H-2; d, 6.89,
J = 10 Hz, H-3; s, 6.07, H-7′), and two aromatic protons (s, δH
7.27, H-8; s, 7.64, H-2′). The 13C-NMR (BB and DEPT) spectra

3www.flowjo.com
4http://www.combosyn.com
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(Table 1) exhibited signals of 23 carbons: two methyl carbons,
one methoxy carbon, and 20 carbons for two naphthoquinone
units. The quinoid protons resonated as a doublet at δH 6.70 (H-
2) and 6.89 (H-3), showing HMBC correlations with δC 184.8
(C-1) and 190.3 (C-4). The aromatic proton (s, δH 7.27) exhibited
correlations with δC 129.4 (C-9) and 114.1 (C-10), while that at
s, δH 7.64 showed correlations with δC 158.1 (C-1′), 179.5 (C-8′),
and 108.6 (C-9′). All the assignments were made with the help of
HMBC correlations, as shown in Figure 2.

The spectral data identify compound 1 as 5,4′-dihydroxy-
1′-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,5′ ,8′-tetraone, as a
new secondary metabolite.

Compound 2 was isolated as a yellow amorphous powder. Its
HRMS exhibited the molecular ion peak at m/z 404.2100 (calcd:
404.2101), consistent with the molecular formula C23H16O7.
The IR spectrum displayed absorption bands at 3560 cm−1

for OH stretching, 2925 cm−1 for CH stretching, 1644 cm−1

for C = O stretching and 1603 cm−1 for aromatic proton
stretching. The UV spectrum exhibited absorption peaks at 253,
299, and 432 nm. The protons and carbons were assigned out
by HMBC, HMQC, 1H-1H-COSY, and J-resolved experiments
(Table 2). The 1H-NMR spectrum of compound 2 showed the
presence of two tertiary methyl groups (s, δH 1.98 and 1.97),
one methoxy group (s, δH 3.90, OCH3), three quinoid protons
(d, δH 6.70, J = 10.5 Hz, H-2; d, δH 6.89, J = 10.5 Hz, H-3;
s, δH 6.42, H-7′) two aromatic protons (s, δH 7.27, H-8, and
s, 7.59, H-2′). The 13C-NMR (BB and DEPT) spectra (Table 2)
exhibited 23 carbon signals for two methyl carbons, one methoxy
carbon, and 20 carbons for two naphthoquinone moieties. The
quinoid protons at δH 6.70 (H-2) and 6.70 (H-3) showed
strong HMBC correlations with δC 184.6 (C-1) and 190.3 (C-
4), respectively. The aromatic proton centered at δH 7.27 (H-8)
revealed correlations with δC 130.4 (C-9) and 114.1 (C-9′), while
the quinoid proton at δH 7.59 (H-2′) showed HMBC correlations
with δC 184.1 (C-1) and 137.6 (C-3). The aromatic proton at δH
6.42 (H-7′) exhibited correlations with δC 159.1 (C-8′), 114.1 (C-
9′), and 184.1 (C-1). All substituents were assigned with the help
of HMBC correlations as shown in Figure 3. Compound 2 was
characterized on the basis of the spectral data as 5′,8′-dihydroxy-
5-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′ ,4′-tetraone.

Compound 3 was purified as a yellow amorphous powder. Its
HRMS exhibited the molecular ions peak atm/z 390.0001 (calcd.
390.0007), consistent with the molecular formula C22H14O7. The
IR spectrum displayed absorption bands at 3550 cm−1 (OH
stretching), 2988 cm−1 (CH stretching), 1642 cm−1 (C = O
stretching) and 1602 cm−1 (CH aromatic stretching). The UV
spectrum exhibited absorption peaks at 250, 301, and 436 nm.
The protons and carbons were assignment by HMBC, HMQC,
1H-1H-COSY, and J-resolved experiments (Table 3). The 1H-
NMR spectrum of 3 showed proton signals indicating the
presence of two tertiary methyl groups resonating at δH 1.97 (s,
H-11) and 2.01 (s, H-11′), three quinoid protons at δH 6.66 (d,
J = 10 Hz, H-2), 6.89, (d, J = 10 Hz, H-3), and δH 6.94 (s, H-5),
and two aromatic proton singlets centered at δH 7.55 (H-2′), and
δH 7.27 (H-7′). The 13C-NMR (BB and DEPT) spectra (Table 3)
exhibited the resonances of 22 carbons, identified as two methyl
carbons and 20 carbons for two naphthoquinone moieties. The

quinoid proton signals (δH 6.66, H-2; 6.89, H-3 and 7.55, H-2′)
showedHMBC (Figure 4) correlations with δC 190.2 (C-1), 195.3
(C-4), 137.6 (C-3′), and 190.1(C-4′), while the aromatic proton
signals (δH 6.94, H-5 and 7.27 H-5) correlated with δC 24.7 (C-
11), 159.0 (C-8′) and 112.0 (C-9′), respectively. On the basis of the
spectral data, compound 3 is characterized as 8,5′,8′-trihydroxy-
6,6′-dimethyl-7,3′-binaphthyl-1,4,1′ ,4′-tetraone.

Dimeric naphthoquinones 1–3 were investigated for their
potential properties as MDR efflux pump modulators. They were
first screened for antiproliferative activity on human ABCB1
gene transfected mouse lymphoma cell line L5178Y, which
specifically overexpresses a membrane-localized transporter (P-
gp, ABCB1). In order to test the potential clinical application of
compounds 1–3, they were evaluated as concerns the reversal
of MDR (Csonka et al., 2013). The antiproliferative effects
of compounds 1–3 were determined by the MTT method.
Compounds 1 and 2 showed promising antiproliferative potential
on the L5178Ymouse T-cell lymphoma cell line, with IC50 values
of 0.05 ± 0.004 μg/mL and 0.046 ± 0.005 μg/mL, respectively,
whereas compound 3 had an IC50 value of 0.26 ± 0.01 μg/mL
(Table 4).

The cytotoxic effects of the dimeric naphthoquinones on the
PAR andMDR cell lines were studied. Evaluation of the cytotoxic
activities of the compounds revealed that 1 and 3 were the most
active against the parental mouse T-lymphoma cell line, with IC50
values of <3 μg/mL. Both of these compounds were also active
against the MDR cell line (Figure 5 and Table 5).

Compounds 1–3 were also evaluated for the reversion of
the MDR of ABCB1 gene transfected mouse lymphoma cell
line, followed by flow cytometry, which measures intracellular
accumulation of rhodamine 123, a fluorescent substrate analog of
epirubicin. The fluorescence activity ratio (FAR) value was used
to evaluate the ABCB1 transporter modulating potential. When
the tested compounds were investigated in concentrations of 0.1
to 1 μg/mL by flow cytometry (Table 6), the side scatter count
and forward scatter count values increased, indicating that the
compounds exerted membrane effects and the granulation of the
cytoplasm was increased. The results revealed a special type of
toxic effect on the reversal of MDR at toxic doses of 1 μg/mL.
The FAR of compounds 1–3 differed: compound 1 proved to
be a very effective MDR modulator, while compounds 2 and 3
did not exhibit significant effects in a short-time experiment.
Verapamil, a calcium channel blocker and chemosensitizer, was
used as a positive control. The results relating to MDR reversal
activity in the current investigation are presented in Table 6. On
MDR mouse lymphoma cells, compounds 1–3 were screened in
two concentrations (1 and 0.1 μg/mL). Compound 1 was a fairly
moderate modulator of the efflux pump activity (FAR = 1.72
at 1 μg/mL and 10.63 at 0.1 μg/mL), while compounds 2
(FAR = 1.1 at 1 μg/mL and 1.3 at 0.1 μg/ml) and 3 (FAR = 1.15
at 1 μg/mL and 0.84 at 0.1 μg/mL) were somewhat weaker
(Table 6).

The effects of the tested compounds on the activity of
doxorubicin were observed to vary from slight antagonism to
antagonism as shown in Table 7.

The tested dimeric naphthoquinones 1–3 display several
structural differences, mainly relating to the positions of the
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aromatic linkages. Compound 3 differences from compounds
1 and 2 in containing an extra hydroxyl group rather than
a methoxy substituent. It is clear that the joint presence of
methoxy and hydroxy groups enhanced the activity (Table 4).
The positions of quinone moieties influenced the efflux pump
activity, as demonstrated by the FAR values in Table 6.

CONCLUSION

Three new dimeric naphthoquinones (1–3) isolated from
the CHCl3-soluble fraction of the roots of D. lotus, led to
the reversal of MDR and exerted antiproliferative activity.
They also exhibited promising antiproliferative effects in
a dose-dependent manner on two cancer cell lines. This
discovery strengthens our belief in the indigenous knowledge
of traditional health cures against cancer diseases. The
results suggest that research on naphthoquinone derivatives
could possibly lead to the discovery of potent anticancer
agents.

AUTHOR CONTRIBUTIONS

GU and AK were project supervisor. AR was performed isolation
of compounds. BS and BA were gave the project idea. JM, AC,
and DS were performed the activities of compounds. UF and AK
involved in the useful discussion and participated in manuscript
writing. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors are grateful for the financial support of the
Higher Education Commission of Pakistan under grant number
112-26510-2PS1-258, and the HEJ research institute, Karachi,
Pakistan. The study was supported by the Szeged Foundation for
Cancer Research, and by the European Social Fund (TAMOP-
4.2.2A-11/1/KONV-2012-0035). We are also grateful to Mrs.
Anikó Vigyikán Váradi for the preparation of the tissue cultures
and technical assistance, and to Imre Ocsovszki for the flow
cytometry measures.

REFERENCES

Assaraf, Y. G. (2006). The role of multidrug resistance efflux transporters in
antifolate resistance and folate homeostasis.Drug Resist. Updat. 9, 227–246. doi:
10.1016/j.drup.2006.09.001

Bak, M. Jr., Efferth, T., Mickisch, G., Mattern, J., and Volm,M. (1989). Detection of
drug resistance and P-glycoprotein in human renal cell carcinomas. Eur. Urol.
17, 72–75.

Bihorel, S., Camenisch, G., Lemaire, M., and Scherrmann, J.-M. (2007).
Modulation of the brain distribution of imatinib and its metabolites in mice
by valspodar, zosuquidar and elacridar. Pharm. Res. 24, 1720–1728. doi:
10.1007/s11095-007-9278-4

Brinkhuis, M., Izquierdo, M. A., Baak, J., van Diest, P. J., Kenemans, P.,
Scheffer, G. L., et al. (2002). Expression of multidrug resistance-associated
markers, their relation to quantitative pathologic tumour characteristics and
prognosis in advanced ovarian cancer. Anal. Cell. Pathol. 24, 17–23. doi:
10.1155/2002/958436

Chou, T. C., andMartin, N. (2005).CompuSyn for Drug Combinations: PC Software
and User’s Guide: A Computer Program for Quantitation of Synergism and
Antagonism in Drug Combinations, and the Determination of IC50 and ED50
and LD50 Values. Paramus, NJ: ComboSyn Inc.

Cole, S. P. C., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist,
K. C., et al. (1992). Overexpression of a transporter gene in a multidrug-
resistant human lung cancer cell line. Science 258, 1650–1650. doi: 10.112
6/science.1360704

Cole, S. P. C., and Deeley, R. G. (2006). Transport of glutathione and glutathione
conjugates by MRP1. Trends Pharmacol. Sci. 27, 438–446. doi: 10.1016/
j.tips.2006.06.008

Cornwell, M. M., Pastan, I., and Gottesman, M. M. (1987). Certain calcium
channel blockers bind specifically to multidrug-resistant human KB carcinoma
membrane vesicles and inhibit drug binding to P-glycoprotein. J. Biol. Chem.
262, 2166–2170.

Csonka, A., Spengler, G., Martins, A., Ocsovszki, I., Christensen, J. R. B.,
Hendricks, O., et al. (2013). Effect of thioridazine stereoisomers on the drug
accumulation of mouse lymphoma and human prostate cancer cell lines
in vitro. In Vivo 27, 815–820.

Damiani, D., Tiribelli, M., Calistri, E., Geromin, A., Chiarvesio, A., Michelutti, A.,
et al. (2006). The prognostic value of P-glycoprotein (ABCB) and breast cancer
resistance protein (ABCG2) in adults with de novo acute myeloid leukemiawith
normal karyotype.Haematologica 91, 825–828.

Diestra, J. E., Condom, E., Del Muro, X. G., Scheffer, G. L., Perez, J., Zurita,
A. J., et al. (2003). Expression of multidrug resistance proteins P-glycoprotein,

multidrug resistance protein 1, breast cancer resistance protein and lung
resistance related protein in locally advanced bladder cancer treated with
neoadjuvant chemotherapy: biological and clinical implications. J. Urol. 170,
1383–1387.

Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K.,
et al. (1998). A multidrug resistance transporter from human MCF-7 breast
cancer cells. Proc. Natl. Acad. Sci. U.S.A. 95, 15665–15670. doi: 10.107
3/pnas.95.26.15665

Ganapaty, S., Thomas, P. S., Karagianis, G., Waterman, P. G., and Brun, R. (2006).
Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis.
Phytochemistry 67, 1950–1956. doi: 10.1016/j.phytochem.2006.05.039

Germann, U. A., Pastan, I., and Gottesman, M. M. (1993). P-glycoproteins:
mediators of multidrug resistance. Semin. Cell Biol. 4, 63–76. doi:
10.1006/scel.1993.1008

Gottesman, M. M., and Ambudkar, S. V. (2001). Overview: ABC
transporters and human disease. J. Bioenerg. Biomembr. 33, 453–458. doi:
10.1023/A:1012866803188

Gottesman, M. M., Fojo, T., and Bates, S. E. (2002). Multidrug resistance in
cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58. doi:
10.1038/nrc706

Gruber, A., Peterson, C., and Reizenstein, P. (1988). D-verapamil and
L-verapamil are equally effective in increasing vincristine accumulation in
leukemic cells in vitro. Int. J. Cancer 41, 224–226. doi: 10.1002/ijc.29104
10211

Gyemant, N., Tanaka, M., Antus, S., Hohmann, J., Csuka, O., Mandoky, L., et al.
(2005). In vitro search for synergy between flavonoids and epirubicin on
multidrug-resistant cancer cells. In Vivo 19, 367–374.

He, S. M., Li, R., Kanwar, J. R., and Zhou, S. F. (2011). Structural and functional
properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr.
Med. Chem. 18, 439–481. doi: 10.2174/092986711794839197

Larkin, A., O’Driscoll, L., Kennedy, S., Purcell, R., Moran, E., Crown, J., et al.
(2004). Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression
in invasive breast cancer: a prognostic study. Int. J. Cancer 112, 286–294. doi:
10.1002/ijc.20369

Leonard, G. D., Fojo, T., and Bates, S. E. (2003). The role of ABC transporters in
clinical practice. Oncologist 8, 411–424. doi: 10.1634/theoncologist.8-5-411

Li, X.-Q., Li, J., Shi, S.-B., Chen, P., Yu, L.-C., and Bao, Q.-L. (2008). Expression
of MRP1, BCRP, LRP and ERCC1 as prognostic factors in non-small cell lung
cancer patients receiving postoperative cisplatin-based chemotherapy. Int. J.
Biol. Markers 24, 230–237.

Loizzo, M. R., Said, A., Tundis, R., Hawas, U. W., Rashed, K., Menichini, F.,
et al. (2009). Antioxidant and antiproliferative activity of Diospyros lotus L.

Frontiers in Pharmacology | www.frontiersin.org 8 December 2015 | Volume 6 | Article 293

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Rauf et al. Dimeric Naphthoquiones have Multidrug Reversal Activities

extract and isolated compounds. Plant Foods Hum. Nutr. 64, 264–270. doi:
10.1007/s11130-009-0133-0

Lopez, D., and Martinez-Luis, S. (2014). Marine natural products with
P-glycoprotein inhibitor properties. Mar. Drugs 12, 525–546. doi:
10.3390/md12010525

Molnar, J., Gyemant, N., Mucsi, I., Molnar, A., Szabo, M., Kortvelyesi, T., et al.
(2004a). Modulation of multidrug resistance and apoptosis of cancer cells by
selected carotenoids. In Vivo 18, 237–244.

Molnar, J., Mucsi, I., Nacsa, J., Hever, A., Gyemant, N., Ugocsai, K., et al. (2004b).
New silicon compounds as resistance modifiers against multidrug-resistant
cancer cells. Anticancer Res. 24, 865–872.

Molnar, J., Szabo, D., Pusztai, R., Mucsi, I., Berek, L., Ocsovszki, I., et al.
(1999). Membrane associated antitumor effects of crocine-, ginsenoside-and
cannabinoid derivates. Anticancer Res. 20, 861–867.

Padhye, S., Dandawate, P., Yusufi, M., Ahmad, A., and Sarkar, F. H. (2012).
Perspectives on medicinal properties of plumbagin and its analogs. Med. Res.
Rev. 32, 1131–1158. doi: 10.1002/med.20235

Rauf, A., Uddin, G., Siddiqui, B. S., Muhammad, N., and Khan, H. (2014).
Antipyretic and antinociceptive activity of Diospyros lotus L. in animals.
Asian Pac. J. Trop. Biomed. 4, S382–S386. doi: 10.12980/APJTB.4.2014
C1020

Robey, R. W., Polgar, O., Deeken, J., To, K. W., and Bates, S. E. (2007). ABCG2:
determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 26,
39–57. doi: 10.1007/s10555-007-9042-6

Sakamoto, A., Matsumaru, T., Yamamura, N., Uchida, Y., Tachikawa, M.,
Ohtsuki, S., et al. (2013). Quantitative expression of human drug transporter
proteins in lung tissues: analysis of regional, gender, and interindividual
differences by liquid chromatography-tandem mass spectrometry. J. Pharm. Sci.
102, 3395–3406. doi: 10.1002/jps.23606

Sarkadi, B., Homolya, L., Szakacs, G., and Varadi, A. (2006). Human multidrug
resistance ABCB and ABCG transporters: participation in a chemoimmunity
defense system. Physiol. Rev. 86, 1179–1236. doi: 10.1152/physrev.0003
7.2005

Szabo, D., and Molnar, J. (1997). The role of stereoselectivity of chemosensitizers in
the reversal of multidrug resistance of mouse lymphoma cells. Anticancer Res.
18, 3039–3044.

Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., and Gottesman,M. M.
(2006). Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5,
219–234. doi: 10.1038/nrd1984

Tezuka, M., Takahashi, C., Kuroyanagi, M., Satake, M., Yoshihira, K., and Natori, S.
(1973). New naphthoquinones from Diospyros. Phytochemistry 12, 175–183.
doi: 10.1016/S0031-9422(00)84643-9

Uddin, G., Rauf, A., Arfan, M., Rehman, T. U., Khan, A. Z., Ali, G., et al. (2013).
Molecular docking of Diospyrin as a LOX inhibitory compound. J. Saudi Chem.
Soc. (in press). doi: 10.1016/j.jscs.2013.1001.1009

Uddin, G., Rauf, A., Siddiqui, B. S., Muhammad, N., Khan, A., and Shah,
S. U. A. (2014). Anti-nociceptive, anti-inflammatory and sedative activities of
the extracts and chemical constituents of Diospyros lotus L. Phytomedicine 21,
954–959. doi: 10.1016/j.phymed.2014.03.001

Uddin, G., Rauf, A., Siddiqui, B. S., and Shah, S. Q. (2011). Preliminary comparative
phytochemical screening of Diospyros lotus Stewart. Middle East J. Sci. Res. 10,
78–81.

Verma, R. P. (2006). Anti-cancer activities of 1, 4-naphthoquinones: a QSAR study.
Anticancer Agents Med. Chem. 6, 489–499. doi: 10.2174/187152006778226512

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Rauf, Uddin, Siddiqui, Molnár, Csonka, Ahmad, Szabó, Farooq
and Khan. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org 9 December 2015 | Volume 6 | Article 293

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive

	A Rare Class of New Dimeric Naphthoquinones from Diospyros lotus have Multidrug Reversal and Antiproliferative Effects
	Introduction
	Materials And Methods
	General Procedure
	Plant Material
	Extraction and Isolation
	Anticancer Assays
	Cell Cultures

	Antiproliferative Assays
	Assays for Cytotoxic Effects
	Assays for Reversal of MDR in Mouse Lymphoma Cells
	Checkerboard Combination Assays

	Results And Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	References


