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Abstract 

Hyperspectral remote sensing combined with advanced image processing techniques is an efficient tool for the identification of 

agricultural crops. In our study we pursued spectral analysis on a relatively small sample area using low number of training 

points to examine the potential of high resolution imagery. Spectral separability measurements were applied to reveal spectral 

overlapping between 4 crop species and for the discrimination we also used statistical comparisons such as plotting the PC 

values and calculating standard deviation of single band reflectance values on our classes. These statistical results were proven 

to be good indicators of spectral similarity and potential confusion of data samples. The classification of Spectral Angle Mapper 

(SAM) had an overall accuracy of 72% for the four species where the poorest results were obtained from the test points of garlic 

and sugar beet. Comparing the statistical analyses we concluded that spectral homogeneity does not necessarily have influence  

on the accuracy of mapping, whereas separability scores strongly correlate with classification results, implying also that 

preliminary statistical assessments can improve the efficiency of training site selection and provide useful information to specify 

some technical requirements of airborne hyperspectral surveys. 
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INTRODUCTION 

High resolution aerial and satellite spectrometers 

opened new horizons for the computer-assisted analy-

sis of land cover. Hyperspectral remote sensing tech-

niques are not only used for identifying minerals, soils 

and urban surfaces, but they also constitute a powerful 

tool for the mapping of vegetation and natural habitats. 

Chlorophyll and other biochemical components have 

their very specific spectral characteristics, like absorp-

tion bands or the the red edge in the near-infrared wave-

length region, thus reflectance curves can be accurately 

classified if the spectral sampling of the data is subtle 

enough to detect these features. 

Agricultural parcels are widely used for the calibra-

tion and testing of image processing tools as the spatially 

separated and homogeneous blocks of crops can be eas-

ily identified both on the images and in the field surveys. 

There are a high number of scientific papers that deal 

with the spectral analysis of different vegetation parame-

ters, natural habitats and agricultural plants (Visi-Rajczi 

et al., 2012; Burai et al., 2014; Kertész et al., 2014; Lausch 

et al., 2015). For example, advanced machine learning al-

gorithms were employed for the detection of mixed pixels 

of weeds by Moshou et al. (2001), and Liu et al. (2010) 

were also using vector quantization for the mapping of 

fungal plant infections. The scope of environmental appli-

cations includes floodplains and saline soils (Burai 

andTomor, 2011; Kardeván et al., 2003), laboratory meas-

urements for the estimation of various biochemical pa-

rameters (Lausch et al., 2016) and the monitoring of plant 

diseases (Liu et al., 2010; Visi-Rajczi et al., 2012). 

In our study we focused on some basic statistical 

approaches to estimate the separability and the classifi-

cation accuracy of crops based on hyperspectral aerial 

photography. Conclusions derived from our results can 

be used for the improvement of field surveys, feature and 

noise reduction and the preliminary planning of aerial 

photography campaigns. 

BACKGROUND 

The so called curse of dimensionality is a significant ob-

stacle to hyperspectral data interpretation, the large num-

ber of data bands combined with data noise and limited 

training areas can lead to poorer classification accuracy 

(Landgrebe, 2003). A possible way to mitigate this risk 

is either to improve the ground truth data set or to per-

form feature reduction (i. e. principal component trans-

formation). In order to test the training pixels we can cal-

culate spectral separability indices that indicate the over-

lappings between classes. Both Jeffries-Matusita and 

Transformed divergence algorithms were proven to be 

efficient tools for the evaluation of vegetation, soil and 

other land cover training sites (Büttner et al., 1988; Met-

ternicht and Zinck, 1998; Ustin et al., 2009). 
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Another way to present spectral similarities is to 

plot image data to a 2 dimensional feature space where 

pixels are usually arranged in a triangle of soils, water 

surfaces and vegetation (Tobak et al., 2012). 

The elaboration of ground survey is crucial for 

the agricultural applications of remote sensing, some 

studies show that adding biochemical and soil param-

eters increases mapping accuracy on high resolution 

imagery (Burai, 2006). Hence, the limitation of 

ground truth data is a serious constrain for the classi-

fications which can be mitigated using non-parametric 

methods that are less sensitive to small deviations, 

like the SAM (Burai et al., 2010). 

STUDY AREA 

The geographical region of our study, the flood plain area 

called Tápai-rét is situated in southeastern Hungary, at the 

outskirts of the city of Szeged, over the confluence of riv-

ers Tisza and Maros (Fig. 1). The landscape is mainly 

characterized by cultivated agricultural land and parcels 

of various sizes and settlements of scattered farmsteads. 

Due to its small differences of elevation and the remarka-

ble diversity of crops Tápai-rét is an ideal site to examine 

spectral discrimination techniques.  

 

Fig. 1 The geographical location of the study area 

Land use in Hungary is usually dominated by 

smaller agricultural parcels and it is also true for the 

Tápai-rét area where a great part of the territory belongs 

to the irregular network of farm. The mosaic of small and 

diverse parcels imposes an obstacle to field surveys and 

significantly limits the number of available training points 

for the crops.  

DATA AND METHODS  

Hyperspectral imagery were acquired in September 

2010 using the airborne spectrometer of AISA. Reflec-

tance values were recorded on 359 spectral bands be-

tween the wavelength of 0.4 and 2.4 micrometers with 

a spatial resolution of 1.5 metres. Some of the bands 

contained significant amount of noise, the values for 

these wavelength regions were left blank on the reflec-

tance curve diagram (Fig. 2). Around 120 spectral 

bands were removed based on their spatial autocorrela-

tion values, however, we kept all the data from the re-

gion between 400 and 900 nanometers as these reflec-

tance values are the most informative about vegetation 

characteristics. 

 

Fig. 2 Average spectra of the four crop species 

We used online cadastral maps (Fig. 3) and the ex-

pertise of local farmers to collect ground truth data about 

the crops. The online map contains the 5 digit ID num-

bers for each parcel that are connected to the ownership 

information, the database is managed and regularly up-

dated by the Hungarian Cadastral Office.  

 

Fig.3 The online cadastrial map of the study area 
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An accurate method to verify the selection of 

training points is the calculation of spectral separabil-

ity. Formulas like the Jeffries-Matusita or the Trans-

formed Divergence distance show index values on a 

scale of 0 to 2 where 0 refers to complete overlapping 

and 2 indicates perfect separability. These calculations 

are based on the comparison of reflectance or other data 

values within a certain range. However, it is essential 

to have more training points than the dimensionality, or 

in other words, the number of the spectral bands. In or-

der to meet this criteria, feature reduction of the hyper-

spectral imagery is required if the set of data samples 

cannot be extended. For this purpose, in our study we 

performed a principal component transformation, 

where the first few transformed data bands contain 

most of the spectral information with a reduced degree 

of noise.  

Another important aspect of the training site se-

lection is the spectral homogeneity of the pixels. It can 

be affected by some possible spatial autocorrelation, 

the presence of noise, and also the heterogeneity of the 

examined land cover features. We selected spatially di-

verse training areas for the better characterization of 

our classes and to avoid the use of pixels with similar 

traces of noise. Standard deviation was calculated for 

single spectral bands both from the visible (550 nm) 

and the near-infrared region (900 nm). 

The Spectral Angle Mapper (SAM) algorithm 

was applied for the classification which is considered 

as a relatively simple spectral statistical method as it 

calculates only the average of the sample spectra and 

the vector angle deviations of the individual test 

points, measured by the milliradian. Our goal was to 

compare the results of this non-parametric classifier 

with the values obtained from the training site image 

statistics. 

RESULTS 

Spectral separability measurements 
 

To examine the possible spectral overlappings be-

tween the classes we performed spectral separability 

measurements. Jeffries-Matusita (JM) and Trans-

formed Divergence (TD) indices have proven to be 

powerful tools for the evaluation of training areas 

(Metternicht and Zinck, 1998; Ustin et al., 2009; To-

bak et al., 2013). Since these calculations require 

more spectral samples than the number of the input 

bands, we used a principal component transformation 

to reduce data dimensionality. Separability values 

were measured on the first two PC bands for the four 

crop classes (Table 1).  

The TD index happened to be less sensitive to the 

overlappings than the JM, however, the results are in 

agreement as the ranking of the classes is the same, 

medick is completely separable from the rest of the 

species, while a high extent of spectral similarity oc-

curs between the pixels of the other 3 classes, espe-

cially in the case of those of garlic and sugar beet.  

 

Table 1 Jeffries-Matusita (JM) and Transformed Divergence 

(TD) indices based on the values of the first two Principal 

Component bands 

 Medick Corn Garlic Sugar beet TD 

Medick 0 2 2 2 Medick 

Corn 2 0 1.08 0.58 Corn 

Garlic 2 0.78 0 0.27 Garlic 

Sugar beet 2 0.53 0.26 0 Sugar beet 

JM Medick Corn Garlic Sugar beet  

 

Scatter plot visualization 

Spectral classes can be visualized by plotting the pixel val-

ues of certain image bands, in our study we used the first 

two principal component bands to illustrate the relative po-

sitions of the pixel groups in the spectral space and indi-

cated denser areas with lighter colour shades (Fig. 4). The 

elements of 2 dimensional plots usually form the shape of 

a triangle when studying imagery of a natural landscape 

where the three endmembers are vegetation, water and soil 

surfaces (Mucsi and Henits, 2011; Tobak et al., 2012). The 

scatter plot of our study area has the pixels of medick in the 

upper left corner, separated from the other crops which are 

closer to the brighter central region where most of the veg-

etation data points are located, thus confirming the findings 

of the separability measurements. In comparison, grassland 

pixels from the external regions of the original aerial pho-

tography can be found scattered below the main line of veg-

etation, water and some shaded surfaces are situated in the 

upper right corner of the triangle, while soils and concrete 

are in the bottom (Fig. 4). 

 

 

Fig.4 Crops featured on the scatter plot of the first two2 PC 

bands 
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Homogeneity analysis 

The outcome of the supervised classification is affected 

by the homogeneity of the training areas, therefore we an-

alysed the standard deviation of reflectance values per sin-

gle spectral bands (Table 2), where data from the visible 

range (550 nanometres), from the near infrared (900 nm), 

and one band from the short-wavelength infrared (SWIR) 

region (2100 nm) were used. 

Reflectance values were found more homogeneous 

in the visible and in the SWIR wavelength regions, while 

there is a significant increase of the standard deviation at 

the near infrared light range that can be explained with the 

individual characteristics of the plants’ spectral red edge. 

Corn shows relatively low heterogeneity compared to the 

other three species, however, these values depend not only 

from the spectral features of the vegetation, but also from 

the spatial distribution and the noise content of pixels. 

Table 2 Standard deviation of reflectance values per single bands 

Wavelength Medick Corn Garlic Sugar beet 

550 nm 0.0090 0.0031 0.0067 0.0037 

900 nm 0.0394 0.0235 0.0357 0.0337 

2100 nm 0.0068 0.0041 0.0068 0.0062 

 

SAM classification 

The SAM classification was performed without any spec-

tral angle threshold specified to have more information on 

misclassifications between our crop classes. Table 3 

shows the confusion matrix of the result, where columns 

represent the ground truth points (15 items per class) and 

rows display the classified pixels. 

The two approaches of classification accuracy meas-

urement (Users’ and Producer’s Accuracy) show more or 

less the same results on the reliability of identification. 

The overall accuracy of the mapping is on an acceptable 

level (72%), however, significant differences can be ob-

served between the results of certain classes. The worst 

performance was in the category of sugar beet, where the 

slight majority of control pixels where misclassified. 

Also, the highest extent of confusion was registered be-

tween sugar beet and garlic. 

Figure 5 presents the spatial distribution of the 4 

classes on the true colour hyperspectral image. As it can 

be seen on the picture, the mapping categories of the crops 

rarely extend beyond the parcels, the SAM classification 

rather omitted to detect certain pixels of agricultural veg-

etation. The parcels of corn and medick are easily recog-

nizable, their mapping classes designate more or less ho-

mogenous bocks. On the other hand, in the case of the two 

western parcels there is a high level of misclassification, 

especially between the categories sugar beet, garlic, and 

corn, as it was predicted by the separability measure-

ments. 

 

Table 3 Confusion matrix of the SAM classification, indicating 

Users’ Accuracy (U. A.) and Producer’s Accuracy (P. A.) 

 Medick Corn Garlic Sugar beet U. A. 

Medick 15    100% 

Corn  12 1 3 75% 

Garlic   9 5 64% 

Sugar beet  3 5 7 47% 

P. A. 100% 80% 60% 47% 72% 

 

 

Fig. 5 The four SAM classes placed over the true colour image 

of the hyperspectral data: sugar beet (blue), garlic (red), corn 

(green), and medick (purple) 

 

DISCUSSION  

SAM classifier was proven to be an accurate technique for 

the spectral discrimination of most of the crop species, 

however, in the cases of spectrally less separable plants 

(sugar beet and garlic) classification results were signifi-

cantly poorer. The calculation of spectral angles has also 

the advantage that the outcome of the analysis is insensi-

tive to the level of illumination of the surface objects, thus 

shaded pixels will have a lower rate of misclassification 

(van der Meer, 2004; Lillesand et al., 2004; Kruse et al., 

1993). Some papers also suggest that SAM provides ac-

ceptable results on hyperspectral data when the number of 

training points is significantly limited (Burai et al., 2010; 

Tobak et al., 2012), although an increasing number of au-

thors prefers machine learning algorithms for advanced 

classifications and land cover mapping (Huang et al., 

2002; Lary et al., 2015).  

Our finding, that the Jeffries-Matusita distance is 

more sensitive to spectral similarities than Transformed 

Divergence has confirmed the same conclusions of Jensen 

1986. 

In his study Burai (2006) examined the spectral fea-

tures of similar plants (medick, corn, sugar beet, etc.) in a 

much larger study area, obtaining an overall mapping ac-

curacy of 85,5%. He argued that the use of an extended 

and more detailed ground truth database including soil pa-

rameters can significantly improve the reliability of clas-

sifications, which is in line with our conclusions. 
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CONCLUSION 

Our main goal was to compare classification results with 

some spectral statistical analyses we performed on the PC 

transformed data and on single spectral bands. Using 

spectral separability measurements we found two classes 

that show significant overlapping (sugar beet and garlic) 

what was also confirmed by the SAM accuracy results. 

Also, it was proven that spectral separability distances 

correlate with classification results, where a higher degree 

of spectral overlapping on the PC transformed data can 

lead to poorer accuracy even in the case of a high resolu-

tion hyperspectral dataset. We also examined the spectral 

homogeneity of training points and we concluded that the 

standard deviation values of the classes do not show a 

strong correlation with the classification’s outcome. 

As the SAM results resembled those of the separa-

bility distance calculations, we drew the conclusions that 

despite the possible data loss, principal component trans-

formation is an applicable tool for the identification and 

comparison of crops on high resolution imagery even 

when spectral differences are very subtle and the size of 

training areas is limited.   
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