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Further delineation of the phenotype of PAK3-associated x-linked intellectual disability: R
Identification of a novel missense mutation and review of literature

1. Introduction

X-linked intellectual disability (XLID) accounts for approximately
5-16% of males with intellectual disability. It is estimated that at least
200 genes are implicated in XLID, and the approximately 170 XLID
entities are clinically classified as syndromic or non-syndromic
(Stevenson et al., 2009; Lubs et al., 2012).

The p21-activated kinase 3 (PAK3) gene was the fourth to be as-
sociated with non-syndromic XLID, type 30 (OMIM: #300558) (Allen
et al.,, 1998). PAK3 is a serine/threonine kinase and its sequence is
highly conserved between species. The kinase acts as a downstream
effector of Racl and Cdc42 Rho-GTPases and has important roles in
actin cytoskeletal reorganization, dendritic spine morphology, density,
stability and dynamics and also in synaptic currents (Kreis et al. 2007;
Dubos et al. 2012; Thévenot et al., 2011).

Since 1998, nine different PAK3 mutations have been identified in
46 affected individuals from nine families of different ethnicity. Here,
we report the first case of a Hungarian patient with intellectual dis-
ability associated with a novel PAK3 mutation and review the cases
previously described in the literature.

2. Clinical report

The proband presented at genetic counselling at the age of 14 years
with intellectual disability, autistic characteristics and behavioral pro-
blems.

He was born at term by spontaneous delivery following a normal
pregnancy, with normal birth weight and length as a first child of
Caucasian non-consanguineous parents. Autistic characteristics and
delayed psychomotor development were first noted at the age of 3 years
(Brunet-Lézine test: gross motor skills: 65; fine motor skills: 61; lan-
guage skills: 58; sociability: 52; overall developmental quotient of 59).
Special training was initiated. He started to speak and maintain eye
contact at 4 years and let his mouth hang open with constant drooling
until the age of 4.5 years. He was toilet-trained by the age of 5.5 years,
but accidental soiling still happens.

He had three generalized tonic seizure episodes with fever in early
childhood and experienced short absence-like episodes and unusual
grimacing in the 1.5 year previous to examination. Baseline and sleep-
deprived EEGs were repeatedly normal and brain MRI detected no
abnormality. Temper tantrums and occasional aggressive behavior has
been reported, but no sleep disturbance. At present, he receives ris-
peridone treatment and attends special school.

On examination, he was cooperative, his body weight (43 kg, 10-25
percentile) and height (158 cm, 25 percentile) were normal.
Microcephaly (Supplementary Table 1), mild thoracic kyphosis, dor-
solumbar scoliosis, ankle valgus, pectus carinatum, wide-spaced nipples
and spina bifida occulta with a sacral dimple were noted. His facial
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features included large ears, prominent but not bulbous nose, low
forehead, downslanting palpebral fissures, thin upper lip and high-ar-
ched palate (Fig. 1A). His sexual maturation and testicular size were
normal. Neurological examination revealed small muscle bulk in the
limb-girdle muscles with normal tone and strength, mild postural and
intentional tremor, symmetric brisk reflexes without spasticity and no
gait disturbance.

Neuropsychological assessment showed mild-to-moderate in-
tellectual disability with moderate impairment of visuo-spatial,
reading, writing, comprehension and counting skills and severe atten-
tion deficit, mood imbalance, anxiety and autistic traits (Woodcock-
Johnson and Snijders-Oomen nonverbal intelligence tests: age equiva-
lent of 5;2 and 5;3, respectively).

Quantitative and qualitative blood count, serum electrolytes, lac-
tate, carbamide, uric acid, creatinine, creatine kinase and liver enzyme
levels, inflammatory and autoinflammatory parameters, serum amino
acid and acyl-carnitine profile, serum and urine dopamine and ser-
otonin levels showed no marked discrepancy. Audiology detected mild
sensorineural hearing loss, however, the examination was inconclusive
due to lack of cooperation. On nephrological examination, underactive
bladder function was detected. Abdominal ultrasound, echocardio-
graphy, ECG and ophthalmology showed no abnormality. Karyotyping
on G-banded chromosomes using standard procedures detected no
major aberration and testing for Fragile-X syndrome showed no triplet
repeat expansion in FMRI.

No relatives had intellectual disability or dysmorphic facial features
(Fig. 1B).

3. Methods

Genomic DNA was isolated from peripheral blood samples from the
proband and his relatives using the Promega Maxwell® RSC Blood DNA
Kit. Clinical exome analysis was carried out on the whole exome se-
quence obtained using Illumina NextSeq500 sequencer after library
preparation with Roche KAPA HyperPrep library kit and SeqCap EZ
MedExome capture Kit.

Mean average depth of on-target coverage in the sequenced exome
was 69X (target bases at 10x coverage: 96%; at 20x coverage: 93%; at
30x coverage: 86%). Reads were aligned to the human reference
genome (GRCh37) using BWA (v.0.7.12). Among 120,469 variants,
deleterious ones were prioritized on the basis of the functional re-
levance of genes, inheritance models and minor allele frequency (MAF)
in the general population (gnomAD and in-house databases). As a result
of the filtering, a novel variant in the PAK3 gene was identified as the
most probable pathogenic variant. The variant was submitted to a
combination of 14 variant prediction tools and was confirmed by bi-
directional Sanger sequencing (Supplementary Table 1).
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Fig. 1. Pictures and pedigree of the patient.
(A) The images of the proband were captured at the age of 14 years (first column) and 14.5 years (second and third column). (B) The mother of the proband was
pregnant with a female, non-carrier fetus, as confirmed by karyotyping and targeted mutation analysis. Proband is indicated with an arrow. NA: not assessed.
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Fig. 2. Analysis of the novel Val326Leu PAK3 variant by clinical exome sequencing and bidirectional Sanger sequencing.

Electropherogram of the (A) wild-type sequence, (B) heterozygous female carrier (mother) and (C) hemizygous proband. (D) The screen shot from the Integrative
Genomic Viewer shows part of the (51/51) reads supporting the ¢.976G > C variant in the proband. (E) Screen shot from the UCSC Genome Browser represents the
high conservation of the amino acid residue in position 326 and surrounding genomic context. Arrows indicate the nucleotide change.
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Table 1 (continued)

Present study

Horvath et al.
(2018)

Muthusamy et al.

(2017)

Hertecant et al.

(2017)

Rejeb et al. (2008) Magini et al. (2014)

Peippo et al., 2007

Gedeon et al.
(2003)

Bienvenu et al.
(2000)

Allen et al.
(1998)

Normal

Abnormal (variable)

ND

ND

Normal (2) ND

Posterior slow wave
(4M/1F)

Obesity in 3 elderly Stooping posture (2

ND ND

ND

EEG

Mild kypho-
scoliosis

Hypogonadism (1) Marfanoid habitus

Ichthyosis (2) Mild axial

Hypotonia in
infancy (2)

ND

ND

Other clinical features

Kyphosis

hypotonia

Early childhood
hypotonia (2)

M)

Pectus carinatum
Calcaneovalgus
deformity

Syndactyly

Scoliosis (1 M)
Childhood

Calcaneovalgus
deformity

hypotonia (3 M, 1

F)

Wide-spaced
nipples

Hypotonia in
infancy

Spina bifida
occulta

ND: not described; M: male; F: female; (number): number of patients examined and found positive for the described features. In case of no numbers, all affected male patients exhibited the feature. Common features of

patients are written in bold.
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was used to evaluate in silico the changes in the mutant PAK3 protein
structure. The wild-type three-dimensional protein structure has been
obtained from RCSB Protein Data Bank (ID: 6fd3) and submitted to
PyMOL's Wizard/Mutagenesis on protein application to create and vi-
sualize the specific mutant PAK3 protein.

Additional testing included maternity testing on the sample from
the proband, maternity-paternity testing on the samples from the pro-
band's mother and maternal grandparents (Promega PowerPlex® ESX
17 System) and X-chromosome inactivation assay (Supplementary
Table 1) (Kiedrowski et al., 2011).

The results were assessed and classified according to the ACMG
guideline (Supplementary Table 1) (Richards et al., 2015).

4. Results

One novel variant — NM_001128167.2:c.976G > C;p.(Val326Leu)
(ClinVar submission number: SCV000927119; LOVD accession number:
#0000578234, DB-ID: PAK3_000063) — has been detected in exon 10 of
PAK3 gene, which is associated with X-linked non-syndromic in-
tellectual disability. The variant was present in the proband in a
hemizygous form and in unaffected mother in a heterozygous form but
not in any other healthy family members tested (Figs. 1B, Fig. 2A-D) or
in the control databases (141,456 whole exome/genome sequences
contained in gnomAD, in +500 exome sequences of the in-house da-
tabase of qGenomics or in 151 exome sequences of Hungarian patients
recruited in other projects).

The Val326Leu variant was predicted to be probably damaging by
PANTHER and PolyPhen2 and damaging by the other 12 prediction
tools. The Val326Leu variant is located in the highly conserved protein
kinase domain of the PAK3 gene (Fig. 2E).

The in silico modelling suggested that the wild-type residue Va
located on the surface of the ATP-binding recess of the kinase domain of
PAK3 in close vicinity to the ATP molecule (at a distance of 4.0 A);
however, it does not bind to ATP. The amino acid change to Leu®2¢
resulted in a shortening of the distance between the ATP molecule and
residue 326 (3.6 A), a change in the surface area of the ATP-binding
recess and the formation of a new hydrogen bond between residues
Leu®?® and Leu*®® (Supplementary Fig. 1), thus supporting its impact on
protein structure and function.

Maternity and paternity testing revealed no discrepancy and,
therefore, confirmed the de novo origin of the variant in the proband's
mother.

Based on the ACMG criteria (Supplementary Table 1) and a detailed
clinical comparison with previously described patients (Table 1), the
results supported the ethiopathogenicity of the novel Val326Leu PAK3-
variant.

1326 is

5. Discussion

To the best of our knowledge, this family is the first Hungarian and
the tenth family reported worldwide with PAK3-associated non-syn-
dromic XLID. Until now, one nonsense, one splice site and seven mis-
sense mutations have been reported for the PAK3 gene. Eight of ten
mutations are located in the kinase domain of the protein, presumably
disabling its enzymatic function. The location of the Leu®?® mutation in
the kinase domain and the additional hydrogen bond formation sug-
gests that it may influence the ATP-binding capacity and also the
structure of the protein.

PAKS3 function and regulation is complex. When activated by GTP-
bound Rho GTPases (Cdc42 and Racl), PAK3 kinase phosphorylates
other signaling molecules in neurons. The PAK3 function is important
for the fine-wiring of the synaptic network in the brain. Therefore, loss-
of function mutations in the PAK3 gene are believed to lead to de-
creased neural plasticity and cognitive impairment without major
structural brain abnormalities, also referred to as synaptopathies
(Horvath et al., 2018). However, brain developmental abnormalities



have been reported in some patients carrying variants of the PAK3
gene, which may be a result of PAK3 protein involvement in other
signaling pathways (Magini et al., 2014).

In the current paper, we provide a thorough, comprehensive clinical
review of PAK3-patients described in the literature to date (Table 1),
which allowed us to deduce the typical phenotypic features in PAK3-
XLID: microcephaly, mild-to-moderate intellectual disability in males,
large ears, low frontal hairlines, elongated face, muscle hypotonia in
infancy, drooling, seizures, aggression, anxiety and autistic behavior. In
addition, this is the first reported patient who also has occult spina
bifida and mild thoracolumbar deformity, however these findings are
common in the general population and thus, may also be unrelated
features.

Copy number variations in the PAK3-containing chromosomal re-
gion (Xq23) have also been reported in syndromic female patients with
moderate-to-severe intellectual disability (Hoischen et al., 2009; Jin
et al., 2015). However, these phenotypes are distinct from PAK3-XLID
due to the haploinsufficiency of other genes involved.

Beside the genetic importance of the diagnosis of PAK3-associated
XLID, it may also have therapeutic consequence, as presented in a
previous report (Horvath et al.,, 2018). Their patient had epilepsy,
cerebral laceration as a result of early-onset, intractable, self-injurious
behavior due to decreased levels of dopamine and serotonin metabo-
lites in the cerebrospinal fluid. Low-dose replacement therapy drasti-
cally improved and stabilized his condition. It was hypothesized that
PAK3 dysfunction may lead to diminished dendritic spines and con-
sequentially diminished postsynaptic dopamine receptors or may im-
pair the phosphorylation of the tyrosine hydroxylase, ultimately leading
to decreased catecholamine synthesis (Horvath et al., 2018; Daubner
et al., 2011). Thus, in case of behavioral or psychiatric deterioration,
determination of the neurotransmitter levels and if necessary, supple-
mentation may be considered. However further studies are needed for
final recommendations.

In conclusion, our paper provides further insight into the genetic
and phenotypic background of PAK3-XLID, expands the PAK3 mutation
spectrum, and may help others with the genetic diagnosis by high-
lighting the common typical PAK3-associated features.
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