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Abstract: Multidrug resistance (MDR) of cancer cells is a major cause of therapeutic failure. One of the 

mechanisms of MDR is the overexpression of efflux pump such as ABCB1. The use of ABCB1 inhibitors constitute   

an important strategy for reversing MDR. Thus, this study aimed to synthesize a novel 2-oxo-1,2-dihydroquinoline-

4-carboxylic acid derivatives and evaluate their biological activities in vitro using parental (PAR) and multidrug 

resistant (MDR; ABCB1-overexpressing) mouse T-lymphoma cells. The cytotoxic activity and selectivity of the 

tested compounds were assessed by MTT method. The ABCB1 modulating activity was measured by rhodamine 

123 accumulation assay using flow cytometry. The results showed that the compounds 2b, 2c and 3b exerted 

cytotoxic activity with IC50MDR value of 9.09 μM, 71.14 μM and 19.09 μM, respectively. The most active compound 

8c should be considered as a lead compound for further derivatization and additional biological assays. 
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1.  Rationale 

Cancer is the second leading cause of death worldwide [1]. This disease is a consequence of a disruption of 
physiological cell functions. Cell resistance to multiple chemotherapy drugs is considered as the main difficulty to 
develop the efficient therapy. The multidrug resistance (MDR) can be developed by multiple mechanisms [2].  
The main mechanisms of resistance are those that lead to the removal of chemotherapy drugs. The ATP-binding 
cassette (ABC) transporters have been reported to play a critical role in this process [3]. ABC transporters are a 
superfamily of membrane proteins consisting of 48 members. ABCB1, also called P-glycoprotein is the first ABC 
transporter discovered and has been extensively studied in recent years [4]. As other ABC transporters, ABCB1 is 
recognized to produce resistance by lowering intracellular concentration of chemotherapy drug in ATP-depending 
manner [4]. It is known to transport various drugs including the vinca alkaloids, anthracyclines, etoposide, taxanes, 
bisantrene, mitoxantrone, and the histone deacetylase inhibitor depsipeptide [4,5].  
Targeting ABCB1 has led to develop ABCB1 inhibitors that are able to block transport of substrates and 
consequently increase intracellular concentration of drugs [6]. In clinical trials, many inhibitors have been studied, 
but definitive proof that inhibition of drug efflux can improve clinical outcome has not been forthcoming [7]. The 
first generation of ABCB1 inhibitors, such as verapamil, are substrates of these pumps and competitively inhibit 
the efflux of other compounds, often at concentrations that would not be achievable in vivo without considerable 
toxic side effects. In contrast, the second generation, such as valspodar, and the third generation, of ABCB1 
inhibitors are the products of high-throughput screening (HTS), and they exert their activities without causing 
severe side effects, as their activity is specific and selective for these MDR transporters [8]. Therefore, the 
development of ABCB1-transporter inhibitors appears to be an interesting concept to explore, as their use as 
adjuvants could improve the therapy of many tumor-related pathologies in humans.  
Despite the great structural diversity observed in efflux pump inhibitors, some common characters have been 
identified. They are generally nitrogenous heterocycles, with a low basic character and with the presence of an 
aromatic nucleus [9-18]. Certain derivatives of quinoline have shown various interesting biological properties and 
a favorable pharmacological profile. It was reported that the compounds with antitumor activity containing a 
quinoline moiety may act as cytostatic agents, [19-21] or as inhibitors of the topoisomerase-II enzyme, interfering 
with DNA replication [22]. A novel 1,2-dihydroquinoline derivative anticancer agent and its delivery to tumor cells 
using cationic liposomes has also been described [23].  
Thus, in this study, a series of 2-oxo-1,2-dihydroquinoline-4-carboxylic acid derivatives (18 compounds) were 
prepared and evaluated for their cytotoxicity effect and their ABCB1-modulating properties against parental and 
ABCB1-overexpressing MDR mouse T-lymphoma cells. 
2.  Procedure 

2.1. Synthesis.  

                  



 

The structures of the compounds studied are summarized in Scheme 1 and Table 1. The products were obtained in 

two steps procedure as described previously for some products [24-29]. First, 2-oxo-1,2-dihydroquinoline-4-

carboxylic acid derivatives 2a, 2b and 2c were prepared from condensation of various isatin (1H-indole-2,3-dione) 

and malonic acid. The mixture was refluxed in acetic acid in the presence of sodium acetate for 24 hours. Then, 

the compounds (2a-2c) were alkylated using different alkyl reagents in the presence of K2CO3 in DMF for 6 hours. 

The tertiobutylammonium bromide (TBAB) was used as catalyst. In these conditions, N-alkyl derivatives were 

obtained in good yields. However, for the alkylation of 2c with picolyl chloride hydrochloride, we have been able 

to isolate, in addition to the expected product 8c, the compound 8c’ resulting from O-alkylation. 
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Scheme 1. Structures of 2-oxo-1,2-dihydroquinoline-4-carboxylic acid derivatives (2a-8c, 8c’) 

 

 

Table 1. Substituents of 2-oxo-1,2-dihydroquinoline-4-carboxylic acid derivatives (2a-8c, 8c’). 

Compounds X R 

2a H H 

2b Cl H 

2c Br H 

3a H CH3 

3b Cl CH3 

4a H CH2CH3 

4b Cl CH2CH3 

4c Br CH2CH3 

5b Cl CH2CH=CH2 

5c Br CH2CH=CH2 

6a H CH2C≡CH 

6c Br CH2C≡CH 

7a H CH2C6H5 

7c Br CH2C6H5 

8a H CH2C5H5N 

8b Cl CH2C5H5N 

8c Br CH2C5H5N 

                  



8c’ Br CH2C5H5N 

 

2.1.1. General procedure synthesis of the compounds 2a-2c: 
To a solution of 10 mmol of isatin and 10 mmol of malonic acid in 30 mL of acetic acid was added 1 mmol of 
sodium acetate. The mixture was refluxed for 24 h. After cooling, 100 mL of ice water are added. The precipitate 
obtained was washed several times with ethanol. 
2.1.2. General procedure synthesis of compounds 3a-8c’ 
To a solution of 10-3mol of compound 2a-2c in 10 mL of DMF were added 2.510-3mol of alkylating agent 4.10-3mol 
of K2CO3 and 0.0110-3 mol of tetran-butylammonium bromide (TBAB). The reaction mixture was stirred at room 
temperature in DMF for 6 h. After removal of the salts by filtration, the solvent was evaporated under reduced 
pressure and the residue obtained is dissolved in dichloromethane. The organic phase is dried over Na2SO4 then 
concentrated under vacuum. The compound obtained was purified by chromatography on a column of silica gel 
(eluent: ethyl acetate/hexane (1/3)). 
 

2.2. Materials and methods 

An FT-IR spectrum was recorded directly without dilution in KBr pellets using a JASCO FTIR-4160 spectrometer in 

the range of 4000 – 400 cm-1 and at a resolution of ± 2 cm-1. 

The spectroscopic characterization of the synthesized compounds is achieved by recording NMR spectra (Bruker 

Avance DPX300). TLC and column chromatography were performed using silica plates and silica gel, respectively.  

2.3. Biological activities  

Afterwards, working solutions were prepared by dilution in water, the concentration of DMSO was below 1 % in all 

the experiments.  

Other chemicals used in the study as reagents were: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT; Sigma-Aldrich, St Louis, MO, USA), sodium dodecyl sulphate (SDS; Sigma-Aldrich, St Louis, MO, USA), 

rhodamine 123 (R123; Sigma, St. Louis, MO, USA), verapamil (EGIS Hungarian Pharmaceutical Company, Budapest, 

Hungary) and dimethyl sulfoxide (DMSO; Sigma-Aldrich, St Louis, MO, USA). Stock solutions of R123 were 

prepared in phosphate buffered saline and verapamil was dissolved in water. All solutions were prepared on the 

day of the assay. 

2.3.1. Cell lines.  

L5178Y mouse T-cell lymphoma cells (PAR) (ECACC Cat. No. 87111908, obtained from FDA, Silver Spring, MD, USA) 

were transfected with pHa MDR1/A retrovirus, as previously described by Cornwell et al [30]. The ABCB1-

expressing cell line L5178Y (MDR) was selected by culturing the infected cells with colchicine. The L5178Y human 

ABCB1-transfected subline was cultured in McCoy’s 5A medium (Sigma-Aldrich, St Louis, MO, USA) supplemented 

with 10% heat-inactivated horse serum (Sigma-Aldrich, St Louis, MO, USA), 200 mM L-glutamine (Sigma-Aldrich, St 

Louis, MO, USA) and a penicillin-streptomycin (Sigma-Aldrich, St Louis, MO, USA) mixture in concentrations of 100 

U/L and 10 mg/L, respectively. The cell lines were incubated at 37˚C, in a 5% CO2, 95% air atmosphere. 

2.3.2. Assay for cytotoxic effect.  

The effects of increasing concentrations of the tested 2-oxo-1,2-dihydroquinoline-4-carboxylic acid derivatives on 

cell growth were tested in 96-well microtiter plates. The parental (PAR) and multidrug resistant (MDR) mouse T-

lymphoma cells were cultured using McCoy’s 5A medium supplemented with 10% heat-inactivated horse serum. 

The density of the cells was adjusted to 1x104 cells per well (in 100 μL of medium per well) and then added to the 

96-well flat-bottomed microtiter plates containing the dilutions of the tested compounds. The culture plates were 

incubated at 37°C, in a 5% CO2, 95% air atmosphere.  

The culture plates were incubated at 37°C for 24 h; at the end of the incubation period, 20 μL of MTT (Sigma) 

solution (from a stock solution of 5 mg/mL) were added to each well. After incubation at 37˚C for 4 h, 100 μL of 

                  



 

sodium dodecyl sulfate (SDS) (Sigma) solution (10% in 0.01 M HCI) were added to each well and the plates were 

further incubated at 37˚C overnight. Cell growth was determined by measuring the optical density (OD) at 

540/630 nm with Multiscan EX ELISA reader (Thermo Labsystems, Cheshire, WA, USA) [31]. Inhibition of the cell 

growth was determined according to the formula below: 
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Rhodamine 123 accumulation assay. This method, previously described elsewhere, is a fluorescence-based 

detection system which uses verapamil as reference inhibitor of the ABCB1 efflux pump [32]. The parental and 

multidrug resistant (MDR) subline of mouse T-lymphoma cells were adjusted to a density of 2 x 106 cells/mL and re-

suspended in serum-free McCoy’s 5A medium and distributed in 500 µL aliquots. The tested compounds (1 and 10 

μL from a stock solution of 1 mM, respectively) were added at different concentrations (final concentrations of 2 

μM and 20 μM, respectively). Verapamil was used as positive control at 20 µM (from a 5 mg/mL stock solution) and 

DMSO was used as solvent control (at 2 V/V%). The samples were incubated for 10 min at room temperature, then 

10 μL (5.2 μM final concentration) of rhodamine 123 were added to the samples and the cells were incubated for 

20 minutes at 37˚C, washed twice with phosphate buffered saline (PBS) and re-suspended in 1 mL PBS for analysis. 

The fluorescence intensity of the gated cell population was measured with a Partec CyFlow flow cytometer (Partec, 

Munster, Germany). The mean fluorescence intensity was calculated for the treated MDR and parental mouse T-

lymphoma cells lines as compared to the untreated cells [33,34]. The fluorescence activity ratio (FAR) was 

calculated based on the following equation which relates the measured fluorescence values: 

 

controltreated

controltreated

parentalparental

MDRMDR
RF A  ;  

 

Quotient = 100 x (FARcompound/FARverapamil)  

 

3.  Data, value and validation 

3.1. Chemistry (Characteristic and spectroscopic data) 

1,2-dihydro-2-oxoquinoline-4-carboxylic acid: 2a 

Yield: 90%; Physical state: gray solid; mp>350°C; NMR 1H (300 MHz, DMSO): 6.86 (s, 1H, CH), 7.2-8.16 (m, 4H, 

CHarom), 12.17 (s, 1H, NH); 13.9 (s, 1H, OH). NMR 13C (75 MHz, DMSO): 167.2 (COOH), 163.0 (C=O), 141.7(Cq), 139.8 

(Cq), 131.3 (CHarom), 126.5 (CHarom), 123.8 (CHarom), 122.6 (CHarom), 116.2 (CHarom). MS (DIC / NH3): m/z = 189 [MH] +. 

6-chloro-1,2-dihydro-2-oxoquinoline-4-carboxylic acid: 2b 

Yield: 83%; Physical state: gray solid; mp: >350 °C; NMR 1H (300 MHz, DMSO): 6.91 (s, 1H, CH), 7.32 (d, 1H, 3JH-H = 

9Hz, CH arom), 7.72 (d, 1H, 3JH-H = 9 Hz, CHarom), 8.22 (d, 1H, 4JH-H = 1.8Hz, CHarom), 12.22 (s, 1H, NH), 14.05 (s, 1 H, OH). 

NMR 13C (75 MHz, DMSO): 166.69 (COOH), 161.24 (C=O), 139.64(Cq), 138.7 (Cq), 131.14 (CHarom), 126.7 (Cq), 

126.07 (CHarom), 125.77 (CHarom), 118.08 (Cq), 117.42 (CHarom). MS (DIC / NH3): m/z = 223.5 [MH] +. 

6-bromo-1,2-dihydro-2-oxoquinoline-4-carboxylic acid: 2c 

Yield: 85%; Physical state: gray solid; mp: >350 °C; NMR 1H (300 MHz, DMSO): 6.98 (s, 1H, CH), 7.30 (d, 1H, 3JH-H = 

9Hz, CHarom), 7.7 (dd, 1H, 3JH-H = 9 Hz, 4JH-H = 1.8 Hz, CHarom), 8.42 (d, 1H, 4JH-H = 1.8Hz, CHarom), 12.22 (s, 1H, NH), 

14.05 (s, 1H, OH).  

NMR 13C (75 MHz, DMSO): 166.7 (COOH), 161.2 (C=O), 139.6(Cq), 139 (Cq), 133.8 (CHarom), 128.7 (CHarom), 125.9 

(CH), 118.3 (CHarom), 117.9 (Cq), 114.5 (CHarom). MS(DIC / NH3): m/z = 268 [MH] +. 

Methyl 1,2-dihydro-1-methyl-2-oxoquinoline-4-carboxylate: 3a 

                  



Yield: 75%; Physical state: mauve solid; mp: 134 °C; NMR 1H (300 MHz, CDCl3): 3.74 (s, 3H, CH3), 4.0 (s, 3H, CH3), 

7.28 (s, 1H, CH), 7.35 (d,1H, 3JH-H = 9.3 Hz, CHarom), 7.57(dd, 1H, 3JH-H = 11.1 Hz, 4JH-H = 2.4Hz, CHarom), 8.4 (d, 1H, 4JH-H = 

2.4Hz, CHarom). 

NMR 13C (75 MHz, CDCl3): 165.22 (C=O), 160.92 (C=O), 138.97-137.09 (Cq, Cq), 131.18 (C CHarom), 128.60 (Cq), 

126.70 (CHarom) 125.9 (CH), 118.50 (Cq), 115.78 (CHarom), 52.95 (CH3), 29.97 (CH3). HRMS (ESI): m/z calculated for 

C12H11NO3 [M+ H]+: 218.08117, found 218.08117. 

 

Methyl 6-chloro-1,2-dihydro-1-methyl-2-oxoquinoline-4-carboxylate: 3b 

Yield: 75%; Physical state: gray solid; mp: 134 °C; NMR 1H (300 MHz, CDCl3): 3.74 (s, 3H, CH3), 4.0 (s, 3H, CH3), 7.28 

(s, 1H, CH), 7.35 (d,1H, 3JH-H = 9.3 Hz, CHarom), 7.57(dd, 1H, 3JH-H = 11.1 Hz, 4JH-H = 2.4Hz, CHarom), 8.4 (d, 1H, 4JH-H = 

2.4Hz, CHarom). 

NMR 13C (75 MHz, CDCl3): 165.22 (C=O), 160.92 (C=O), 138.97(Cq), 137.09 (Cq), 131.18 (CHarom), 128.60 (Cq), 

126.70 (CHarom) 125.9 (CH), 118.50 (Cq), 115.78 (CHarom), 52.95 (CH3), 29.97 (CH3). HRMS (ESI): m/z calculated for 

C12H10
35ClNO3 [M+ H]+ 252.04220, found 252.04219. 

Ethyl 1-ethyl-1,2-dihydro-2-oxoquinoline-4-carboxylate: 4a 

Yield: 86%; Physical state: Violet crystals; mp: 93 °C; NMR 1H (300 MHz, CDCl3): 1.39 (t, 3H, 3JH-H = 7.2Hz, CH3), 1.42 

(t, 3H, 3JH-H = 6.9 Hz, CH3), 4.40 (q, 2H, 3JH-H = 6.9 Hz, CH2), 4.46 (q, 2H, 3JH-H = 7.2 Hz, CH2), 7.20 (s, 1H, CH), 7.30 (m, 

1H, CHarom), 7.45 (d, 1H, 3JH-H = 8.1 Hz, CHarom); 7.62 (m, 1H, CHarom); 8.35 (d, 1H, 4JH-H = 1.5 Hz,  CHarom). 

NMR 13C (75 MHz, CDCl3): 165.46 (C=O), 160.95 (C=O), 139.36(Cq), 138.90 (Cq), 131.07 (CHarom), 127.37 (CHarom), 

124.20 (CHarom) 122.45 (CH), 117.80 (Cq), 114.35 (CHarom), 61.99 (CH2), 37.64 (CH2), 14.38 (CH3), 12.63 (CH3). HRMS 

(ESI): m/z calculated for C14H15NO3 [M+ H]+ 246.11247, found 246.11246. 

Ethyl 6-chloro-1-ethyl-1,2-dihydro-2-oxoquinoline-4-carboxylate: 4b 

Yield: 88%; Physical state: Marron crystals; mp: 122 °C; NMR 1H (300 MHz, CDCl3): 1.35 (t, 3H, 3JH-H = 7.2Hz, CH3), 

1.42 (t, 3H, 3JH-H = 7.2Hz, CH3), 4.34 (q, 2H, 3JH-H = 7.2Hz, CH2), 4.45 (q, 2H, 3JH-H = 7.2 Hz, CH2), 7.24 (s, 1H, CH), 7.34 

(d, 1H, 3JH-H = 9.3 Hz, CHarom), 7.53 (dd, 1H, 3JH-H = 9.3 Hz, 4JH-H = 2.4 Hz, CHarom), 8.44 (d, 1H,4JH-H = 2.7 Hz, CHarom).  

NMR 13C (75 MHz, CDCl3):164.80 (C=O), 160.47 (C=O), 137.91(Cq), 137.35 (Cq), 131.06 (CHarom), 128.22 (Cq), 126.83 

(CHarom), 125.71 (CHarom), 118.82 (Cq), 115.64 (CHarom), 62.16(CH2), 37.84(CH2), 14.10(CH3), 12.57(CH3). 

Ethyl 6-bromo-1-ethyl-1,2-dihydro-2-oxoquinoline-4-carboxylate: 4c 

Yield: 79%; Physical state: Green solid; mp: 114 °C; NMR 1H(300 MHz, CDCl3): 1.35 (t, 3H, 3JH-H = 7.14Hz, CH3), 1.45 

(t, 3H, 3JH-H = 7.13Hz, CH3), 4.35 (q, 2H, 3JH-H = 7.14 Hz, CH2), 4.45 (q, 2H, 3JH-H = 7.14 Hz, CH2), 7.43 (s, 1H, CH), 7.5 (d, 

1H, 3JH-H = 8.8 Hz, CHarom), 7.65 ( dd, 1H, 3JH-H= 2.32 Hz, CHarom), 8.52 (s, 1H, 4JH-H = 2.3Hz, CHarom). 

NMR 13C(75 MHz, CDCl3): 164.79 (C=O), 160.47 (C=O), 138.25(Cq), 137.33 (Cq), 133.84 (CHarom), 129.86 (CHarom), 

125.65 (CH), 119.26 (Cq), 115.92 (CHarom), 115.67 (Cq), 62.18 (CH2), 37.82 (CH2) 14.11 (CH3), 12.56 (CH3). HRMS 

(ESI): m/z calculated for C14H14
79BrNO3 [M+ H]+ 324.02298, found 324.02298, m/z calculated for C14H14

81BrNO3 [M+ 

H]+ 326.02093, found 326.02093 

Allyl 1-allyl-6-chloro-1,2-dihydro-2-oxoquinoline-4-carboxylate: 5b 

Yield: 68%; Physical state: White solid; mp: 94 °C; NMR 1H(300 MHz, CDCl3): 4.9 (m, 4H, 2CH2=CH), 5.0-5.4 (m, 4H, 

2CH2CH), 5.9 (m, 2H, 2CH2=CH), 7.3(s,1H, CH), 7.33 (d, 1H, 3JH-H = 5.1Hz,CH arom), 7.5 (dd, 1H, 3JH-H = 11.4Hz, 4JH-H = 

2.4Hz, CH arom), 8.4 (d, 1H, 3JH-H = 2.4Hz, CHarom).  

NMR 13C(75 MHz, CDCl3): 164.42 (C=O), 160.59 (C=O), 138.28(Cq), 137.50 (Cq), 131.12 (CHarom), 131.08 (CH2=CH), 

130.97 (CH2=CH), 128.59 (Cq), 125.66 (CHarom), 125.73 (CH), 119.61 (Cq), 118.66 (CH2CH), 117.61 (CH2CH), 116.55 

(CHarom), 66.65 (CH2=CH), 45.03 (CH2=CH). HRMS (ESI): m/z calculated for C16H14
35ClNO3 [M+ H]+ 304.07350, found 

304.07350. 

Allyl 1-allyl-6-bromo-1,2-dihydro-2-oxoquinoline-4-carboxylate: 5c 

                  



 

Yield: 71%; Physical state: Yellow solid; mp: 97 °C; NMR 1H(300 MHz, CDCl3): 4.9 (m, 4H, 2 CH2=CH), 5.1-5.5 (m, 4H, 

2 CH2CH), 6.0 (m, 2H, 2 CH2=CH), 7.23-7.32(m, 3H, 2 CHarom, CH), 7.65 (dd, 1H, 3JH-H = 10.8Hz, 4JH-H = 1.8 Hz CH arom ), 

8.6 (d, 1H, 3JH-H = 8.1Hz CH arom). NMR 13C(75 MHz, CDCl3): 164.39 (C=O), 160.55 (C=O), 138.69(Cq), 137.44 (Cq), 

133.87 (CHarom), 131.07 (CH2=CH), 130.94 (CH2=CH), 129.66 (CHarom), 125.68 (CH), 119.60 (Cq), 119.06 (Cq), 117.61 

(CH2CH), 116.81 (CHarom), 116.0 (CH2CH), 66.65 (CH2=CH), 44.98(CH2=CH). HRMS (ESI): m/z calculated for 

C16H14
79BrNO3 [M+ H]+ 348.02298, found 348.02299, m/z calculated for C16H14

81BrNO3 [M+ H]+ 350.02093, found 

350.02092 

Prop-2-ynyl 1,2-dihydro-2-oxo-1-(prop-2-ynyl)quinoline-4-carboxylate: 6a 

Yield: 94%; Physical state: Yellow crystal; mp: 162 °C; NMR 1H(300 MHz, CDCl3): 2.88 (t, 1H, 3JH-H = 5.1 Hz, 4JH-H = 

2.4 Hz, C≡CH), 2.59 (t, 1H, 3JH-H = 5.1 Hz, 4JH-H = 2.4 Hz, C≡CH), 5.0 (d, 2H, 4JH-H = 2.4 Hz CH2), 5.1(d, 2H, 4JH-H = 2.4 Hz 

CH2), 7.32 (s, 1H,CH), 7.34 (m, 1H,CHarom), 7.6 (d, 1H, 3JH-H = 8.4 Hz, CHarom), 7.68 (m, CHarom), 8.38 (dd, 1H, 3JH-H = 

8.1Hz, 4JH-H = 1.2Hz CHarom).  

 NMR 13C(75 MHz, CDCl3): 164.32 (C=O), 160.25 (C=O), 139.04-138.5 (Cq-Cq), 131.41 (CHarom), 127.26 (CHarom), 

124.49 (CHarom) 123.18 (CH), 117.55 (Cq), 115.78 (CHarom),75.89 (C≡CH), 72.82 (C≡CH), 53.31(CH2), 31.97(CH2).  

Prop-2-ynyl 6-bromo-1,2-dihydro-2-oxo-1-(prop-2-ynyl)quinoline-4-carboxylate: 6c 

Yield: 80%; Physical state: Orange solid; mp: 176 °C; NMR 1H(300 MHz, CDCl3): 2.3 (t, 1H, 3JH-H = 5.1 Hz, 4JH-H = 

2.7 Hz, C≡CH ), 2.61 (t, 1H, 3JH-H = 5.1 Hz, 4JH-H = 2.4 Hz, C≡CH ), 5.0 (d, 2H, 4JH-H = 2.4 Hz CH2), 5.1(d, 2H, 4JH-H = 2.4 Hz 

CH2), 7.33 (s, 1H,CH), 7.45 (d, 1H, 3JH-H = 9.3 Hz, CHarom ), 7.76 (dd, 1H, 3JH-H = 11.4Hz, 4JH-H = 2.1Hz CH arom), 8.6 (d, 1H, 

4JH-H = 2.1Hz CHarom). 

NMR 13C(75 MHz, CDCl3): 163.75 (COOH), 159.83 (C=O), 137.96(Cq), 136.96 (Cq), 131.41 (CHarom), 127.26 (CHarom), 

125.96 (CH), 118.99 (Cq), 116.57 (CHarom), 116.49 (Cq), 76.12 (C≡CH), 73.27 (C≡CH), 53.52 (CH2), 32.10 (CH2).  

Benzyl 1-benzyl-1,2-dihydro-2-oxoquinoline-4-carboxylate: 7a 

Yield: 76%; Physical state: Orange solid; NMR 1H(300 MHz, CDCl3): 5.46 (s, 2H, CH2), 5.59 (s, 2H, CH2), 7.20-7.49 (m, 

14H, CHarom), 8.39 (d, 1H, 3J = 8.1 Hz, CHarom). NMR 13C(75 MHz, CDCl3): 165.10 (C=O), 161.50 (C=O), 139.86-139.10 

(Cq, Cq), 135.83 (Cq), 135.05 (Cq), 131.16, 128.87, 128.87, 128.78, 128.7, 127.42, 127.20, 126.53, 124.29, 122.78, 

115.43 (CHarom), 117.74 (Cq), 67.73 (CH2), 46.25 (CH2). HRMS (ESI): m/z calculated for C24H19NO3 [M+ H]+ 

370.14377, found 370.14377. 

Benzyl 1-benzyl-6-bromo-1,2-dihydro-2-oxoquinoline-4-carboxylate: 7c 

Yield: 65%; Physical state: Yellow solid; mp: 134 °C, NMR 1H(300 MHz, CDCl3): 4.05 (m, 4H, 2CH2), 6.90 (d, 1H, 3JH-H = 

9 Hz, CHarom), 7.10-7.41 (m, 12H, CHarom), 8.07 (d, 1H, 4J = 2.4 Hz, CHarom). 

NMR 13C(75 MHz, CDCl3): 164.90 (C=O), 161.45 (C=O), 156.08 (2Cq), 154.86 (Cq),149.70 (Cq), 149.39 (Cq), 

139.92(Cq), 139.06 (Cq), 137.11 (CHarom), 136.98 (CHarom), 131.40 (CHarom), 127.20 (CHarom), 124.33 (CHarom), 123.24 

(CHarom), 122.62 (CHarom), 121.87 (2CHarom), 121.58 (CHarom), 117.65 (Cq), 115.72 (CHarom), 68.02 (CH2), 48.37 (CH2). 

(pyridin-2-yl)methyl 1,2-dihydro-2-oxo-1-((pyridin-2-yl)methyl)quinoline-4-carboxylate: 8a 

Yield: 92%; Physical state: Yellow crystals; mp: 143 °C, NMR 1H(300 MHz, CDCl3): 5.57 (s, 2H, CH2), 5.71 (s, 2H, CH2), 

7.13-7.32 (m, 4H, CHarom), 7.41 (s, 1H, CHarom), 7.46-7.51 (m, 3H, CHarom), 7.59 (td, 1H, 3J = 7.7 Hz, 4J = 1.8 Hz CHarom), 

7.77 (td, 1H, 3J = 7.7 Hz, 4J = 1.8 Hz CHarom), 8.41 (d, 1H, 3J = 8.1 Hz, CHarom), 8.6 (m, 1H, CHarom), 8.66 (m, 1H, CHarom). 

NMR 13C(75 MHz, CDCl3): 165.02 (C=O), 161.43 (C=O),156.16(Cq), 154.93 (Cq), 149.70 (CHarom), 149.37 (CHarom), 

139.99 (Cq),137.02 (CHarom), 136.89 (CHarom), 131.33, 127.20, 128.87, 128.78, 128.7, 127.42, 127.20, 126.53, 

124.29, 122.78, 115.43 (CHarom), 117.74(Cq), 67.73(CH2), 46.25(CH2). HRMS (ESI): m/z calculated for C22H17N3O3 [M 

+ H]+ 372.13427, found 372.13429. 

(pyridin-2-yl)methyl 6-chloro-1,2-dihydro-2-oxo-1-((pyridin-2-yl)methyl)quinoline-4-carboxylate: 8b 

Yield: 83%; Physical state: Yellow solid; mp: 152 °C, NMR 1H(300 MHz, CDCl3): 5.55 (s, 2H, CH2), 5.68 (s, 2H, CH2), 

7.05-7.50 (m, 9H, CHarom), 8.34 (m, 1H, CHarom), 8.7 (m, 1H, CHarom). NMR 13C(75 MHz, CDCl3): 164.79 (C=O), 161.32 

(C=O),155.75 (Cq), 154.67 (Cq), 149.88 (CHarom), 149.72 (CHarom), 138.96 (Cq), 137.57 (Cq), 137.24 (CHarom), 137.01, 

                  



134.19, 129.22, 125.46, 123.51, 122.93, 122.67, 122.01 (CHarom), 119.35 (Cq), 117.12 (CHarom), 116.53 (Cq), 

68.81(CH2), 48.32(CH2).  

(pyridin-2-yl)methyl 6-bromo-1,2-dihydro-2-oxo-1-((pyridin-2-yl)methyl)quinoline-4-carboxylate: 8c 

Yield: 48%; Physical state: Yellow solid; mp: 156 °C, NMR 1H(300 MHz, CDCl3): 5.56 (s, 2H, CH2), 5.66 (s, 2H, CH2), 

7.15-7.80 (m, 9H, CHarom), 8.56 (m, 1H, CHarom), 8.67 (m, 1H, CHarom). NMR 13C(75 MHz, CDCl3): 164.43 (C=O), 161.02 

(C=O),155.67 (Cq), 154.64 (Cq), 149.79 (CHarom), 149.42 (CHarom), 138.91 (Cq), 137.72 (Cq), 137.18 (CHarom), 136.99, 

134.16, 129.70, 125.66, 123.31, 122.80, 121.93, 121.83 (CHarom), 119.09 (Cq), 117.43 (CHarom), 116.35 (Cq), 

68.13(CH2), 48.42(CH2). HRMS (ESI): m/z calculated for C22H16
79BrN3O3 [M + H]+ 450.04478, found 450.04478, m/z 

calculated for C22H16
81BrN3O3 [M + H]+ 452.04273, found 452.04273. 

(pyridin-2-yl)methyl 2-((pyridin-2-yl)methoxy)-6-bromo-1,2-dihydroquinoline-4-carboxylate: 8c’ 

Yield: 18%; Physical state: White solid; mp: 118 °C, NMR 1H(300 MHz, CDCl3): 5.58 (s, 2H, CH2), 5.69 (s, 2H, CH2), 

7.23-7.33 (m, 2H, CHarom), 7.42-7.56 (m, 2H, CHarom), 7.69-7.80 (m, 2H, CHarom), 8.66 (t, 2H, 3J = 6 Hz, CHarom), 8.96 

(s, 1H, CHarom). NMR 13C(75 MHz, CDCl3):164.80 (C=O), 160.95 (C=O),156.64 (Cq), 154.95 (Cq), 149.75 (CHarom), 

149.48 (CHarom), 146.15 (Cq), 136.99 (CHarom), 136.37, 136.42 (Cq), 133.38 (CHarom), 129.0, 128.66, 123.39, 123.25, 

122.74, 122.04, 121.92 (CHarom), 119.50 (Cq), 116.0 (CHarom), 68.66(CH2), 68.00 (CH2). HRMS (ESI): m/z calculated 

for C22H16
79BrN3O3 [M+ H]+ 450.04478, found 450.04478, m/z calculated for C22H16

81BrN3O3 [M+ H]+ 452.04273, 

found 452.04273. 

 

3.2. Biology 

3.2.1. Results 

It can be observed, that apart from compounds 2b, 2c, and 3b (with IC50MDR values of 9.09 μM, 71.14 μM and 19.09 

μM, respectively), none of the tested compounds exerted cytotoxic activity against the parental and MDR subline 

of mouse T-lymphoma cells (Table II.). The abovementioned three compounds presented with slight selectivity 

towards the MDR subline (SI values between 1.19–2.56). 

Among the nineteen tested compounds, 7 compounds (5c, 5b, 6c, 7a, 7c, 8c and 8c’) presented with potent 

ABCB1-modulating activity at similar concentration as the positive control verapamil (20 μM), with FAR values 

ranging between 12.86 and 250.13 vs. FARverapamil=8.34. As denoted by the FAR quotients in Table III., after 

treatment with the previously mentioned compounds in the rhodamine 123 accumulation assay, the fluorescence 

was enhanced by 154.24–2999.39%, compared to verapamil. There were cases when the efflux pump modulatory 

effect of some compounds (7a, 7c, 8c’ and 8c, with FAR2 μM values of 11.34, 28.70, 8.22 and 224.70) concurred or 

exceeded the inhibitory activity of verapamil at 2 μM In contrast, compounds 2a, 2b, 2c, 3a, 3b, 4a, 4b, 4c, 6a, 8a 

and 8b did not exert significant efflux pump modulatory activities in either concentrations tested (with FAR 

quotients ranging between 9.19 and 46.39%). 

 

Table 2. Cytotoxicity of tested compounds against parental (PAR) and multidrug resistant (MDR) mouse lymphoma 

cells and selectivity indices (SI). 

  IC50 (µM)   

Compounds PAR (A) MDR (B) SI (B/A) 

2a >100 >100 - 

2b 23.26 ± 5.48 9.09 ± 3.16 2.56 

2c >100 71.14 ± 3.21 >1.41 

3a >100 >100 - 

3b 22.66 ± 1.77 19.09 ± 1.53 1.19 

4a >100 >100 - 

4b >100 >100 - 

                  



 

4c >100 >100 - 

5b >100 >100 - 

5c >100 >100 - 

6a >100 >100 - 

6c >100 >100 - 

7a >100 >100 - 

7c >100 >100 - 

8a >100 >100 - 

8b >100 >100 - 

8c >100 >100 - 

8c' >100 >100 - 

DMSO  >2 V/V% >2 V/V% - 

 

DMSO: dimethyl-sulfoxide; SD: standard deviation; SI: Selectivity Index; SI<3 values denote slight selectivity, 

3<SI<6 values indicate moderate selectivity, whereas SI<6 indicates strong selectivity [35]. 

 

Table 3. Rhodamine 123 accumulation assay in multidrug resistant (MDR) mouse T-lymphoma cells overexpressing 

the ATP-binding cassette transporter protein B1. 

Compounds 
Concentrations 

(μM) 

Fluorescence 

activity ratio  

(FAR) 

FAR 

quotient 

(%) 

Verapamil 20 8.34 - 

2a 
2 1.29 15.42 

20 1.91 22.93 

2b 
2 1.43 17.20 

20 0.98 11.73 

2c 
2 1.53 18.29 

20 1.49 17.88 

3a 
2 1.23 14.74 

20 1.16 13.92 

3b 
2 0.98 11.74 

20 3.03 36.31 

4a 
2 0.77 9.19 

20 2.12 25.46 

4b 
2 1.61 19.32 

20 3.87 46.39 

4c 
2 0.80 9.61 

20 1.02 12.28 

5c 
2 1.82 21.84 

20 56.23 674.29 

5b 
2 3.64 43.68 

20 57.94 694.77 

                  



6a 
2 0.84 10.02 

20 0.94 11.32 

6c 
2 1.24 14.88 

20 12.86 154.24 

7a 
2 11.34 135.92 

20 65.23 782.14 

7c 
2 28.70 344.19 

20 49.77 596.79 

8a 
2 0.85 10.16 

20 0.84 10.03 

8b 
2 0.87 10.38 

20 0.76 9.10 

8c’ 
2 8.22 98.62 

20 65.39 784.16 

8c 
2 224.70 2694.37 

20 250.13 2999.39 

DMSO 2 V/V% 0.78 9.32 

3.2.1. Discusion 

In the present work, we have tested 18 novel 2-oxo-1,2-dihydroquinoline-4-carboxylic acid derivatives synthesized 

in our laboratory for their cytotoxic activities and their potency as MDR reversing agents associated with ABCB1 

transporter-related chemotherapeutic resistance. Seven of the compounds tested were found to be especially 

potent modulators of the ABCB1 efflux pump (their activity was 1.54-29.99-fold higher than verapamil’s) in a 

concentration-dependent manner, while the most active compound 8c was 26.94-fold more potent, than 

verapamil in concentrations that are ten times smaller. Barring a few exceptions, none of the tested derivatives 

showed cytotoxicity on the tested cell lines, which may well be the advantage of these compounds, as this 

property would allow for their administrations as adjuvants in vivo in case of efflux pump-related drug resistance, 

without the fear of collateral toxicity caused by these agents. This is underlined by our data, since all the potent 

efflux pump inhibitor compounds had an IC50 values higher than 100 μM, while they exerted their activity on the 

ABCB1 transporter in much lower concentrations. Our results suggest that derivatives with a bromine group at 

position 6, together with derivatives that are dialkylated with benzyl or 2-(methyl)pyridine, allyl- or propargyl 

groups have presented the best modulatory effects on P-glycoprotein. Derivative 8c which carries a bromine 

group at the position 6, has O-alkylation and N-alkylation with 2-(methyl)pyridine showed the most promising 

inhibition of ABCB1-related multidrug resistance. Thus, it should be considered as a lead compound for further 

derivatization and additional biological assays. 

 

By comparing the results (table 3 and fig. 1), we note that the two derivatives having in position 6: a chlorine 5b 

(FAR = 57.93) and a bromine 5c (FAR = 56.23), have almost the same effect on MDR reversion activity at a 

concentration of 20 μM. 

Similarly the comparison between 6a (H) (FAR = 0.94) and 6c (Br) (FAR = 12.86) at 20 μM shows that the 

bromination of the studied pattern gives it a strong ability to inhibit Pgp. 

Comparing the two derivatives 5c and 6c, we see that the disubstitution with allyl was more favorable than that 

with propargyl. 
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Fig 1: Product with a good anti-MDR activity 

 

By comparing anti-MDR activity profile in both compounds 7a and 7c, we can notice that bromine presence is 

favorable in anti-MDR activity at a concentration of 2 μM. Besides that, at 20 μM the two products 7a and 7c have 

almost the same activity. It is possible to compare the two isomers of positions 8c and 8c', and we find that N-

alkylated product 8c is the best for the reversion activity than the O-alkylated product 8c'. Otherwise, we can 

conclude that the derivative disubstituted by pyridin-2-ylmethyl 8c has an excellent inhibitory power compared to 

the derivative disubstituted by benzyl 7c (fig. 2). 

N O

O O

Br

N O

O O

Br

N
8c 8c'

N O

O O

N O

O O

Br

7a 7c

N

N

N

 
Fig 2: Product with a good anti-MDR activity 

 

 

4. Conclusion 

The activity of 18 derivates with various side-chains was compared with the aim of determining the effect of the 

nature of this chain on the MDR reversion. The best activity was obtained with 8c which bear a picolyl side chain. 

In addition, the N-alkylation products seems be more interesting than O-alkylated ones. This is clearly 

demonstrated by comparing 8c and 8c’ which are isomers of positions (N-alkylated and O-alkylated products 

respectively). The effect of halogen on the activity studied. Comparing products with  Br, Cl and H,  demonstrated 

that Br seemed to be the best substituent in position 6. 
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