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Abstract: In dynamic program slicing, program subsets are computed that represent the set 

of dependences that occur for specific program executions and can be associated with a 

program point of interest called the slicing criterion. Traditionally, dynamic dependence 

graphs are used as a preprocessing step before the actual slices are computed, but this 

approach is not scalable. We follow the approach of processing the execution trace and, 

using local definition-use information, follow the dependence chains “on the fly” without 

actually building the dynamic dependence graph, but we retain specialized data structures. 

Here, we present in detail the practical modifications of our global dynamic slicing 

algorithm, which are needed to apply it to programs written in the C language. 
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1 Introduction 

Program slicing [1, 2] is a program analysis technique that is used to help solve 

various software engineering problems. A slice of a program is the program’s 

subset which consists of only those statements that directly or indirectly affect the 

value of a variable occurrence (known as the slicing criterion). This form of 

slicing is referred to as backward slicing. In contrast, forward slicing involves 

looking for forward dependences; those statements that may be affected by a 

specific program point. If the dependence set is determined in such a way that it 

reflects the dependences for all possible executions, we call it a static slice. 

However, if only a specific program execution is investigated, it is called a 

dynamic slice. In our study we will focus on backward dynamic slicing. 

Dynamic program slicing [3] has a certain advantage in some applications; 

namely, the dynamic slices are significantly smaller than their static counterparts. 

For instance, when debugging we seek the possible cause(s) of an error that was 

observed at a specific program point and for a specific run. The more precisely 

this set of causes is defined, the more effective the debugging should be. 
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A common approach to dynamic slicing is based on computing the dynamic 

dependences among the program elements. The method by Agrawal and Horgan 

[3] uses a graph representation called the Dynamic Dependence Graph (DDG), 

which includes a distinct vertex for each occurrence of a statement in the 

execution history (the list of statements executed), and the edges correspond to the 

dynamically occurring dependences among them. Based on this graph, the 

computation of a dynamic slice means finding all the reachable vertices starting 

from the slicing criterion. The DDG-based method can be used to compute 

dynamic slices in a general way, since it performs a full preprocessing [4] before 

the actual slicing. When building the graph in advance, the user has the possibility 

of computing different slices starting from different program points (the criteria) 

and going in different directions (forwards or backwards). Since the computation 

and storage for such a graph is expensive more specialized approaches that take 

into account the desired slicing scenario should be considered. 

In previous studies [5, 6, 7], we devised new efficient dynamic slicing methods 

that were based on dynamic dependences, but did not require full preprocessing 

and the building of huge representations like the DDG graph. We also process the 

execution history and some elements of the complexity of our approach are related 

to the length of the execution as well; but other, more specialized data structures 

and algorithms are applied in order to improve the overall efficiency. One of the 

results is a backward slicing algorithm [6, 7] that computes all the possible 

dynamic slices globally, with only one pass through the execution history. This 

method significantly differs from the previously published slicing algorithms, and 

it is believed to be applicable for real-size programs and executions. We presented 

some details of the algorithm in different contexts; for C [6, 8] and for Java [9] 

programs, and for different applications [7, 10]. 

In this paper, we provide details on the implementation of the global algorithm for 

backward slicing for C programs. This makes its implementation possible in 

virtually any context and platform for C. 

2 Previous Results and Related Work 

Program slicing has a large literature and many different approaches have been 

devised. Surveys can be found at various places, e.g. [2, 11]. While the practical 

static slicing methods are mostly based on the PDG-based algorithm by Horwitz et 

al. [12], there are several, quite different approaches to dynamic slicing. One usual 

categorization of the dynamic slicing methods comes from asking whether the 

program subset produced (the slice) is an executable program or not. Executable 

slices are needed for certain applications, but they are less accurate. 
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Actual implementations of dynamic slicing algorithms were mentioned in very 

few publications, such as in [13, 14]. However, these implementations did not 

prove to be suitable for real-life applications. In a study, Venkatesh experimented 

with different algorithms and provided experimental data [14]. In this experiment, 

four kinds of slicing algorithms were implemented for the C language, including 

the dependence-based approach by Agrawal and Horgan [3] and the executable 

slicing method by Korel and Laski [15]. Unfortunately, no details were given on 

the design and functionality or the special features of the implementation for C. 

In the DDG-based method by Agrawal and Horgan [3], the size of the DDGs may 

be huge. In fact, it is not bounded by the program dimensions, but it correlates 

with the execution length. In their study, Agrawal and Horgan therefore proposed 

a reduced DDG method, where the size of the reduced graphs was bounded by the 

number of different dynamic slices. Alas, even this reduced DDG may be very 

large for some programs. In [16], Zhang et al. elaborate on the problems of 

existing dynamic slicing algorithms concerning their computation and space 

complexity. They claim that most accurate (they use the term “precise”) 

algorithms are significantly less efficient than the approximate methods, which in 

turn produce inaccurate dynamic slices. This inefficiency may be attributed to two 

factors: either the execution trace is completely processed before the actual slicing 

algorithm is performed (referred to as full preprocessing) or the slicing algorithm 

is invoked on demand, processing the trace from the start for each slicing request 

(referred to as no preprocessing). Our global and demand-driven algorithms [5] 

correspond to the first and second cases, respectively. In both approaches the 

authors gave their own implementations based on dependence graphs. To reduce 

the overheads of each approach they proposed a combined algorithm called 

limited preprocessing, where the execution trace is augmented with summary 

information to allow a faster traversal when the slice is computed. 

2.1 Our Global Dynamic Slicing Algorithm 

In a previous study [5], we investigated practical ways of computing the dynamic 

slices based on dynamic dependences, but without requiring costly global 

preprocessing. We proposed alternative methods based on the same dynamic 

dependences, but instead of DDG graphs specific data structures were used for 

each algorithm. These structures are different depending on the slicing scenario, 

and – having specific applications – some of the algorithms are more efficient in 

terms of storage, while others have improved runtime efficiency. The different 

slicing scenarios that we investigated are global vs. demand-driven slicing and 

computing backward vs. forward slices. One favorable property of these 

algorithms is that they are able to compute the same dynamic slices as the original 

DDG-based method. It turns out that the slices can be produced by traversing the 

execution history either in a forward or in a backward way, and that some 

processing directions fit better in one slicing scenario than in another. This gives 
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eight possibilities, some of which give useful algorithms, while others prove 

unfeasible. In our paper, we elaborate the topic by providing details on handling 

real C language constructs for the global algorithm. 

Our approach for computing dynamic slices differs significantly from the previous 

methods. We designed the slicing algorithms so that they can be effectively 

implemented and used in practice. Hence, we tried to minimize the amount of 

information that must be computed and stored during the computations [5, 6, 7]. 

In our algorithms, we track the data and control dependences among the program 

instructions that arise dynamically during execution. The algorithm works on the 

trace of the execution, which is produced using a statically instrumented version 

of the program. The trace includes all the necessary information about the runtime 

behaviour of the program.
1
 For producing the required slicing results, the 

algorithm relies on statically computed information from the code as well. The 

global algorithm (also referred to as the forward algorithm) starts at the beginning 

of the trace with the first executed instruction and propagates the dynamic 

dependences in parallel with the execution, and eventually provides the required 

slices for all the possible dynamic criteria (for all the variables). Evidently, this 

approach has its benefits and drawbacks, but the other algorithms presented in [5] 

provide feasible alternatives. For details of the conceptual algorithm with 

examples, please see the articles cited above. 

3 Global Dynamic Slicing for C Programs 

In other studies [5, 6, 7], we presented conceptual algorithms for dynamic slicing. 

The concepts were introduced for programs in which only scalar variables were 

used and without interprocedurality. The application of the conceptual algorithm 

to C programs gives rise to several problems. In our study, the handling of various 

language constructs were addressed in the following way: 

1) All computations are performed on memory locations instead of handling 

scalar variables, pointers and other more complex objects differently. This 

approach enables an easy and uniform handling of pointers, pointer 

dereferences, arrays and structures by transforming them to the actual 

memory locations. In our approach, the dependences for a pointer 

dereference will include the dependences of the pointer itself and the 

dereferenced memory location as well. Also, accesses to union members 

and C bitfields are treated as dependences for the whole data structure 

(struct and array members are handled individually). Slicing on memory 

                                                           
1
  Execution tracing is used in other areas of software engineering as well; it has 

recently been proposed to extend software product quality frameworks [18]. 
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locations is a feasible approach since all the dynamic information on the 

actual storage of objects is available. 

2) Since each C statement (and expression with side-effects) may imply the 

definition of more than one object, a definition-use list is defined for each 

executable instruction, rather than a single definition-use pair as we have 

with the conceptual algorithm [5, 6, 7] (a definition-use pair or def-use pair 

consists of a variable name that is defined at the instruction and a set of 

variables that is used in the instruction for computing the value of the 

defined variable). This list is essentially a sequence of def-use pairs that all 

occur in an instruction (see below for a complete definition). 

3) All slicing criteria and slicing results are given for line numbers in the 

original source file. However, since the computations are made on memory 

locations and for (possibly multiple) objects defined for one statement, the 

necessary mappings must be made. 

4) Interprocedural dependences that arise across function calls can be handled 

relatively easily by adopting the memory slicing approach, since each 

memory address can be viewed as a “global variable.” The execution 

history will contain each realized function call, and the order of the 

instructions executed will also be known. We only have to handle the 

actual arguments as special local variables and the return value as a special 

variable defined at the call site. 

5) Local variables are also handled by using their addresses on the actual call 

stack frame. We only need to track the block scopes dynamically for 

lookup purposes. The handling of globals is also simple due to using their 

addresses for computation (which are fixed for the whole execution of the 

program). 

6) The unstructured control transfers (goto and other jump statements) are 

handled by adding all the possible control dependences to the def-use 

representation (for a block-based language as in our conceptual description, 

the control dependences are determined by the syntax). As this way some 

statements may be dependent on multiple predicates, the handling of 

predicate variables in the presence of jumps needs to be slightly extended 

(the details are given below). Currently, C “long jump” constructs are not 

handled, but they could be treated in the same way. 

7) The conceptual algorithm uses the concept of execution history to record 

the instruction numbers executed. To be able to slice a C program, 

however, some other information is also needed that is generated upon 

executing the program, and which is used by the slicing algorithms. This 

includes the addresses of variables, function calls and block scope 

information. We will call this extended execution history the trace. 
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8) Declaration lines will  be added to the slices whenever the definition of the 

declared variable is added to the slices. Also, the eventual initializations 

will be added to the def-use representation. 

9) Since programs generally rely on standard library code as well, we must 

handle interprocedural dependences arising from the parameters, side 

effects and return values of calls to library code. Since the source code of 

library functions is often unavailable, we will rely on the semantics of such 

functions and prepare, in advance, a def-use representation of each 

standard library  function based on the specifications. 

10) Real programs usually consist of multiple source files composed of header 

files (.h) and implementation files (.c), which produce translation units 

after preprocessing. Our slicing algorithm works on preprocessed units, 

which makes it possible to compute slices for the whole program. What is 

needed to achieve this is a global numbering of statements over all the 

source files of the program, and solving name identification for definitions 

coming from common header files and placed into multiple translation 

units, as we do with a linker. 

Based on these considerations, the implementation of our dynamic slicing 

approach consists of four phases. During a static analysis, the def-use 

representation of the program is produced and stored on the disk, and the source 

code is instrumented.
2
 Next, the instrumented code is built to produce an 

executable program, which is executed in the next phase. During this operation a 

trace of the program is produced with the help of the instrumentation code. Lastly, 

the slicing algorithm is executed, where the trace is used to drive the propagation 

of the dependences, in the global algorithm starting from the beginning of the 

trace. The slicing algorithm relies on the def-use representation produced in the 

first phase. Below, we will describe these phases and specific features of the 

implementation for C. 

3.1 Static Analysis 

Static analysis has two goals: to produce the def-use representation (Section 3.2) 

and to instrument the code (Section 3.3). Another task here is to create a mapping 

between the physical source code lines and the internal identifiers given to 

program elements by the analyzer. Our static analysis front end works on the 

preprocessed code, and it performs lexical and syntactic analysis, producing an 

annotated Abstract Syntax Tree as the result for each unit. The AST contains 

                                                           
2
  In this study, we used source code-level instrumentation, but other ways exist as well 

such as binary-level and virtual machine-level solutions. It should be added that 

source code-level instrumentation has the highest risk of changing program behavior, 

but when experimenting with our prototype we did not encounter any such problems. 
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sufficient information to compute the def-use representation and perform code 

instrumentation. 

3.2 Def-Use Representation for C 

In our implementation for the C language, an extended def-use representation is 

created and stored in a file, which will be used later by the algorithms. In the 

conceptual algorithm [5, 6, 7], the def-use representation  was defined as i. d: U 

for each program instruction number i. For real C programs, this representation 

(also called the D/U representation below) will be extended so that it contains a 

sequence of d: U items for each instruction i in the program: 

. We will use the notation DU
C
(i) for the 

D/U sequence of the i-th instruction. 

This extension is needed because in a C instruction (i.e. an executable expression 

with side-effects), several l-values may be assigned new values. Note that the 

sequence order is important, since the d values of a previous D/U item can be used 

by the subsequent U sets. This sequence order is determined by the “execution-

order” (evaluation) of the corresponding subexpressions. The order of the 

evaluation of subexpressions in C is not always defined by the language, hence 

there might be complications arising from the use of different compilers and 

compilation options. In our current implementation, we will rely on the parsing 

sequence determined by the context-free grammar of C, which proved to be 

sufficient in our prototype. In a production tool, however, care should be taken to 

handle the various possibilities. 

The other modification needed for the D/U representation for C is that the 

variables (including artificially created ones) in it are not only simple scalar or 

predicate variables, but they can also take several different meanings as follows: 

1) Scalar variables. These are the “regular” global or local variables (with 

static storage, they have a constant address for the actual call stack frame). 

The formal parameters of functions are also represented as if they were 

local variables in the function’s scope. Note that dynamic variables used 

with dynamically allocated memory on the heap do not need special 

treatment as they will be treated as pointers and the corresponding allocator 

functions as library code (see above). 

2) Predicate variables. Denoted by pn, where n is the serial number of the 

predicate instruction, the predicate variables are artificial variables with the 

same semantics as those described in the conceptual algorithm. In the case 

of the C language, all iteration and selection statements will induce 

predicate variables. An additional, special form of predicate variables will 

be introduced, one for each function and will be denoted by entry(f), to 

generalize the representation of control dependences. Such an “entry-
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predicate” is defined upon entering the function f and is used by all 

statements outside any other predicates in the function. 

3) Output variables. Denoted by on, the output variables are artificial 

variables that are generated at the places where a set U is used, but no other 

variable takes any value from U. These include function calls with their 

return values ignored, single expression-statements with no side-effects, 

jump statements, and some output statements in C such as printf. 

4) Dereference variables. The notion of the (artificial) dereference variables 

is employed where a memory address is used in any possible way or where 

it gets a value through a pointer (or an array or structure member). They are 

denoted by dn, where n is a global counter for each dereference occurrence. 

Dereference variables will  be created for the following code constructs: 

*expr, object.member, ptr->member and array[index]. Note 

that in an implementation, some of these could be handled uniformly as a 

base pointer+offset, but source code instrumentation requires a different 

treatment. Dereference variables will be used in such a way that their 

dependences will be noted in the D/U representation only symbolically, 

while the actual dependences will be computed for the associated addresses 

written to the trace. Note that the order in which the dereference variables 

are stored in the use sets must be the same as the order in which they will 

be evaluated. 

5) Function call argument variables. These are artificial variables denoted by 

arg(f,n), where f is a function name and n is the function argument 

(parameter) number. An argument variable is defined at the function call 

site and used at the entry point of the function (by defining the formal 

parameter). 

6) Function call return variables. Denoted by ret(f), where f is a function 

name, the artificial return variables are defined at the exit point of the 

function and used at the function caller after returning. 

In the extended D/U representation, regardless of the type of variable, all 

dependences are treated equally. For instance, a pointer dereference may be 

dependent on a predicate variable if the dereference subexpression is control-

dependent on a predicate. This uniform handling allows a very concise capturing 

of the interdependences of the program, and a straightforward implementation of 

the algorithms. In the following, we will describe how the dependences in the D/U  

representation are built up and relate to special features of the C language. 

Computation of the data dependences. Generally speaking, the structure of the 

D/U representation is such that it captures the definition-use relationships locally 

for each statement. This means that we do not need to deal with the classical 

problems of computing data dependences in the static case, as is required with the 

dependence graphs [12]; in our case only the names of the dependent variables 
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(and not the corresponding definition) need be stored. Thus, our representation for 

C can be constructed in a simple syntax-directed manner following the semantics 

of each C expression construct. 

Function calls. Function calls and parameter passing are handled in the D/U 

representation using the artificial variables arg and ret (see above). Whenever a 

function call expression is found in a C instruction, a corresponding D/U item is 

created with the arg variable as the defined one and the appropriate use set. Next, 

in each function a D/U item is constructed for all its formal parameters in which 

the parameter is the defined variable (the parameter is later treated as a local 

variable) and the corresponding arg variable constitutes the use set. Furthermore, 

for each return statement in the functions a D/U item is created with the ret 

variable defined and the corresponding use sets. Lastly, at the call site these ret 

variables are used in the corresponding use sets for the expressions containing the 

function call. The order of elements in the D/U lists is important as this is required 

for the synchronization with the trace. 

Structured control dependences. The predicate variables will be used in the D/U 

representation to capture the control dependences among the program instructions. 

In the case of structured control transfers (the if selection and the three types of C 

loops), for each predicate corresponding to the respective decision statement a 

predicate variable will be created and the dependences will be based on the 

nesting structure of the program; the directly nested statements of if branches or a 

loop will be dependent on the corresponding container predicate. To make the 

algorithm more general, for each function an additional predicate called the entry-

predicate will be defined as well. The instructions that are not nested within 

another predicate statement will be dependent on the entry-predicate. (The entry-

predicates are implicitly defined at the function beginning and their use sets are 

empty.) Note that shortcut logical expressions do not influence this operation. 

Handling of goto and other unstructured jumps. While the direct control 

dependences can be readily determined for structured programs, goto-s and other 

arbitrary control transfers (switch, continue and break) must be handled in a more 

elaborate way. We will compute control dependences in the static analysis phase 

based on the traditional approach using postdominance relations [17], and then 

build the extended D/U representation based on this information. Namely, if an 

instruction i is found to be control dependent on some other instruction (which is 

then a predicate), we extend the use set of i with the corresponding predicate 

variable. Since in a program with arbitrary control flow an instruction may be 

control dependent on more than one instruction, our use sets may also contain 

several predicate variables. In one specific execution only one of them will be 

responsible for the actually realized control dependence, which we will call the 

active predicate. When propagating the dependences through the current 

instruction’s use set, we must select just one predicate variable to continue with. If  

there are more predicate variables in the use set, our approach is to choose the one 

that has been defined most recently. In other words, for i
j
. d: U, we will choose 
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predicate p for which LD(p) = max{LD(r) | r ∈ U and r is a predicate variable}, 

where LD(v) is the last definition of variable v, i.e. the execution step at which v 

was defined just before the j-th step where i was executed. (In the following, we 

will refer to execution history elements as actions with the notation i
j
, where i is 

the serial number of the instruction executed at the j-th step or position.) 

Complex l-values. A side effect of certain C expressions is that the sub-expression 

on the left hand side of the operator takes the value of the right hand side (this 

includes the assignment operators as the most common ones). These operators 

require that their left hand side be an l-value (meaning that it is modifiable). Quite 

frequently, the l-value is a simple variable occurrence, but these sub-expressions 

can be arbitrarily complex. In such cases, the D/U representation needs to be 

constructed carefully to include all the defined and used variables appropriately. 

One important issue is the handling of pointer dereference expressions of the form 

*p. Strictly speaking, the data pointed to by a pointer is not dependent on the 

address itself. However, we will apply a conservative approach and include such 

pointers as well (this approach is also used by some other algorithms). In Figure 1, 

we list some other cases and the way we treat them in our representation 

(following the principles for dereference variables introduced above). 

a[i] = r; //  d1:{r,i,a} 

*(p+x) = r; //  d2:{r,p,x} 

m.a = r; //  d3:{r} 

p->a  = r; //  d4:{r,p} 

Figure 1 

Handling of field accesses 

Clearly, this is a conservative approach as, for example, the array name a and the 

index variable i both appear in the use-set of the first statement; however from a 

computational point of view only the data at the address pointed to depends on r. 

Although debatable, here we shall choose this approach to be able to compute a 

conservative-type of dependence which can be used, for instance, to assist impact 

analysis. 

Pointers, pointer dereferences, address-of and arrays. Our algorithm computes 

the dependences on memory locations, which makes the handling of pointers and 

related structures straightforward, but there are several special features worth 

mentioning. As we said previously, in the case of pointer dereferences both the 

pointer and the dereferenced object will be included. Using the address-of 

operator does not induce a new dependence because the address itself can be 

viewed as a constant  value. All the other operations with pointers are treated in 

the same way as in the case of regular variables. Arrays can be handled in a 

similar way as pointers since they can be interpreted as pointers with appropriate 

offsets corresponding to the index. The only extension is that the variable(s) used 

in the index operators are also treated as used variables. Multiple pointers and 

indirections can be handled in the same way as well. 
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The handling of function pointers does not require major modifications to the 

presented algorithms, but we omitted these details from the formal algorithm (in 

the next section) to aid readability, and we describe them more fully here. 

Statically, we cannot determine the called function, so in the D/U representation 

we cannot use arg(f,n) and ret(f) variables either. Instead, we use their special 

form in which the actual names are not given, just some symbolic names of the 

form arg(?,n) and ret(?). These temporary variables will be resolved upon the 

execution of the slicing algorithms as soon as the called functions become known. 

Structs and unions. C language unions and bitfields can be handled in a 

conservative way. Namely, we will treat unions and bitfields as scalar variables 

because when we define a field we virtually define all the others as well. Bitfields 

can introduce multiple dependences due to overlaps in memory regions, which 

will be handled in a similar way to that with type-casts, described later on. In the 

case of structs, however, we want to preserve the individual tracking of the 

dependences of the fields as in the case with arrays. For this, we follow a similar 

approach to the handling of arrays because the structs can also be interpreted as 

memory regions with a fixed base address and offsets corresponding to the fields. 

That is, for each field access we create a distinct dereference variable, which we 

can use separately in the D/U sets. 

The handling of the individual struct variables as parts of expressions is more 

complicated because the expression operations in this case will correspond to all 

the fields together (struct copying). In this case, we model the dependences for 

each field access combination (which may be recursive). The struct variable itself 

will not be part of the D/U sets, but all the references to it will be transformed to 

the actual field accesses for all the fields. Figure 2 provides examples for handling 

structs, members and dereferences (in the commented lines below line 2, we can 

see how the fields are modelled). 

   struct S s,t,*p,*q; 

   t.a = ... 

   t.b = ... 

1. q = &t;   //  q : {} 

2. s  = *q;   //  : {} 

// s.a = q->a; // d2:{q,d1} 

// s.b = q->b; // d4:{q,d3} 

// ... 

3. x = s.a;  //  x : {d5} 

4. p = &s;   // p : {} 

5. y = p->b; // y : {p,d6} 

Figure 2 

Handling of struct variables 

For instance, during a slice computation, the runtime addresses of d5 and d2 will 

be the same, which will result in correct dependences between s.a and t.a. 
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Type casts. Type casts can cause a problem for our slicing algorithms in cases 

where the sizes of the original type and the new type are different. The basic 

methods discussed above will lose any dependences among overlapping memory 

regions of the objects (e.g. structure members). The problems related to type casts 

can be handled only by maintaining the length of the referenced memory 

addresses as well as their starting address. We did not include this in the formal 

description of the algorithms for the sake of clarity, but we will overview the basic 

method here. The D/U representation does not include any specific extensions, but  

in the execution trace we will output the dereference addresses and the sizes of the 

variables in question, which will form regions instead of single addresses 

(sizeof can be used in the instrumented code for this purpose). The slicing 

algorithm will then take into account each byte of the referenced memory region, 

which will result in not losing any dependences; and this will be suitable for all 

kinds of type casts, including casts between scalars and pointers. 

3.3 Instrumentation and the Trace File 

The purpose of code instrumentation is to produce a semantically equivalent code 

that, upon execution, produces a trace of the execution. The trace records the 

executed i
j
 actions and other information required by the slicing algorithm. It is a 

linear sequence of elements with various meanings, which is, upon execution, 

stored in a file for later processing. The sequence can be described with a context 

free grammar shown in Figure 3. 

 

Figure 3 

Formal description of the trace 

The order of elements in the trace is determined by the execution of the 

instrumented program. First the data for all of the global variables are dumped 

(mark G with the variable name and its actual address). Then the execution is 

traced starting with the main function. On entering a function, a function-begin 
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mark with the function name (FB) is generated, and on exiting it a function-end 

mark (FE) is generated. During the execution of a function body, three kinds of 

events can occur: the data for a local variable (D) is generated in a similar way to 

that for the globals, or a nested block (corresponding to a syntactic block in a C 

program) is generated with the delimiting marks (BB with a unique block serial 

number and BE with the identifier of an outer block), or an executable instruction 

(action) is traced. The delimiting marks are not generated only for the blocks 

according to the syntax with { and }, but for each jump instruction into or out of 

some blocks and single statement sub-instructions as well. The block identifier 

that comes with BE is the number of the block in which the next executable 

instruction is located. Usually, it is the block containing the current one, but in the 

case of unstructured jumps it may be any block in the current function. 

An action is generated for each C instruction (expression) and it consists of two 

parts. The main part (E) designates the executed instruction number i and the 

execution step j. In addition, an optional list of information (the action suffix) 

related to the current instruction may be generated. Here, there are two types of 

action suffixes. If a function call is a part of the expression of the current action, 

the trace for the whole function will be dumped as a suffix for the current action. 

This can clearly result in a large amount of recursive data structures being 

generated, which may be similar at different instances if the invocation is similar. 

This could be optimized in an implementation by applying some kind of a 

compression; however, here we do not implement such a feature. The other kind 

of action suffixes will be generated whenever a pointer dereference is encountered 

in the expression of the current action. The accessed memory address is dumped 

into the trace using P. For each action, the additional dereferences will correspond 

to the relevant dereference variables in the D/U. Note that the order in which the P 

marks will be generated is the same as the way they are executed, and this order 

must also be the same as the corresponding dereference variables are listed in the 

D/U representation. This property will be exploited by the slicing algorithm. 

To get the required contents of the trace file, the source code needs to be 

instrumented at several locations. At each relevant point, a call to an 

instrumenting function is generated, which will place the necessary marks into the 

trace file. We chose the instrumented code to be C++ rather than C for practical 

reasons.
3
 For example, some instrumentor functions are easier to implement as 

template functions, and we can also put the calls to the instrumentor functions 

before the variable declarations. The instrumentor functions are provided in 

additional source and header files, which need to be included in the linking phase 

when the program is built. To implement the instrumentation for each trace 

element, several practical solutions had to be elaborated, for instance: block and 

function delimiting marks had to be placed at various places due to possible 

                                                           
3
  Note, that this solution might be problematic when certain language features are used 

in the original C program that are incompatible with the selected C++ compiler. 
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jumps; local and global variables are dumped using the address-of operator; action 

marks are generated for each expression using the comma-operator; dereference 

marks are generated by a C++ template function that returns the pointer to a type 

passed in the template parameter, etc. Figure 4 shows an excerpt from the C 

program bzip, its instrumented version and a part from the generated trace file. 

Since the instruction numbers are generated incrementally, we need to maintain a 

data structure to map the instruction numbers to the physical file line numbers 

(line numbers will be essential in presenting the actual results of slicing). The 

method of mapping line numbers to instruction numbers depends on the actual 

implementation of the static phase. In our toolset, we used the information taken 

from our static analyzer for this purpose, which takes into account both the fully 

qualified file names and the absolute line numbers. Here, we can use line 

information got from both the preprocessed file and the original file locations. 

Int32 nb, na, mid; 

nb = 0; 

na = 256; 

do { 

   mid = (nb + na) >> 1; 

   if (indx >= cftab[mid]) nb = mid; else na = mid; 

} 

D_VA(&nb,"nb"); 

D_VA(&na,"na"); 

D_VA(&mid,"mid"); 

D_EH( 1259,D__ec++); D_EB() ,(nb = 0); 

D_EH( 1260,D__ec++); D_EB() ,(na = 256); 

do 

{ /*BlockGuard*/ 

{ 

D_SB(243); 

D_EH( 1262,D__ec++); D_EB() ,(mid = (nb+na)>>1); 

D_EH( 1263,D__ec++); if ( D_EB() ,(indx>=(*D_P(&cftab[(mid)]))) ) 

{ /*BlockGuard*/ 

D_EH( 1264,D__ec++); D_EB() ,(nb = mid) 

;} /*BlockGuard*/ 

else 

{ /*BlockGuard*/ 

D_EH( 1265,D__ec++); D_EB() ,(na = mid) 

;} /*BlockGuard*/ 

; 

D_SC(242); 

} 

;} /*BlockGuard*/ 

D nb 0x0012F018 

D na 0x0012F010 

D mid 0x0012F014 

E 1259 9578 

EB  

E 1260 9579 

EB  

SB 243 

E 1262 9580 

EB  

E 1263 9581 

EB  

P 0x0012F3C0  

E 1265 9582 

EB  

SC 242 

Figure 4 

Instrumentation and trace file example 
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3.4 Global Algorithm for C 

The extended global algorithm for slicing C programs with the solutions to the 

problems elaborated on earlier can be seen in Figures 5 and 6. Here, the notation 

TR >> tr is used to denote the reading of the next trace element tr from the trace 

TR, which is viewed as a stream of elements, as described in Section 3.3. Other 

formalisms are self-explanatory. Note that for the sake of clarity we omitted such 

supporting activities as error handling and synchronization support between the 

trace and the algorithm. 

The algorithm begins with the program GlobalAlgorithmForC, which has two 

input parameters; namely, program P that is to be sliced and input x for which the 

dynamic slices will be computed globally. First the trace is produced (in a file), 

which is read sequentially (lines 1-2). The algorithm is driven by the elements 

found in the trace, but its structure must be in sync with the static D/U 

representation (see, for example, function calls and dereference marks). The 

function calls are captured in the trace recursively, so they are also handled by the 

algorithm by recursively calling the function ProcessFunction when such a call is 

found. The main program of the algorithm (after storing the addresses of global 

variables on the scope stack written in lines 3-6) starts by processing the main 

function in line 7. 

During processing, a helping structure is maintained for the local and global scalar 

variables. This structure (sc) is a stack of scopes that are entered dynamically 

upon execution. The scope stack is maintained in the function ProcessFunction, as 

dictated by the trace. Namely, a new function scope is created on the top when 

entering a function (FB) in lines 12-13. As we saw earlier, the block beginning 

(BB) and ending marks (BE) are found in the trace in the case of structured control 

flow and for unstructured jumps as well (lines 14-17). Therefore, a new scope for 

a block is created only if it has not already been created for the current function. 

Otherwise, the current scope pointer is simply set to this block. Since jumps into 

blocks are possible, they cannot be deleted upon exiting (only the current scope 

pointer is set), but the whole function scope is deleted when exiting (FE). 

The other two activities performed in ProcessFunction are the storing of the 

addresses of local variables in the stack (D, lines 10-11) and the processing of the 

execution actions (E, lines 18-19) by the function ProcessAction. ProcessAction 

takes an action i
j
, computes the corresponding dynamic dependence sets of the 

defined memory addresses and variables and outputs the corresponding slices. The 

DU
C
 items are processed for the statement i starting with the first one and the so-

called dynamic D/U item i. d’k: U’k is computed for each step (for loop in lines 24-

39). Then, the usual operations for computing the dynamic dependence sets are 

performed [5, 6, 7] (here, DynDep stores the actual dependences, while LS and LD 

denote the last defining statement number and execution step, respectively). First 

the used variables are processed (lines 26-33), then the dependence set for the 

defined variable is computed and output in lines 34-39. 
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Figure 5 

Global algorithm for C 

Each static D/U variable is resolved with the help of the Resolve function (lines 

30, 34). Resolving means finding the memory addresses which the scalar and 

dereference variables point to at the j-th step. Addresses of scalars are looked up 

in the scope stack by using the usual lookup rules for the function at the top of the 

stack (lines 41-42 of the Resolve function). The actual addresses of memory 

dereferences are taken from the trace (P), taking into account the fact that the 

order in which the addresses are dumped into the trace must be the same as the 

order the static D/U lists the dereference artificial variables (lines 43-45). All other 

variables (e.g. predicates) will be the same after resolution (lines 46-47). 
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Figure 6 

Global algorithm for C (continued) 

The other modification for processing one action is that the control dependences 

are handled in the way described in Section 3.2. Namely, we determine the active 

predicate by choosing the one from the set Uk that was the most recently defined 

in line 33 (PR contains all static predicate dependences, from which the one with 

maximal LD is taken. ProcessAction also implements the handling of function 

calls by invoking ProcessFunction recursively, if a function call return variable 

(ret) is found in the D/U. In this case, the trace is processed until the function 

returns (lines 27-29). 
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3.5 Implementation and Measurements 

We implemented the presented algorithm in a prototype tool and performed 

experiments about the feasibility of the approach on real-world programs. We 

used five small to medium size C programs from the open source domain, whose 

main parameters can be observed in Table 1. 

 

Program Lines of 

Code 

Statements Static 

variables 

Scalar 

variables 

Predicate 

variables 

Dereference 

variables 

bcdd 442 78 179 31% 24% 2% 

unzoo 2,900 932 1,896 26% 34% 5% 

bzip 4,495 2,270 4,184 25% 30% 5% 

bc 11,554 3,441 6,898 19% 34% 6% 

less 21,488 5,373 10,605 18% 41% 4% 

Table 1 

Basic program properties 

The number of variables found in the program and their types are relevant to the 

performance of the algorithm. The last four columns of the table overview the 

total number of static variables in the programs and how their types are 

distributed. However, the actual computation complexity of the slicing algorithm 

is mostly determined by the dynamic properties of program elements, which we 

present in Table 2. The first two columns show the number of test cases we used 

in our experiments and the average length of the corresponding execution 

histories, respectively. The next two columns show the average number of 

dynamic variables (such as memory locations used) and the sizes of the use sets 

occuring in each step during execution. These two properties are primarily 

responsible for the actual dependence set sizes and ultimately the space and time 

costs of the algorithm. The resulting dependence set sizes (the dynamic slices) are 

shown in the last column in percentage relative to the program size. 

 

Program Test 

cases 

Avg. 

actions 

Avg. dynamic 

variables 

Avg. use 

set size 

Avg. dependence set 

size (wrt. program size) 

bcdd 5 623.4 34 5.4 18.27% 

unzoo 13 169,557.3 1,173 8.9 5.17% 

bzip 18 14,245.7 985 8.1 4.35% 

bc 49 5,807.3 634 12.6 3.37% 

less 14 101,178.5 2,117 6.9 4.80% 

Table 2 

Dynamic properties of the programs and the slicing algorithm 
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The length of the execution naturally influences the expected number of dynamic 

variables. However, the use set sizes and dependence set sizes typically do not 

depend on this property, but on the logical structure of the program and its 

computations. Hence, we may conclude that the performance of the algorithm in 

each step will not be dependent on the length of the execution, which is one of the 

primary benefits of the method compared to previous approaches. 

Conclusions 

The dynamic slicing approach presented above does not require a complete 

dependence graph to be built as a preprocessing step, but instead our algorithm 

makes use of customized data structures. This has obvious advantages in practical 

situations and will presumably make the approach scalable and feasible as well. 

However, other technical issues remain to be solved (for instance, handling the C 

“long jump” construct) and an optimized version should be developed before 

making the algorithm available as a prototype tool to other researchers. 

Other possible ways of improving the basic algorithms include the idea of trace 

block summaries [16]. This could be exploited in the implementation for 

debugging applications; and this is what we plan to investigate in the near future. 
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