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Abstract
Convex polygons are distinguishable among the piecewise C∞ convex domains by
comparing their visual angle functions on any surrounding circle. This is a consequence
of our main result, that every segment in a C∞ multicurve can be reconstructed from
the masking function of the multicurve given on any surrounding circle.

Keywords Visual angle · Masking function · Polygon

Mathematics Subject Classification 52A10 · 53C65 · 44A12

1 Introduction

Given a compact convex domain K inside a circle, we say it is distinguishable if no
other convex disc exists in the circle that subtends the same angle at each point of the
circle as K does. Green proved in [3] that a compact convex domain inside a circle
which subtends a constant(!) angle ν at each point of the circle is not distinguishable
if and only if ν/π is a rational number with even denominator in its smallest terms.

However it is proved in [6,8], that two polygons are always distinguishable from
each other, so the question

Are convex polygons distinguishable among convex domains? (1)
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emerged naturally in [4, Quest. 3.2], where it is proved that all triangles [4, Cor. 2.4],
and the regular octagon surrounded by the regular star octagon inscribed in the circle
[4, Exam. 2.5] are distinguishable. Further, themidpoint square of the inscribed square
are distinguishable too by [5].

In this article we prove in Theorem 4.1, that every segment in a C∞ multicurve can
be determined by knowing the masking function of the multicurve on any surrounding
circle. This implies an affirmative answer for (1) formulated in Corollary 4.2, i.e., that
every convex polygon is distinguishable among the convex domains of piecewise C∞
boundary.

2 Notations and Preliminaries

We work in the plane R
2; the open unit ball centered at (0, 0) is B2 and its boundary,

the unit circle, is S1 = ∂B2. Unit vectors are shorthanded as uβ = (cosβ, sin β). The
linear map ·⊥ on S1 is defined by u⊥

β = uβ+π/2 = (− sin β, cosβ). The Euclidean
multiplication is denoted by 〈·, ·〉.

Let r : [a, b] → R
2 be a differentiable curve parameterised by arc-length parameter

s. The trace Tr r of r is the set of points in R
2 that are in the range of the function r . A

non-degenerate segment of the form r([s0, s1]), s0 < s1, in Tr r is said to be traced.
We call also a straight line traced if there is a traced segment on it.

Amulticurve rJ is a finite set of differentiable curves r j : [a j , b j ] → R
2, j ∈ J ⊂

N, the members of the multicurve, such that the members are of finite length and do
not intersect each other in open arc. The trace Tr rJ of a multicurve rJ is the union⋃

j∈J Tr r j . A multicurve is said to have a property if each of its members satisfies
that property. Let C be the set of curves that

• are twice differentiable,
• are not self-intersecting,
• are parameterised by arc-length on a finite closed interval,
• are intersecting every straight line in only finitely many closed (maybe degenerate)
segments,

• have only finitely many tangents through any point of its exterior,
• have only finitely many points of vanishing curvature beside a finite set of traced
straight lines, and

• have only finitely many multiple tangent lines.

A multicurve is called regular if all of its members are in C. A multicurve is a multi-
segment if all of its members are segments. A multisegment is obviously regular. To
avoid long analytic technicalities, we confine ourselves to considering only regular
multicurves.

Following [9], the masking number1 MT (P) of the trace MT = Tr rJ of a regular
multicurve rJ is MT (P) = (1/2)

∫
S1 #(T ∩ �(P,w)) dw, where �(P,w) is the

straight line through the point P ∈ R
2 with direction w ∈ S1 and # is the counting

measure. If T is a closed convex curve, then the masking number MT (P) is twice of
the point projection (see [2]) and the shadow picture (see [6]).

1 This number is finite at almost every point because of the regularity condition.
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We define the masking function MrJ : R
2 → R of a regular multicurve rJ by

MrJ (X) =
∫ π

0
#(Tr rJ ∩ �(X , uα)) dα.

We clearly have MrJ (X) = ∑
j∈J Mr j (X) and also MTrrJ = MrJ .

Proposition 2.1 [9, Prop. 3.2] If r : [0, h] 
 s �→ r(0) + sv, v ∈ S1, then

∂wMr(X) =
⎧
⎨

⎩

−|〈v,w⊥〉|
(
1

x
+ 1

h − x

)

if X = r(0) + xv and x ∈ R \ {0, h},
−∂−wMr(X) if X /∈ �(r(0), v),

where w ∈ S1 and ∂w denotes the one sided directional derivation.

Lemma 2.2 [9, Lem. 4.1] Let rJ be a regular multicurve, and let w ∈ S1 be not
parallel 2 to any traced segment.

(1) If no traced line goes through X, then ∂wMrJ (X) + ∂−wMrJ (X) = 0.
(2) If X /∈ Tr rJ , then ∂wMrJ (X) + ∂−wMrJ (X) ≥ 0, and it is positive if and only if

X is on a traced straight line.
(3) Except for finitely many points X of a traced segment of rJ we have ∂wMrJ (X)+

∂−wMrJ (X) = 0.

For multicurves of class Ck , k ∈ N, item (1) can be obviously replaced with:

(1′) If no traced line goes through X , then ∂kwMrJ (X) = (−1)k∂k−wMrJ (X).

Finally, the following known result on harmonic functions is displayed here for the
sake of completeness, and because it is crucial in what follows.

Theorem 2.3 [1, I.4. Thm. (c)] If the function f is harmonic on the open subset D
of R

n, and f has a continuous extension to D ∪ ∂D, then the supremum and infimum
of the extension are attained on ∂D.

Here the space R
n is with the Euclidean topology and is compactified by the ideal

point at infinity, which is not included in R
n , but is included in the boundary of every

unbounded subset of R
n .

3 Utilities

Let φ j ( p) ∈ (−π, π) be the oriented visual angle of the j th member segment
r j : [0, h] 
 s �→ r(0) + sv, v ∈ S1, of the multisegment rJ at p ∈ R

2 \ Tr rJ ,
i.e.,

(cosφ j ( p), sin φ j ( p))

=
( 〈r j (0) − p, r j (h) − p〉

|r j (0) − p| · |r j (h) − p| ,
〈(r j (0) − p) × (r j (h) − p), m〉

|r j (0) − p| · |r j (h) − p|
)

,
(2)

2 This condition is mistakenly missing in [9, Lem. 4.1].
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where m is a fixed unit normal vector of the plane. Observe that φ j changes sign if
the parameterisation of r j is reversed, so the definition

	rJ
: R

2 
 p �→
∑

j∈J φ j ( p)

is valid only if a choice of the parameterisation was fixed for every segment.
We need the following slight generalisation of the observation given in the proof

of [6, Lem. 2.2].

Lemma 3.1 Let rJ be a multisegment.

(1) If no traced line of rJ goes through p, then MrJ is real analytic around p.

(2) The function 	rJ is real analytic on R
2 \ Tr rJ .

Proof As MrJ and	rJ are locally the sum of the functions±φ j , we can assumewith-

out loss of generality that rJ is the segment r : [0, h] 
 s �→ r(0)+ sv, v ∈ S1. Since
both arccos and arcsin are analytic on (−1, 1), the equality of the first coordinates in
(2) proves both statements if the traced line avoids p, and the equality of the second
coordinates in (2) proves the second statement if the traced line goes through p. ��
The following lemma is an obvious extension of [9, Thm. 6.1(1)].

Lemma 3.2 For every multisegment rJ the functions MrJ and 	rJ are locally har-
monic, where they are differentiable.

For a more direct proof one observes that MrJ and 	rJ are locally the sum of the
functions ±φ j , hence one can assume without loss of generality that rJ is a segment
for which [7, Lem. A.1(2)] implies the harmonicity directly.

4 Finding the Needles in a Haystack

Theorem 4.1 The traced segments of a regular multicurve of class C∞ can be recon-
structed if the masking function is given on any rounding circle.

Proof Let Tr rJ be in B2 and suppose that MrJ is given on S1. By (1) and (2) of

Lemma 2.2 the set of the intersections of S1 with the traced lines is

P := {
uξ : ∂u⊥

ξ
MrJ (uξ ) + ∂−u⊥

ξ
MrJ (uξ ) > 0

}
.

This is a finite set, so we can enumerate its elements in anticlockwise order:
uξ0 , . . . , uξi , . . . , uξn .

Let pI be the multisegment of all the traced segments in rJ . Let pIi be the multi-
segment of the segments in pI that are collinear with uξi , i = 0, . . . , n. Let uξ0i

= uξi ,

and let uξ1i
, . . . , uξmi

, . . . , u
ξ
pi
i

be the remaining intersections of S1 with the traced

lines of pIi enumerated in anticlockwise order. Let pIm
i
be the multisegment of the

segments in pIi lying on the straight line uξi uξmi
, and letAm

i be the counterclockwise
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Fig. 1 Traced segments, traced lines and the “first” arc they determine

arc ̂uξmi
u

ξm+1
i

of S1 for every m = 1, . . . , pi , where pi + 1 is understood as 0. (See

Fig. 1.) With these notations in hand (1′) of Lemma 2.2 gives for every k ∈ N that

∂k
u⊥

ξ

MrJ (uξ ) + (−1)k+1∂k−u⊥
ξ

MrJ (uξ )

=
⎧
⎨

⎩

2∂k
u⊥

ξi

M pIi (uξi ) if ξ = ξi for an i ∈ {0, . . . , n},
0 if ξ = ξi for every i ∈ {0, . . . , n}.

(3)

According to (1) of Lemma 3.1 function M pIi is analytic on the arcA
0
i , so the values

in (3) determine the function M pIi on the arc A0
i .

Take the parameterisation re on every segment in pIi so that φe > 0 on A0
i .

Then 	 pIi ≡ M pIi on A0
i so (2) of Lemma 3.1 gives 	 pIi all over S

1. From this,

Theorem 2.3 implies that	 pIi is determined all over the exterior of B2, because	 pIi
vanishes at infinity and is harmonic in the exterior of B2 by Lemma 3.2.

On the other hand, 	 pIi is real analytic on R
2 \ Tr pIi by (2) of Lemma 3.1, so it

is determined on R
2 \ Tr pIi by the unique analytic extension from the outside of B2.

However, 	 pIi cannot extend continuously to Tr pIi because it has different limits
from different sides of the traced line of every segment in the multisegment pIi . Thus
pIi is determined as the set of points where 	 pIi cannot extend to.
Considering the difference MrJ − M pIi puts us into the same situation as at the

start of the proof, but with less traced straight lines, so repeating our procedure over
and over again will lead to the determination of all traced segments. ��
As a special case we obtain from Theorem 4.1 the following nice result.

Corollary 4.2 Every segment of the piecewise C∞ boundary of a convex domain D is
determined by the visual angle function of D given on a surrounding circle.

Since a point of a surrounding circle can be collinear with at most two traced segments
of the boundary of a convex domain, the following comes up.
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Conjecture 4.3 In the interior of B2 any closed convex polygon and any closed convex
disc with piecewise C5 boundary can be distinguished from each other by their visual
angle functions restricted to S1.
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