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We prove an extension of the regularity lemma with vertex and edge weights which in principle can be applied for arbitrary graphs.
The applications involve random graphs and a weighted version of the Erdős-Stone theorem. We also provide means to handle the
otherwise uncontrolled exceptional set.

1. Introduction

Let 𝐺 = 𝐺(𝐴, 𝐵) be a bipartite graph. For 𝑋,𝑌 ⊂ 𝐴 ∪ 𝐵 let
𝑒𝐺(𝑋, 𝑌) denote the number of edges with one endpoint in𝑋
and the other in 𝑌. Given an 𝜀 > 0 we say that the (𝐴, 𝐵)-pair
is 𝜀-regular if



𝑒
𝐺
(𝐴


, 𝐵


)

𝐴

𝐵



−
𝑒
𝐺 (𝐴, 𝐵)

|𝐴| |𝐵|



< 𝜀 (1)

for every 𝐴 ⊂ 𝐴, |𝐴
| > 𝜀|𝐴| and 𝐵

⊂ 𝐵, |𝐵
| > 𝜀|𝐵|.

This definition plays a crucial role in the celebrated
Regularity Lemma of Szemerédi; see [1, 2]. The regularity
lemma is a very powerful tool when applied to a dense graph.
It has found lots of applications in several areas of mathemat-
ics and computer science; for applications in graph theory
see for example, [3]. However, it does not tell us anything
useful when applied for a sparse graph (i.e., a graph on
𝑛 vertices having 𝑜(𝑛2) edges).

There has been significant interest to find widely appli-
cable versions for sparse graphs. This turns out to be a very
hard task. Kohayakawa [4] proved a sparse regularity lemma,
and with Kohayakawa et al. [5] they applied it for finding
arithmetic progressions of length 3 in dense subsets of a
random set. In their sparse regularity lemma dense graphs
are substituted by dense subgraphs of a random (or quasir-
andom) graph. Naturally, a new definition of 𝜀-regularity

was needed; below we formulate a slightly different version
from theirs.

Let 𝐹(𝐴, 𝐵) and𝐺(𝐴, 𝐵) be two bipartite graphs such that
𝐹 ⊂ 𝐺. We say that the (𝐴, 𝐵)-pair is 𝜀-regular in 𝐹 relative to
𝐺 if



𝑒
𝐹
(𝐴


, 𝐵


)

𝑒𝐺 (𝐴
, 𝐵)

−
𝑒
𝐹 (𝐴, 𝐵)

𝑒
𝐺 (𝐴, 𝐵)



< 𝜀 (2)

for every 𝐴
⊂ 𝐴, 𝐵

⊂ 𝐵 and |𝐴
| > 𝜀|𝐴|, |𝐵

| > 𝜀|𝐵|. It is
easy to see that the above is a generalization of 𝜀-regularity; in
the original definition the role of 𝐺 is played by the complete
bipartite graph𝐾

𝐴,𝐵
. In this more general definition 𝐹 can be

a rather sparse graph; it only has to be dense relative to𝐺; that
is, 𝑒(𝐹)/𝑒(𝐺) should be a constant.

In this paperwe further generalize the notion of quasiran-
domness and 𝜀-regularity by introducing weighted regularity
using vertex and edgeweights.This enables us to prove amore
general and perhaps more applicable regularity lemma. Let
us remark that another notion of regularity is used by Alon
et al. [6]; later we will discuss how their work relates to ours.
A recent approach by Scott [7] defines regularity of matrices
and deduces a regularity lemma for graphs via their adjacency
matrices. This approach turns out to be less flexible than the
one we choose in the present paper (for earlier versions, see
[8]).

The basic tool is the Strong StructureTheorem of Tao [9],
where he simplifies the proof of the original regularity lemma
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itself and gives new insights, too. Following his lines became
technically feasible to extend regularity to the case when both
the edges and the vertices of a graph are weighted (note that
the measures are in close connection with each other.) We
remark that similar ideas might be used to find a regularity
lemma for sparse hypergraphs as well.

The structure of the paper is as follows. First we discuss
weighted quasirandomness and weighted 𝜀-regularity in the
second section. In the third section we prove the new version
of the regularity lemma. Finally, we show some applications in
the fourth section; in particular, we prove a weighted version
of the Erdős-Stone theorem.

2. Basic Definitions and Tools

Throughout the paper we apply the relation “≪”: 𝑎 ≪ 𝑏

if 𝑎 is sufficiently smaller than 𝑏. This notation is widely
applied in papers using the regularity lemma and simplifies
our notation, too.

Let 𝛽 > 0 and 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices.
Set 𝛿

𝐺
= 𝑒(𝐺)/ (

𝑛

2 ); this is the density of 𝐺. We define the
density of the 𝐴, 𝐵 pair of subsets of 𝑉(𝐺) by 𝛿

𝐺
(𝐴, 𝐵) =

𝑒
𝐺
(𝐴, 𝐵)/(|𝐴||𝐵|). We say that 𝐺 is 𝛽-quasi-random if it has

the following property: If 𝐴, 𝐵 ⊂ 𝑉(𝐺) such that 𝐴 ∩ 𝐵 = 0
and |𝐴|, |𝐵| > 𝛽𝑛 then

𝛿𝐺 − 𝛿𝐺 (𝐴, 𝐵)
 < 𝛽𝛿𝐺. (3)

That is, the edges of 𝐺 are distributed “randomly.” In order
to formulate our regularity lemma we have to define quasir-
andomness in a more general way that admits weights on
vertices and edges.

For a function 𝑤 : 𝑆 → R+ and 𝐴 ⊂ 𝑆, 𝑤(𝐴) is defined
by the usual way; that is, 𝑤(𝐴) = ∑

𝑥∈𝐴
𝑤(𝑥). We will also

use the indicator function of the edge set of a graph 𝐻.1
𝐻
:

(
𝑉(𝐻)

2
) → {0, 1} and 1

𝐻
(𝑥, 𝑦) = 1 if 𝑥𝑦 ∈ 𝐸(𝐻).

We define the weighted quasirandomness of a graph 𝐺 =
(𝑉, 𝐸) with given weight-functions 𝜇 : 𝑉 → R+ and 𝜌 :
( 𝑉

2
) → R+. For 𝐴, 𝐵 ⊂ 𝑉 let

𝜌𝐺 (𝐴, 𝐵) := ∑

𝑢∈𝐴,V∈𝐵

1𝐺 (𝑢, V) 𝜌 (𝑢, V) . (4)

In particular, 𝜌
𝐺
(𝑢, V) = 1

𝐺
(𝑢, V)𝜌(𝑢, V) for 𝑢, V ∈ 𝑉. Observe

that the function 𝜇 is an analogon of the vertex counting
function on a set, while the function 𝜌 counts the edges in
the unweighted case.

Definition 1. A graph𝐺 = (𝑉, 𝐸) is weighted 𝛽-quasi-random
with weight-function 𝜇 and 𝜌 if for any𝐴, 𝐵 ⊂ 𝑉(𝐺) such that
𝐴 ∩ 𝐵 = 0 and 𝜇(𝐴) ≥ 𝛽𝜇(𝑉), 𝜇(𝐵) ≥ 𝛽𝜇(𝑉) one has



𝜌
𝐺 (𝐴, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
−
𝜌
𝐺 (𝑉, 𝑉)

𝜇 (𝑉) 𝜇 (𝑉)



< 𝛽. (5)

Observe that choosing 𝜇 ≡ 1 and 𝜌 ≡ 1/𝛿
𝐺 gives back the

first definition of quasirandomness. The notion of quasiran-
domness readily extends to bipartite (or multipartite) graphs.
In that case the sets𝐴 and 𝐵 are chosen from different classes.
There is another weaker notion of quasirandomness, which
we will also use.

Definition 2. Let 𝐾 > 1 be an absolute constant. A graph
𝐺 = (𝑉, 𝐸) is weighted (𝐾, 𝛽)-quasi-random with weight-
functions 𝜇 and 𝜌 if for any 𝐴, 𝐵 ⊂ 𝑉(𝐺) such that 𝐴 ∩ 𝐵 = 0
and 𝜇(𝐴) ≥ 𝛽𝜇(𝑉), 𝜇(𝐵) ≥ 𝛽𝜇(𝑉) one has

1

𝐾

𝜌
𝐺 (𝑉, 𝑉)

𝜇 (𝑉) 𝜇 (𝑉)
≤
𝜌
𝐺 (𝐴, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
≤ 𝐾

𝜌
𝐺 (𝑉, 𝑉)

𝜇 (𝑉) 𝜇 (𝑉)
. (6)

Clearly, if a graph is 𝛽-quasi-random and 𝐾 > max{1 +
𝛽/𝑦, 1 + 𝛽/(𝑦 − 𝛽)}, then it is (𝐾, 𝛽)-quasi-random, where
𝑦 := 𝜌

𝐺
(𝑉, 𝑉)/𝜇(𝑉)

2. Now we need to describe the weighted
version of relative regularity.

Definition 3. Let 𝐺 and 𝐹 be graphs, 𝐹 ⊂ 𝐺, and assume that
𝐺 is a (𝐾, 𝛽)-quasi-random with weight functions 𝜇 and 𝜌
as defined above. For 𝐴, 𝐵 ⊂ 𝑉(𝐺) and 𝐴 ∩ 𝐵 = 0 the pair
(𝐴, 𝐵) in𝐹 is (𝜇, 𝜌)-weighted 𝜖-regular relative to𝐺, or briefly
weighted 𝜖-regular, if



𝜌
𝐹
(𝐴


, 𝐵


)

𝜇 (𝐴) 𝜇 (𝐵)
−
𝜌𝐹 (𝐴, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)



< 𝜖 (7)

for every 𝐴
⊂ 𝐴 and 𝐵

⊂ 𝐵 provided that 𝜇(𝐴
) ≥ 𝜖𝜇(𝐴),

𝜇(𝐵

) ≥ 𝜖𝜇(𝐵). Here

𝜌
𝐹 (𝐴, 𝐵) = ∑

𝑢∈𝐴,V∈𝐵

1𝐹 (𝑢, V) 𝜌 (𝑢, V) . (8)

Remarks. Note that weighted 𝜖-regularity is nothing but the
well-known 𝜖-regularity when 𝐺 = 𝐾

𝐴,𝐵
and 𝜇 ≡ 1 and 𝜌

is chosen to be identically the reciprocal of the density of 𝐺
as before. Since 1

𝐹
(𝑢, V) ≤ 1

𝐺
(𝑢, V) ≤ 1(𝑢, V) we also have

𝜌
𝐹
(𝐴, 𝐵) ≤ 𝜌

𝐺
(𝐴, 𝐵) ≤ 𝜌(𝐴, 𝐵). Hence, the first inequality

of the definition does not refer to 𝐺 explicitly but contains
information on it.

Next we define weighted regular partitions.

Definition 4. Let𝐺 = (𝑉, 𝐸) and𝐹 ⊂ 𝐺 be graphs, and 𝜇 and 𝜌
weight functions.𝐹 has a weighted 𝜖-regular partition relative
to 𝐺 if its vertex set 𝑉 can be partitioned into ℓ + 1 clusters
𝑊0,𝑊1, . . . ,𝑊ℓ such that

(i) 𝜇(𝑊
0
) ≤ 𝜖𝜇(𝑉),

(ii) |𝜇(𝑊
𝑖
)−𝜇(𝑊

𝑗
)| ≤ max

𝑥∈𝑉
{𝜇(𝑥)} for every 1 ≤ 𝑖, 𝑗 ≤ ℓ,

(iii) all but at most 𝜖ℓ2 of the pairs (𝑊𝑖,𝑊𝑗) for 1 ≤ 𝑖 < 𝑗 ≤
ℓ are weighted 𝜖-regular in 𝐹 relative to 𝐺.

In order to show our main result we will use the Strong
Structure Theorem of Tao that allows a short exposition. In
fact we will closely follow his proof for the regularity lemma
as discussed in [9].

First we have to introduce some definitions. Let 𝐻 be a
real finite-dimensionalHilbert space, and let 𝑆 be a set of basic
functions or basic structured vectors of𝐻 of norm at most 1.
The function 𝑔 ∈ 𝐻 is (𝑀,𝐾)-structured with the positive
integers𝑀, 𝐾 if one has a decomposition

𝑔 = ∑

1≤𝑖≤𝑀

𝑐𝑖𝑠𝑖 (9)
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with 𝑠
𝑖
∈ 𝑆 and 𝑐

𝑖
∈ [−𝐾,𝐾] for 1 ≤ 𝑖 ≤ 𝑀. We say that 𝑔 is

𝛽-pseudorandom for some 𝛽 > 0 if |⟨𝑔, 𝑠⟩| ≤ 𝛽 for all 𝑠 ∈ 𝑆.
Then we have the following.

Theorem 5 (Strong Structure Theorem—T. Tao). Let 𝐻 and
𝑆 be as above, let 𝜀 > 0, and let 𝐽 : Z+

→ R+ be an
arbitrary function. Let 𝑓 ∈ 𝐻 be such that ‖𝑓‖

𝐻
≤ 1. Then

we can find an integer 𝑀 = 𝑀
𝐽,𝜀

and a decomposition 𝑓 =

𝑓str + 𝑓psd + 𝑓err where (i) 𝑓str is (𝑀,𝑀)-structured, (ii) 𝑓psd is
1/𝐽(𝑀)-pseudorandom, and (iii) ‖𝑓err‖𝐻 ≤ 𝜀.

Note that the proof of Theorem 5 yields a polynomial
algorithm; hence, our regularity lemma has the same com-
plexity.

3. Weighted Regularity Lemma Relative to
a Quasirandom Graph 𝐺

First we define the Hilbert space 𝐻, and 𝑆. We generalize
Example 2.3 of [9] to weighted graphs. Let 𝐺 = (𝑉, 𝐸) be a
𝛽-quasi-random graph on 𝑛 vertices with weight functions
𝜇 and 𝜌. Let 𝐻 be the ( 𝑛2 )-dimensional space of functions
𝑔 : ( 𝑉

2
) → R, endowed with the inner product

⟨𝑔, ℎ⟩ =
1

(
𝑛

2 )
∑

(𝑢,V)∈(
𝑉

2
)

𝑔 (𝑢, V) ℎ (𝑢, V) 𝜌𝐺 (𝑢, V) . (10)

It is useful to normalize the vertex and edge weight
functions; we assume that 𝜇(𝑉) = 𝑛 and ⟨1, 1⟩ = 1. We also
assume that 𝜇(V) = 𝑜(|𝑉|) for every V ∈ 𝑉. Observe that if
𝐹 ⊂ 𝐺 then ‖1

𝐹
‖ ≤ 1. We let 𝑆 be the collection of 0,1-valued

functions 𝛾
𝐴,𝐵

for𝐴, 𝐵 ⊂ 𝑉(𝐺),𝐴∩𝐵 = 0, where 𝛾
𝐴,𝐵
(𝑢, V) = 1

if and only if 𝑢 ∈ 𝐴 and V ∈ 𝐵. We have the following.

Theorem 6 (weighted regularity lemma). Let 𝐾 > 1 and
𝛽, 𝜀 ∈ (0, 1), such that 0 < 𝛽 ≪ 𝜀 ≪ 1/𝐾, and let 𝐿 ≥ 1.
If 𝐺 = (𝑉, 𝐸) is a weighted (𝐾, 𝛽)-quasi-random graph on 𝑛
vertices with 𝑛 sufficiently large depending on 𝜀 and 𝐿, 𝐹 ⊂ 𝐺,
then 𝐹 admits a weighted 𝜀-regular partition relative to 𝐺 into
the partition sets 𝑊0,𝑊1, . . . ,𝑊ℓ such that 𝐿 ≤ ℓ ≤ 𝐶𝜀,𝐿 for
some constant 𝐶𝜀,𝐿.

Proof. Let us apply Theorem 5 to the function 1
𝐹 with

parameters 𝜂 and function 𝐽 to be chosen later. We get the
decomposition

1
𝐹
= 𝑓str + 𝑓psd + 𝑓err, (11)

where 𝑓str is (𝑀,𝑀)-structured, 𝑓psd is 1/𝐽(𝑀)-
pseudorandom, and ‖𝑓err‖ ≤ 𝜂 with𝑀 = 𝑀𝐽,𝜂 = 𝑀𝐽,𝜀.

The function 𝑓str is the combination of at most𝑀 basic
functions:

𝑓str = ∑

1≤𝑘≤𝑀

𝛼
𝑘
𝛾A𝑘,B𝑘

, (12)

where A
𝑘
,B

𝑘
are subsets of 𝑉 and 𝛾A𝑘,B𝑘 agrees with the

indicator function of the edges of 𝐺 in between A
𝑘
and

B
𝑘
. Any (A

𝑘
,B

𝑘
) pair partitions 𝑉 into at most 4 subsets.

Overall we get a partitioning of𝑉 into at most 4𝑀 subsets; we

will refer to them as atoms. Divide every atom into subsets of
total vertex weight 𝜀𝑛/(𝐿 + 4𝑀), except possibly one smaller
subset. The small subsets will be put into𝑊

0
; the others give

𝑊
1
,𝑊

2
, . . . ,𝑊

ℓ
, with ℓ = (𝐿 + 4𝑀)/𝜀. We refer to the sets𝑊

𝑖

for 𝑖 = 1, . . . , ℓ as clusters. If 𝑛 is sufficiently large then this
partitioning is nontrivial. From the construction it follows
that each 𝑊

𝑖
is entirely contained within an atom. It is also

clear that 𝜇(𝑊
0
) ≤ 𝜀𝑛 and 𝜇(𝑊

𝑖
) ≈ 𝑚 = Θ(𝑛/ℓ) for every

1 ≤ 𝑖 ≤ ℓ.
We have that

𝑓err


2
=
1

(
𝑛

2 )
∑

(𝑢,V)∈(
𝑉

2
)

𝑓err (𝑢, V)


2
𝜌
𝐺 (𝑢, V) ≤ 𝜂

2
. (13)

From this and the normalization of 𝜌 it follows that

1

( ℓ

2
)
∑

1≤𝑖<𝑗≤ℓ

1

𝜌
𝐺
(𝑊

𝑖
,𝑊

𝑗
)

∑

𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓err (𝑢, V)


2
𝜌𝐺 (𝑢, V)

= 𝑂 (𝜂
2
) .

(14)

Clearly,

1

𝜌
𝐺
(𝑊

𝑖
,𝑊

𝑗
)

∑

𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓err (𝑢, V)


2
𝜌
𝐺 (𝑢, V) = 𝑂 (𝜂) (15)

for all but at most 𝑂(𝜂ℓ2) pairs (𝑖, 𝑗). If the above is
satisfied for a pair (𝑖, 𝑗) then we call it a good pair. We will
apply the Cauchy-Schwarz inequality. For that let 𝑎(𝑢, V) =
|𝑓err(𝑢, V)|√𝜌𝐺(𝑢, V) and 𝑏(𝑢, V) = √𝜌𝐺(𝑢, V); then

∑
𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑎 (𝑢, V) 𝑏 (𝑢, V)

√∑𝑢∈𝑊𝑖,V∈𝑊𝑗
𝑏2 (𝑢, V)

≤
√

∑

𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑎2 (𝑢, V). (16)

Since

√
∑

𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑎2 (𝑢, V) = 𝑂 (√𝜂)√𝜌𝐺 (𝑊𝑖
,𝑊

𝑗
), (17)

we get that

1

𝜌
𝐺
(𝑊

𝑖
,𝑊

𝑗
)

∑

𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓err (𝑢, V)
 𝜌𝐺 (𝑢, V) = 𝑂 (√𝜂) (18)

if (𝑖, 𝑗) is a good pair.
Assume that (𝑖, 𝑗) is a good pair. From the pseudoran-

domness of 𝑓psd we have that


⟨𝑓psd, 𝛾𝐴,𝐵

⟩

=
1

(
𝑛

2 )



∑

𝑢∈𝐴,V∈𝐵

𝑓psd (𝑢, V) 𝜌𝐺 (𝑢, V)


≤
1

𝐽 (𝑀)

(19)

for every 𝐴 ⊂ 𝑊
𝑖
and 𝐵 ⊂ 𝑊

𝑗
.

We will show that every good pair is weighted 𝜀-regular
in 𝐹 relative to 𝐺. Let (𝑖, 𝑗) be a good pair, and assume that
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𝐴 ⊂ 𝑊
𝑖
, 𝜇(𝐴) > 𝜀𝜇(𝑊

𝑖
) and 𝐵 ⊂ 𝑊

𝑗
, 𝜇(𝐵) > 𝜀𝜇(𝑊

𝑗
). To show

that (𝑊
𝑖
,𝑊

𝑗
) is weighted 𝜀-regular, it is sufficient to show that



𝜌
𝐹 (𝐴, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
−

𝜌𝐹 (𝑊𝑖,𝑊𝑗)

𝜇 (𝑊
𝑖
) 𝜇 (𝑊

𝑗
)



< 𝜀. (20)

Recall that

𝜌
𝐹 (𝐴, 𝐵) = ∑

𝑢∈𝐴,V∈𝐵

1𝐹 (𝑢, V) 𝜌 (𝑢, V)

= ∑

𝑢∈𝐴,V∈𝐵

1
𝐹 (𝑢, V) 𝜌𝐺 (𝑢, V) ,

(21)

since 𝐹 ⊂ 𝐺.
Substituting 𝑓str +𝑓psd +𝑓err for 1𝐹 it is sufficient to verify

the following inequalities:


∑
𝑢∈𝐴,V∈𝐵

𝑓str (𝑢, V) 𝜌𝐺 (𝑢, V)
𝜇 (𝐴) 𝜇 (𝐵)

−

∑
𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓str (𝑢, V) 𝜌𝐺 (𝑢, V)

𝜇 (𝑊𝑖) 𝜇 (𝑊𝑗)



< 𝜀/3,

(22)


∑
𝑢∈𝐴,V∈𝐵

𝑓psd (𝑢, V) 𝜌𝐺 (𝑢, V)
𝜇 (𝐴) 𝜇 (𝐵)

−

∑
𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓psd (𝑢, V) 𝜌𝐺 (𝑢, V)

𝜇 (𝑊
𝑖
) 𝜇 (𝑊

𝑗
)



< 𝜀/3,

(23)


∑
𝑢∈𝐴,V∈𝐵

𝑓err (𝑢, V) 𝜌𝐺 (𝑢, V)
𝜇 (𝐴) 𝜇 (𝐵)

−

∑
𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓err (𝑢, V) 𝜌𝐺 (𝑢, V)

𝜇 (𝑊
𝑖
) 𝜇 (𝑊

𝑗
)



< 𝜀/3.

(24)

For proving (22) recall that𝑓str is constant on𝑊𝑖×𝑊𝑗 and
(𝑀,𝑀)-structured. Since the 𝛾𝑋,𝑌 basic functions are 0, 1-
valued, we get that |𝑓str| ≤ 𝑀

2. Moreover, 𝐺 is (𝐾, 𝛽)-quasi-
random, where 0 < 𝛽 ≪ 𝜀. Therefore, (22) follows from the
inequality𝐾𝑀2

𝛽 < 𝜀/3, since 𝛽 ≪ 𝜖.
The proof of (23) goes as follows. The first term is



∑
𝑢∈𝐴,V∈𝐵

𝑓psd (𝑢, V) 𝜌𝐺 (𝑢, V)
𝜇 (𝐴) 𝜇 (𝐵)



= (
𝑛

2
)

⟨𝑓psd, 𝛾𝐴,𝐵

⟩


≤
(
𝑛

2 )

𝐽 (𝑀) 𝜇 (𝐴) 𝜇 (𝐵)
,

(25)

and the second is


∑
𝑢∈𝑊𝑖,V∈𝑊𝑗

𝑓psd (𝑢, V) 𝜌𝐺 (𝑢, V)

𝜇 (𝑊
𝑖
) 𝜇 (𝑊

𝑗
)



= (
𝑛

2
)

⟨𝑓psd, 𝛾𝑊𝑖,𝑊𝑗⟩



≤
(
𝑛

2 )

𝐽 (𝑀) 𝜇 (𝑊𝑖
) 𝜇 (𝑊

𝑗
)

.

(26)

Noting that 𝜇(𝑊
𝑘
) = Θ(𝑛/ℓ) for 𝑘 ≥ 1 we get that the sum of

the above terms is at most
ℓ
2

2𝐽 (𝑀)
(1 +

1

𝜀2
) <

𝜀

3
, (27)

if 𝐽(𝑀) ≫ ℓ
2
/𝜀

3.
For (24) first notice that it is upper bounded by

𝑂 (√𝜂)(

𝜌
𝐺 (𝑊𝑖,𝑊𝑗)

𝜇 (𝑊
𝑖
) 𝜇 (𝑊

𝑗
)

+

𝜌
𝐺 (𝑊𝑖,𝑊𝑗)

𝜇 (𝐴) 𝜇 (𝐵)
)

≤ 𝑂 (√𝜂)

𝜌
𝐺
(𝑊

𝑖
,𝑊

𝑗
)

𝜀2𝜇 (𝑊𝑖) 𝜇 (𝑊𝑗)

.

(28)

We also have that

𝜌
𝐺 (𝑊𝑖,𝑊𝑗)

𝜇 (𝑊
𝑖
) 𝜇 (𝑊

𝑗
)

= 𝑂 (1) (29)

by the normalization of 𝜇 and 𝜌 and from the fact that 𝐺 is
quasirandom. From this it is easy to see that if 𝜂 ≪ 𝜀

6 then
(24) is at most 𝜀/3.This finishes the proof of the theorem.

4. Quasirandom Weightings and Applications

In this section we first prove that a random graph with widely
differing edge probabilities is quasirandom, if none of the
edge probabilities are too small. In this case the vertexweights
will all be one, but edges will have different weights. Then
we show examples where vertices have different weights. We
will consider the relation of weighted regularity and volume
regularity. We define the “natural weighting” of 𝐾

𝑛
and

prove a weighted version of the Erdős-Stone theorem for this
weighting. Finally, we show how to partially control the non-
exceptional set by natural weightings.

4.1. Quasirandomness in the 𝐺(𝑛,𝑝
𝑖𝑗
) Model. In this section

we will prove that random graphs of the 𝐺(𝑛, 𝑝
𝑖𝑗
) model are

quasirandom in the strong sense with high probability. A
special case of this model is the well-known 𝐺(𝑛, 𝑝) model
for random graphs. A regularity lemma for this case was first
applied by Kohayakawa et al. [5]. They studied 𝐺(𝑛, 𝑝) for
𝑝 = 𝑐/√𝑛 in order to find arithmetic progressions of length
three in dense subsets of random subsets of [𝑁].

The 𝐺(𝑛, 𝑝
𝑖𝑗
) model was first considered by Bollobás

[10]. Recently it was also studied by Chung and Lu [11]. In
this model one takes 𝑛 vertices and draws an edge between
the vertices 𝑥𝑖 and 𝑥𝑗 with probability 𝑝𝑖𝑗, randomly and
independently of each other. Note that if 𝑝𝑖𝑗 ≡ 𝑝, then we
get back thewell-known𝐺(𝑛, 𝑝)model. It is a straightforward
application of the Chernoff bound that a random graph 𝐺 ∈
𝐺(𝑛, 𝑝) is quasirandom with high probability if 𝑝 ≫ 1/𝑛.
However, the case of 𝐺(𝑛, 𝑝𝑖,𝑗) is somewhat harder.

Lemma 7. Let 𝛽 > 0. There exists a𝐾 = 𝐾(𝛽) such that if𝐺 ∈
𝐺(𝑛, 𝑝𝑖𝑗) and 𝑝𝑖𝑗 ≥ 𝐾/𝑛 for every 𝑖 and 𝑗, then𝐺 is weighted 𝛽-
quasi-randomwith probability at least 1−2−𝑛 if 𝑛 is sufficiently
large.
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Proof. First of all let 𝜇 ≡ 1, and let 𝜌(𝑖, 𝑗) = 1/𝑝
𝑖,𝑗
. Set 𝐾 =

4800/𝛽
6. Let 𝑝

0
= 𝐾/𝑛, and let 𝑝

𝑘
= 𝑒

𝑘
𝑝

0
for 1 ≤ 𝑘 ≤ log 𝑛.

Let 𝐴 and 𝐵 be a pair of disjoint sets, both of size at least
𝛽𝑛. We partition the pairs (𝑢, V), where 𝑢 ∈ 𝐴 and V ∈ 𝐵,
into 𝑂(log 𝑛) disjoint sets 𝐻1, 𝐻2, . . . , 𝐻𝑙: if 𝑝𝑘 ≤ 𝑝𝑢V < 𝑝𝑘+1

then (𝑢, V)will belong to𝐻
𝑘
. Let 𝑎

𝑘
= (𝛽

3
/10)√𝑒

𝑘
𝐾𝑛. We will

denote |𝐻
𝑘
| by𝑚

𝑘
.

We will prove that the following inequality holds with
probability at least 1 − 2−3𝑛:



∑

𝑢∈𝐴,V∈𝐵

𝑋
𝑢V

𝑝𝑢V |𝐴| |𝐵|
− 1



< 𝛽/2, (30)

where 𝑋
𝑢V is a random variable which is 1 if 𝑢V ∈ 𝐸(𝐺);

otherwise it is 0. This implies the quasirandomness of 𝐺
since there are less than 22𝑛 pairs of disjoint subsets of 𝑉(𝐺).
Observe that

∑

𝑢∈𝐴,V∈𝐵

E𝑋𝑢V

𝑝
𝑢V |𝐴| |𝐵|

= 1. (31)

Applying the large deviation inequalities 𝐴.1.11 and
𝐴.1.13 from [12], we are able to bound the number of edges in
between𝐴 and 𝐵 for the edges of𝐻

𝑘
in case𝑚

𝑘
is sufficiently

large as follows. According to 𝐴.1.11 we have that

Pr( ∑

(𝑢,V)∈𝐻𝑘

(𝑋
𝑢V − E𝑋𝑢V) > 𝑎𝑘) < 𝑒

−(𝑎
2

𝑘
/2𝑞𝑘𝑚𝑘)+(𝑎

3

𝑘
/2𝑞
2

𝑘
𝑚
2

𝑘
)
,

(32)

where

𝑝
𝑘 ≤ 𝑞𝑘 = ∑

(𝑢,V)∈𝐻𝑘

𝑝
𝑢V

𝑚
𝑘

< 𝑝𝑘+1. (33)

We estimate the exponent in case𝑚
𝑘
= 𝑛

2:

−
𝑎
2

𝑘

2𝑞𝑘𝑚𝑘

+
𝑎
3

𝑘

2𝑞
2

𝑘
𝑚

2

𝑘

≤ −
𝛽

6

200
(
√𝑒

2

𝑒
)

𝑘

𝐾𝑛
3

𝑒𝑚𝑘

+
𝛽

9

2000
(
√𝑒

3

𝑒2
)

𝑘

𝑒𝐾𝑛
5

𝑚
2

𝑘

< −3𝑛,

(34)

where we used the definition of 𝐾. For 𝑚
𝑘
being much less

than 𝑛2, direct substitution gives a useless bound. For this case
we have the useful inequality

1

2
Pr(

𝑚𝑘

∑

𝑖=1

𝑌𝑖 > 𝑎𝑘) ≤ Pr(
𝑛
2

∑

𝑖=1

𝑌𝑖 >
𝑎
𝑘

2
) , (35)

where Pr(𝑌
𝑖 = 1 − 𝑞𝑘) = 𝑞𝑘 and Pr(𝑌𝑖 = −𝑞𝑘) = 1 − 𝑞𝑘. This

implies that the exponent is atmost−3𝑛 even in case𝑚
𝑘
< 𝑛

2.
Indeed, let 𝐴, 𝐵, and 𝐶 be the events that ∑𝑚𝑘

𝑖=1
𝑌

𝑖
> 𝑎

𝑘
,

∑
𝑛
2

𝑖=1
𝑌

𝑖
> 𝑎

𝑘
/2, and ∑𝑛

2

𝑖=𝑚𝑘+1
𝑌

𝑖
< −𝑎

𝑘
/2, respectively. Clearly

𝐴 and𝐶 are independent, and𝐴∩𝐶 ⊂ 𝐵. So we have Pr(𝐵) ≥

Pr(𝐴 ∩ 𝐶) = Pr(𝐴)Pr(𝐶); that is, Pr(𝐴) ≤ Pr(𝐵)/Pr(𝐶) <
Pr(𝐵)/2, since by 𝐴.1.13

Pr(
𝑛
2

∑

𝑖=𝑚𝑘+1

𝑌
𝑖
< −

𝑎𝑘

2
) < 𝑒

−𝑎
2

𝑘
/8𝑞𝑘(𝑛

2
−𝑚𝑘) <

1

2
. (36)

With this we have proved that the sum of the weights of the
edges of 𝐻

𝑘 will not be much larger than their expectation
with high probability.

Now we estimate the probability that the sum of the
weights is much less than their expectation. Let us use𝐴.1.13
again directly to the sums over𝐻𝑘’s:

Pr( ∑

(𝑢,V)∈𝐻𝑘

(𝑋
𝑢V − E𝑋𝑢V) < −𝑎𝑘) < 𝑒

−𝑎
2

𝑘
/2𝑞𝑘𝑚𝑘 . (37)

The exponent in the inequality can be estimated very similarly
as before:

−
𝑎
2

𝑘

2𝑞
𝑘
𝑚

𝑘

≤ −
𝛽

6

200
(
√𝑒

2

𝑒
)

𝑘

𝐾𝑛
3

𝑒𝑚
𝑘

< −3𝑛; (38)

moreover, this bound applies for an arbitrary𝑚
𝑘
.

Putting these together we have that

Pr(


∑

(𝑢,V)∈𝐻𝑘

(𝑋𝑢V − E𝑋𝑢V)



> 𝑎
𝑘) < 2

−3𝑛
. (39)

This implies that


∑

(𝑢,V)∈𝐻𝑘

𝑋
𝑢V − E𝑋𝑢V

𝑝
𝑢V |𝐴| |𝐵|



≤



∑

(𝑢,V)∈𝐻𝑘

𝑋
𝑢V − E𝑋𝑢V

𝑝
𝑘−1 |𝐴| |𝐵|



≤
𝑎
𝑘

𝑝𝑘−1 |𝐴| |𝐵|
≤
𝛽

10
(
1

√𝑒
)

𝑘

,

(40)

where the last two inequalities hold with probability at least
1−2

−3𝑛 for a given pair of sets𝐴 and 𝐵 if 𝑛 is sufficiently large.
Since



∑

𝑢∈𝐴,V∈𝐵

𝑋
𝑢V

𝑝
𝑢V |𝐴| |𝐵|



=



log 𝑛

∑

𝑘=1

∑

(𝑢,V)∈𝐻𝑘

𝑋
𝑢V

𝑝
𝑢V |𝐴| |𝐵|



≤

log 𝑛

∑

𝑘=1



∑

(𝑢,V)∈𝐻𝑘

𝑋
𝑢V

𝑝
𝑘−1 |𝐴| |𝐵|



,

log 𝑛

∑

𝑘=1

1

10
(
1

√𝑒
)

𝑘

≤
1

2
,

(41)

the claimed bound follows with high probability.

Remark 8. It is very similar to prove that with high probabil-
ity | ∑

𝑖,𝑗
𝜌𝐺(𝑖, 𝑗) − (

𝑛

2 ) | = 𝑜(𝑛
2
), we omit the details. From this

it follows that rescaling the above edge weights by a factor of
(1 + 𝑜(1)) and letting 𝜇 ≡ 1 provide us with 𝛽-quasi-random
weights formost graphs from𝐺(𝑛, 𝑝

𝑖𝑗
) such that𝜇(𝑉) = 𝑛 and

𝜌
𝐺
(𝑉, 𝑉) = 2 (

𝑛

2 ). That is, with high probability we can apply
the regularity lemma for any 𝐹 ⊂ 𝐺, where 𝐺 ∈ 𝐺(𝑛, 𝑝

𝑖𝑗
).
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4.2. Simple Examples for Defining Vertex and Edge Weights.
When defining the notion of weighted quasirandomness and
weighted regularity, we mentioned that choosing 𝜇 ≡ 1 and
𝜌 ≡ 1/𝛿

𝐺
gives back the old definitions of quasirandomness

and regularity. In the previous section we saw an example
when we needed different edge weights, but 𝜇 was identically
one.

Let us consider a simple example in which 𝜇 has to take
more than one value. Let 𝐺 be a star on 𝑛 vertices; that is,
the vertex V1 is adjacent to the vertices V2, . . . , V𝑛, and V𝑖 has
degree 1 for 𝑖 ≥ 2. We let 𝜇(V1) = 1/2 and 𝜇(V𝑖) = 1/(2(𝑛 − 1))
for 𝑖 ≥ 2 and choose 𝜌𝐺 ≡ 𝑛/2. With these choices 𝐺 is easily
seen to be a bipartite quasirandom; moreover, it is weighted
regular.

A more sophisticated example relates weighted regularity
to (𝐶, 𝜂, 𝐷) boundedness, which is the basic condition in
the regularity lemma of Alon et al. [6]. Let us recall that
𝐺 is (𝐶, 𝜂, 𝐷) bounded with parameters 𝐶 ≥ 1, 𝜂 ≥ 0

and 𝐷 is a function from 𝑉 to [1, 𝑛] if for all 𝑋,𝑌 ⊂ 𝑉,
when 𝐷(𝑋),𝐷(𝑌) ≥ 𝜂𝐷(𝑉), the inequality 𝜌(𝑋, 𝑌)𝐷(𝑉) ≤
𝐶 holds, where 𝐷(𝑋) = ∑

𝑥∈𝑋
𝐷(𝑥), and 𝜌(𝑋, 𝑌) :=

𝑒(𝑋, 𝑌)/(𝐷(𝑋)𝐷(𝑌)); that is, 𝜌 is a “generalized edge density.”
Then one can obtain an 𝜀-regular partition if 𝜂 ≪ 𝜀.

It is easy to check that the following graph 𝐺 is 𝛽-quasi-
random, in fact belongs to𝐺(𝑛, 𝑝

𝑖,𝑗
)with appropriate weights,

but𝐺 is not (𝐶, 𝜂, 𝐷) bounded. Let𝑉(𝐺) = ∪4

𝑖=1
𝐴

𝑖
, |𝐴

𝑖
| = 𝑛/4

for 𝑖 = 1, . . . , 4. All edges between 𝐴
1
and 𝐴

2
are present;

there is no edge between the sets 𝐴
1
∪ 𝐴

2
and 𝐴

3
∪ 𝐴

4
,

while between 𝐴
3
and 𝐴

4
there is a random bipartite graph

with edge probability 1/√𝜂. Of course, if 𝜂 is small enough
compared to 𝐶 then 𝐺 cannot be (𝐶, 𝜂, 𝐷) bounded.

Similarly, one can show easily that whenever a graph 𝐹 is
(𝐶, 𝜂, 𝐷) bounded, then with 𝜇(𝑥) = 𝐷(𝑥) for all 𝑥 ∈ 𝑉(𝐹)
and appropriately defined edge weights 𝐹 is a dense subgraph
of a graph𝐺which is (2, 𝜂)-quasi-random.Hence,Theorem 6
can be applied for 𝐹. We leave the details for the reader.

4.3. Natural Weighting of 𝐾
𝑛
. Assume that |𝑉| = 𝑛. Let the

vertex weight function 𝜇 : 𝑉 → R+ be defined such that
𝜇(𝑉) = 𝑛. We also assume that 𝜇(V) = 𝑜(𝑛) for every V ∈
𝑉, as we did earlier in the paper. Then we define the natural
weighting of the edges of 𝐾

𝑛
(𝐾

𝑛
can be replaced with other

quasirandom graphs. Then the edge weights will be different.
You can find more about this at the end of Section 4.5.) with
respect to 𝜇 as follows: we let 𝜌(𝑢, V) = 𝜇(𝑢) ⋅ 𝜇(V) for all 𝑢, V ∈
𝑉, 𝑢 ̸= V. Observe that

𝜌 (𝑉, 𝑉) = 𝜇 (𝑉) 𝜇 (𝑉) − ∑

V∈𝑉

𝜇
2
(V) = 2 (𝑛

2
) (1 − 𝑜 (1)) . (42)

We show that these weight functions determine a quasiran-
dom weighting of𝐾𝑛. Let𝐴, 𝐵 ⊂ 𝑉 such that𝐴∩𝐵 = 0. Then

𝜌 (𝐴, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
=
∑

𝑢∈𝐴
∑V∈𝐵

𝜇 (𝑢) 𝜇 (V)
𝜇 (𝐴) 𝜇 (𝐵)

=
𝜇 (𝐴) 𝜇 (𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
= 1,

(43)

independent of the weights of 𝐴 and 𝐵. Recalling the
definition of quasirandomness it is easy to see that the natural
weighting of𝐾

𝑛
is always quasirandom.

Note that natural weighting resemblesDefinition 1, where
the lower bounds on 𝜇(𝐴) and 𝜇(𝐵) are dropped. It is closely
related to the random model 𝐺(w); see, for example, [11].
Here w = (𝑤

1
, . . . , 𝑤

𝑛
) is the expected degree sequence of

𝐺(w)with vertex set {1, 2, . . . , 𝑛}.The edges of𝐺(w) are drawn
independently, and the probability of including the edge 𝑖𝑗
is 𝑤𝑖

𝑤
𝑗
/∑

𝑖
𝑤

𝑖
. Of course, the model 𝐺(w) is the special case

of 𝐺(𝑛, 𝑝𝑖𝑗), and Lemma 7 holds without any conditions. The
results in the remainder of the paper also hold inmore general
weightings; for simplicity, we work out the details for natural
weighting.

Let 𝑢 be an arbitrary vertex and𝐴 ⊂ 𝑉.Then theweighted
degree of 𝑢 into 𝐴 in the graph 𝐹 ⊂ 𝐾𝑛 is defined to be

𝑑𝑤
𝐹 (𝑢, 𝐴) = ∑

V∈𝐴

1
𝐹 (𝑢, V) 𝜇 (V) = 𝜇 (𝑁𝐹 (𝑢, 𝐴)) , (44)

where 𝑁
𝐹
(𝑢, 𝐴) denotes the neighborhood of 𝑢 in the set 𝐴.

In particular the weighted degree of 𝑢 in 𝐹 is

𝑑𝑤
𝐹 (𝑢) = ∑

V∈𝑉

1
𝐹 (𝑢, V) 𝜇 (V) = 𝜇 (𝑁𝐹 (𝑢)) . (45)

We also have that

𝜌
𝐹 (𝐴, 𝐵) = ∑

𝑢∈𝐴

∑

V∈𝐵

1𝐹 (𝑢, V) 𝜌 (𝑢, V)

= ∑

𝑢∈𝐴

𝑑𝑤𝐹 (𝑢, 𝐵) ,

𝜌
𝐹 (𝑉, 𝑉) = ∑

𝑢∈𝑉

𝑑𝑤
𝐹 (𝑢) .

(46)

We define the weighted density of a weighted 𝜀-regular (𝐴, 𝐵)
pair to be

𝜌
𝐹 (𝐴, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
. (47)

We have the following lemma.

Lemma 9. Let (𝐴, 𝐵) be a weighted 𝜀-regular pair relative to
the natural weighting of 𝐾

𝑛
with weighted density 𝛾 ≫ 𝜀. Let

𝐴

⊂ 𝐴 contain only such vertices that have weighted degree

less than (𝛾 − 𝜀)𝜇(𝐵) in the pair. Then 𝜇(𝐴
) < 𝜀𝜇(𝐴).

Proof. Assume on the contrary that the set of “low-degree”
vertices has a large weight. Observe that 𝜀-regularity implies
that

𝜌𝐹 (𝐴

, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
> 𝛾 − 𝜀 (48)

if 𝜇(𝐴
) > 𝜀𝜇(𝐴). Using our assumption we get the following:

𝛾 − 𝜀 <

𝜌
𝐹
(𝐴


, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
=
∑

𝑢∈𝐴
 𝜇 (𝑢) 𝑑𝑤𝐹 (𝑢, 𝐵)

𝜇 (𝐴) 𝜇 (𝐵)

<
∑

𝑢∈𝐴
 𝜇 (𝑢) (𝛾 − 𝜀) 𝜇 (𝐵)

𝜇 (𝐴) 𝜇 (𝐵)
= 𝛾 − 𝜀,

(49)

which is clearly a contradiction.
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Let 𝐴, 𝐵
1
, 𝐵

2
, . . . , 𝐵

𝑘
be disjoint subsets of 𝑉(𝐹), and

assume that (𝐴, 𝐵
𝑖
) is a weighted 𝜀-regular pair relative to a

natural weighting of 𝐾
𝑛
with weighted density at least 𝛾 for

every 𝑖. Set 𝛿 = 𝛾 − 𝜀. Let 0 < 𝑠 be an integer constant, and
assume that 𝛿𝑠 ≫ 𝜀.

Lemma 10. Assume that𝐴
⊂ 𝐴 with 𝜇(𝐴

) > 2𝑘𝜀𝜇(𝐴). Then
there exist vertices 𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑠
∈ 𝐴

 such that

𝜇 (∩
1≤𝑖≤𝑠

𝑁
𝐹
(𝑢

𝑖
, 𝐵

𝑗
)) ≥ 𝛿

𝑠
𝜇 (𝐵

𝑗
) (50)

for every 1 ≤ 𝑗 ≤ 𝑘.

Proof. We find the 𝑢
𝑖
vertices one by one. For 𝑢

1
we have

that the weight of vertices of 𝐴 with weighted degree at most
𝛿𝜇(𝐵

1
) is at most 𝜀𝜇(𝐴) using Lemma 9. Discard these low-

degree vertices from 𝐴
; then use the regularity condition

again, this time for𝐵
2
.We find that the weight of vertices hav-

ing small degree into 𝐵
1
or 𝐵

2
is at most 2𝜀𝜇(𝐴). Iterating this

procedure we get that the weight of vertices that do not have
large degree into at least one 𝐵

𝑖
set is at most 𝑘𝜀𝜇(𝐴) < 𝜇(𝐴

).
Pick any of the large degree vertices from𝐴; this is our choice
for 𝑢

1
.

Next we repeat the process for finding 𝑢
2
, with the differ-

ence that we look for a vertex that has large degree into the
sets 𝑁

𝐹
(𝑢

1
, 𝐵

𝑗
) for every 𝑗. Since 𝜇(𝑁

𝐹
(𝑢

1
, 𝐵

𝑗
)) ≥ 𝛿𝜇(𝐵

𝑗
) ≫

𝜀𝜇(𝐵𝑗), the same procedure will work. Applying Lemma 9 we
canfindmany vertices in𝐴

−𝑢
1
such that theweighted degree

of all of them into 𝐵
𝑗
is at least 𝛿𝜇(𝑁

𝐹
(𝑢

1
, 𝐵

𝑗
)) ≥ 𝛿

2
𝜇(𝐵

𝑗
) for

every 𝑗. Pick any of these; this vertex is 𝑢
2
.

When it comes to finding 𝑢
𝑖
we will work with the sets

𝐴

− {𝑢

1
, . . . , 𝑢

𝑖−1
} and ∩

𝑡≤𝑖−1
𝑁

𝐹
(𝑢

𝑡
, 𝐵

𝑗
) for 1 ≤ 𝑗 ≤ 𝑘. Using

induction it is easy to show that

𝜇 (∩𝑡≤𝑖−1𝑁𝐹 (𝑢𝑡, 𝐵𝑗)) ≥ 𝛿
𝑖−1
𝜇 (𝐵𝑗) (51)

for every 𝑗. Since 𝛿𝑠 ≫ 𝜀, we can iterate this procedure until
we find all the vertices 𝑢

1
, . . . , 𝑢

𝑠
.

Assume now that there are 𝑞 clusters 𝑊1,𝑊2, . . . ,𝑊𝑞 ⊂

𝑉(𝐹) such that 𝜇(𝑊𝑖) = 𝑚 + 𝑜(𝑚) for all 𝑖 (here 𝑚 ≫ 𝜀𝑛)
and all the (𝑊𝑖,𝑊𝑗) pairs are weighted 𝜀-regular relative to
a natural weighting of 𝐾𝑛 with density at least 𝛾. That is, we
have a super-clique 𝐶𝑙𝑞 on 𝑞 clusters.

Next we construct the graph 𝐾𝑠

𝑞
, a blown-up clique, as

follows. First, we have 𝑞 disjoint 𝑠-element set of vertices;
this is the vertex set of 𝐾𝑠

𝑞
. Then we connect any two vertices

if they belong to different vertex sets. Before we state an
embedding result, we need a simple lemma; the proof is left
for the reader.

Lemma 11. Let (𝐴, 𝐵) be aweighted 𝜀-regular pair with density
𝑑, and for some 𝛼 let 𝐴

⊂ 𝐴 with 𝜇(𝐴
) ≥ 𝛼𝜇(𝐴) and 𝐵

⊂ 𝐵

with 𝜇(𝐵
) ≥ 𝛼𝜇(𝐵).Then (𝐴

, 𝐵

) is a weighted 𝜀-regular pair

with 𝜀 = max{𝜀/𝛼, 2𝜀} and density 𝑑
≥ 𝑑 − 𝜀.

We have the following embedding lemma.

Lemma 12. Let 𝛿 = 𝛾 − 2𝜀. If 𝛿𝑞𝑠 ≫ 𝜀 then 𝐾𝑠

𝑞
⊂ 𝐶𝑙𝑞.

Proof. First, apply Lemma 10 with 𝐴 = 𝑊
1
and 𝐵

𝑗
= 𝑊

𝑗+1
for

1 ≤ 𝑗 ≤ 𝑞 − 1. We find the vertices 𝑢1

1
, 𝑢

1

2
, . . . , 𝑢

1

𝑠
∈ 𝑊

1
such

that

𝜇 (∩
1≤𝑖≤𝑠

𝑁
𝐹
(𝑢

1

𝑖
,𝑊

𝑗
)) ≥ 𝛿

𝑠
𝜇 (𝑊

𝑗
) . (52)

Let𝑊2

𝑗
= ∩

𝑖≥1
𝑁

𝐹
(𝑢

1

𝑖
,𝑊

𝑗
); then 𝜇(𝑊2

𝑗
) ≥ 𝛿

𝑠
𝜇(𝑊

𝑗
) ≫ 𝜀𝜇(𝑊

𝑗
)

for every 𝑗 ≥ 2.
Next let 𝐴 = 𝑊2

2
and 𝐵𝑗 = 𝑊

2

𝑗+2
for 1 ≤ 𝑗 ≤ 𝑞 − 2. Using

Lemma 11 we have that the new (𝐴, 𝐵
𝑗
) pairs are all weighted

𝜀/𝛿
𝑠-regular with density at least 𝛾 − 𝜀. Hence, we can apply

Lemma 10 again and find 𝑢2

1
, 𝑢

2

2
, . . . , 𝑢

2

𝑠
∈ 𝑊

2

2
such that

𝜇 (∩
1≤𝑖≤𝑠𝑁𝐹 (𝑢

2

𝑖
,𝑊

2

𝑗
)) ≥ 𝛿

𝑠
𝜇 (𝑊

2

𝑗
) ≥ 𝛿

2𝑠
𝜇 (𝑊𝑗) ≫ 𝜀𝜇 (𝑊𝑗)

(53)

for 3 ≤ 𝑗 ≤ 𝑞.
Continuing this process, in the 𝑘th step we will work

with the 𝑊𝑘

𝑗
sets when applying Lemma 10. These sets are

defined recursively as follows:𝑊𝑘

𝑗
= ∩𝑖≥1𝑁𝐹(𝑢

𝑘−1

𝑖
,𝑊

𝑘−1

𝑗
) and

𝜇(𝑊
𝑘

𝑗
) ≥ 𝛿

(𝑘−1)𝑠
𝜇(𝑊

𝑗
) for every 𝑘 + 1 ≤ 𝑗 ≤ 𝑞. Moreover, the

(𝑊
𝑘

𝑘
,𝑊

𝑘

𝑗
) pairs will be 𝜀/𝛿(𝑘−1)𝑠-regular with density at least

𝛾 − 𝜀 for every 𝑘 + 1 ≤ 𝑗 ≤ 𝑞.
In the last step, when 𝑘 = 𝑞 − 1, there are only two sub-

clusters left, 𝑊𝑞−1

𝑞−1
and 𝑊𝑞−1

𝑞
. The pair (𝑊𝑞−1

𝑞−1
,𝑊

𝑞−1

𝑞
) will be

weighted 𝜀/𝛿(𝑞−2)𝑠-regular with density at least 𝛾− 𝜀. It is easy
to find a 𝐾

𝑠,𝑠
(a complete bipartite graph) in this regular pair

using Lemma 10. Clearly, we constructed the desired 𝐾𝑠

𝑞

graph.

4.4. Illustration: A Weighted Version of the Erdős-Stone Theo-
rem. Let 𝑡

𝑞−1
(𝑛) be the number of edges in the Turán graph

𝑇
𝑛,𝑞−1

on 𝑛 vertices. That is, 𝑇
𝑛,𝑞−1

has the largest number of
edges such that it does not contain a𝐾

𝑞
. It is well known that

lim
𝑛→∞

𝑡
𝑞−1 (𝑛)

(
𝑛

2 )
=
𝑞 − 2

𝑞 − 1
. (54)

The Erdős-Stone theorem states that if one has at least
𝑡𝑞−1(𝑛)+𝛾𝑛

2 edges (where 𝛾 > 0 is a constant) in a graph 𝐹 on
𝑛 vertices then 𝐹 has a 𝐾𝑠

𝑞
for any given natural number 𝑠. In

this section we show a weighted version. We take a natural
weighting of 𝐾

𝑛
and prove that if the total edge weight in

𝐹 ⊂ 𝐾
𝑛
is large then𝐹 has a large blown-up clique.We remark

that there are other results in the literature on the extremal
theory of weighted graphs; see, for example, [13] by Bondy
andTuza and [14] by Füredi andKündgen, although the setup
of these papers is different from ours. Another version of the
Erdős-Stone theorem for sparse graphs can be found in [15].

Theorem 13. For all integers 𝑞 ≥ 2 and 𝑠 ≥ 1 and every 𝛾 > 0
there exists an integer 𝑛0 such that the following holds. Take
the natural weighting of 𝐾𝑛 with vertex weight function 𝜇 and
assume that 𝜇(𝑉) = 𝑛 ≥ 𝑛0. Let 𝐹 ⊂ 𝐾𝑛

. If the total edge weight
of 𝐹 is at least 𝑡

𝑞−1
(𝑛) + 𝛾𝑛

2 then 𝐹 contains𝐾𝑠

𝑞
as a subgraph.
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Proof. Webeginwith applying theweighted regularity lemma
with parameters 𝜀 ≪ min{(𝛾 − 𝜀)𝑞𝑠, 1/𝑠, 1/𝑞} and 𝐿 ≫ 1/𝜀.
We get an 𝜀-regular partition with clusters 𝑊

0
,𝑊

1
, . . . ,𝑊

ℓ
.

Let us construct the reduced graph 𝐹
𝑟
as follows. The vertices

of 𝐹
𝑟
are identified by the ℓ nonexceptional clusters. We have

an edge between two vertices of 𝐹
𝑟
if the corresponding two

clusters give an 𝜀-regular pair with density at least 𝛾. Hence,
when we construct 𝐹𝑟 we lose edges of 𝐹 as follows: (1)
edges that are incident with some vertex of𝑊0, (2) edges that
connect two vertices that belong to the same nonexceptional
cluster, (3) edges that are in some irregular pair, and (4) edges
that are in regular pairs with small density.

Theoutline of the proof is as follows.Wewill show that the
loss in edge weight is small; hence, 𝐹𝑟 will have many edges.
By Turán’s Theorem we will have a 𝑞-clique in 𝐹

𝑟
. Then we

apply Lemma 12 and conclude the existence of a 𝐾𝑠

𝑞
in 𝐹.

(1) The total weight of edges that are incident with some
vertex of𝑊

0
can be estimated as follows:

𝜌
𝐹
(𝑊

0
, 𝑉) ≤ 𝜌 (𝑊

0
, 𝑉) = ∑

𝑤∈𝑊0

∑

V∈𝑉

𝜌 (𝑤, V)

≤ 𝜇 (𝑊
0) 𝜇 (𝑉) ≤ 𝜀𝑛

2
.

(55)

(2) The nonexceptional clusters have weight (𝑛 − 𝜀𝑛)(1 +
𝑜(1))/ℓ. The total weight of edges inside nonexcep-
tional clusters is at most

1

2
∑

1≤𝑖≤ℓ

∑

𝑢∈𝑊𝑖

∑

V∈𝑊𝑖−𝑢

𝜌 (𝑢, V)

=
1

2
∑

1≤𝑖≤ℓ

∑

𝑢∈𝑊𝑖

∑

V∈𝑊𝑖−𝑢

𝜇 (𝑢) 𝜇 (V)

≤
1

2
∑

1≤𝑖≤ℓ

𝜇(𝑊
𝑖
)
2
=
𝑛
2

ℓ
(1 + 𝑜 (1)) .

(56)

Since ℓ ≥ 𝐿 ≫ 1/𝜀, we have that the total edge weight inside
nonexceptional clusters is less than 𝜀𝑛2.

(3) Assume that (𝑊
𝑖
,𝑊

𝑗
) is an irregular pair. Then

𝜌
𝐹
(𝑊

𝑖
,𝑊

𝑗
) ≤ ∑

𝑢∈𝑊𝑖

∑

V∈𝑊𝑗

𝜌 (𝑢, V) = ∑

𝑢∈𝑊𝑖

∑

V∈𝑊𝑗

𝜇 (𝑢) 𝜇 (V)

= 𝜇 (𝑊𝑖) 𝜇 (𝑊𝑗) =
𝑛
2

ℓ2
(1 + 𝑜 (1)) .

(57)

Since the number of irregular pairs is at most 𝜀ℓ2, we get that
the total edge weight in irregular pairs is at most

𝜀ℓ
2 𝑛

2

ℓ2
(1 + 𝑜 (1)) < 2𝜀𝑛

2
. (58)

(4) If the density of an 𝜀-regular pair (𝑊𝑖,𝑊𝑗) is small
then we have the following inequality:

𝜌
𝐹
(𝑊

𝑖
,𝑊

𝑗
) ≤ 𝜇 (𝑊

𝑖
) 𝜇 (𝑊

𝑗
) 𝛾 =

𝑛
2

ℓ2
(1 + 𝑜 (1)) 𝛾. (59)

Since there can be at most ( ℓ

2
) pairs, the total edge weight in

low density pairs is less than 2𝛾𝑛2/3.
Putting together, we get that the total weight of edges that

we lose when applying the weighted regularity lemma is at
most (4𝜀 + 2𝛾/3)𝑛2 < 3𝛾𝑛2/4. Hence, the total edge weight in
the high-density regular pairs of 𝐹

𝑟 is at least 𝑡𝑞−1(𝑛) + 𝛾𝑛
2
/4.

The total weight of edges in a regular pair is (1 + 𝑜(1))𝑛2/ℓ2.
Assume that 𝑒(𝐹

𝑟
) ≤ ((𝑞−2)/(𝑞−1))(ℓ

2
/2); then the total edge

weight would be atmost ((𝑞−2)/(𝑞−1))(𝑛2/2)(1+𝑜(1)). Since
we have a larger edge weight in what is left after applying the
regularity lemma, using Turán’s theorem we get that 𝐹𝑟

con-
tains a𝐾𝑞. Every pair in this clique is a high-density 𝜀-regular
pair; hence, we can apply Lemma 12 and find the blown-up
clique.

Remarks. One can arrive at the same conclusion perturbing
the edge weights a little. Let𝐾 > 1 be a fixed constant. Multi-
ply the weight of the edge 𝑒 by any number 𝑐

𝑒
∈ [1/𝐾,𝐾].

The resulting weighted graph will be quasirandom, and
it is an easy exercise to show that one still has Theorem 13.

One can also show the weighted version of the Erdős-
Stone-Simonovits theorem, a stability version of the above.
Let H be a family of forbidden subgraphs having chromatic
number 𝑞. Assume that the total edge weight in 𝐹 is close to
𝑡𝑞−1(𝑛), but 𝐹 does not contain some graph𝐻 ∈ H. Then 𝐹𝑟

the reduced graph cannot have a clique on 𝑞 vertices, but the
number of edges in it will be close to 𝑡

𝑞−1
(ℓ).This implies that

𝐹
𝑟
is close to a Turán graph𝑇

ℓ,𝑞−1
and that in turn implies that

the vertex set of 𝐹 can be partitioned into 𝑞−1 disjoint vertex
classes in the following way: the vertex classes all have weight
≈ 𝑛/(𝑞 − 1), the total weight of edges inside vertex classes is
very small, and the weighted density of edges for every pair of
disjoint classes is close to one.

4.5. Emphasized Sets. One cannot avoid having an excep-
tional cluster 𝑊

0
when applying the regularity lemma. That

is, a linear number of vertices could be discarded in certain
cases; a well-known example is the so-called half-graph. In
general we do not have control on what is put into the excep-
tional cluster. However, using vertex weights one can at least
partly control the set of discarded vertices. In what follows we
show how to use the natural weighting of𝐾

𝑛
in order to have

that the majority of some given emphasized set is put into
nonexceptional clusters after applying theweighted regularity
lemma, even if the set is of size 𝑜(𝑛). In fact we will do it for
several emphasized sets at the same time.Notice that applying
the usual regularity concept (even that of [6]) one may
discard all vertices with small degrees.

Assume that 𝑘 is a fixed constant and𝑉 is partitioned into
the disjoint sets 𝑆1, 𝑆2, . . . , 𝑆𝑘, and let 𝑛 = |𝑉|. Further assume
that 𝑠𝑖 → ∞ as 𝑛 → ∞. Let 𝑠𝑖 = |𝑆𝑖| for every 𝑖. Define the
following weighting of the vertices of 𝑉: for V ∈ 𝑆𝑖 we let

𝜇 (V) = 𝜇𝑖
=
𝑛

𝑘𝑠𝑖

. (60)

Observe that

∑

V∈𝑆𝑖

𝜇 (V) =
𝑛

𝑘
; (61)
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thus, the total weight of the vertices is 𝑛. Let V ∈ 𝑆
𝑖
and𝑤 ∈ 𝑆

𝑗
.

The weight of the pair (V, 𝑤) is

𝜌 (V, 𝑤) = 𝜌𝑖𝑗 = 𝜇 (V) 𝜇 (𝑤) =
𝑛
2

𝑘2𝑠
𝑖
𝑠
𝑗

. (62)

We showed above that 𝐾
𝑛
equipped with such vertex and

edge weights is a quasirandom graph. We call this particular
weighting the natural weighting of 𝐾

𝑛
with emphasized sets

𝑆
1
, 𝑆

2
, . . . , 𝑆

𝑘
.

We can applyTheorem 6 for some𝐹 relative to the natural
weighting of 𝐾𝑛. Choose 𝜀 so that 𝑘 ≪ 1/𝜀. Since 𝜇(𝑊0) ≤

𝜀𝑛 ≪ 𝑛/𝑘, we get that for all 𝑖 the majority of the vertices of
𝑆𝑖 are in nonexceptional clusters.

We remark that it is possible to define vertex weights not
only for 𝐺 = 𝐾𝑛 but also for much sparser quasirandom
graphs when emphasizing subsets of 𝑉. For example, assume
that 𝐺 ∈ 𝐺(𝑛, 𝑝𝑖𝑗), and 𝑉 is partitioned into the disjoint sets
𝑆
1
, 𝑆

2
, . . . , 𝑆

𝑘
. Then one will have the vertex weights of the

above example, but the edge weights will be different:

𝜌 (V
𝑖
, V

𝑗
) = 𝜇 (V

𝑖
) 𝜇 (V

𝑗
)
1

𝑝𝑖𝑗

=
𝑛
2

𝑘2𝑠𝑞𝑠𝑡𝑝𝑖𝑗

(63)

whenever V
𝑖
∈ 𝑆

𝑞
and V

𝑗
∈ 𝑆

𝑡
. We leave the details for the

reader.
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[2] E. Szemerédi, “Regular partitions of graphs,” in Problèmes
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