Supplementary Information

Structural insight into the photoinduced $E \rightarrow Z$ isomerisation of cinnamate embedded in ZnAl and MgAl layered double hydroxides

Zita Timár^{a,b}, Gábor Varga^{a,b}, Márton Szabados^{a,b}, Krisztián Csankó^c, Tünde Alapi^d, Claude Forano^e, Vanessa Prevot^e, Pál Sipos^{b,d}, István Pálinkó^{a,b*}

^aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary

^bMaterials and Solution Structure Research Group and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged, H-6720, Hungary

^dDepartment of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary ^eUniversité Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France

^cBiological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary

To whom correspondence should be addressed. *E-mail:* <u>palinko@chem.u-szeged.hu</u> (I. Pálinkó)

Table S1

The determined cell parameters and interlayer distances of the pristine LDH and the composites as well as the differences in asymmetric and symmetric vibrations of the carboxylate groups of the interlayered cinnamate isomers.

I DH composites	a (Å)	c (Å)	Interlayer	$\Delta(v_{as}(COO^{-})-$
LDITcomposites			distance (Å)	$v_{s}(COO^{-})) (cm^{-1})$
Mg ₂ Al-NO ₃	3.0	31.5	8.7	
Mg ₂ Al-E-Cin	3.0	58.1	17.7	143
Mg ₂ Al-Z-Cin	3.0	68.7	21.3	187
Mg ₂ Al-E-Cin (slurry, after	3.0	50 0	19.1	160
_irradiation)	5.0	38.8	10.1	100
Zn ₂ Al-NO ₃	3.06	26.58	8.86	
Zn ₂ Al- <i>E</i> -Cin	3.05	53.14	17.71	143
Zn ₂ Al-Z-Cin	3.04	62.63	20.88	162
Zn ₂ Al- <i>E</i> -Cin (slurry, after irradiation)	3.0	57.9	17.7	160

Table S2

FT-IR data of Na-E-Cin, Na-Z-Cin, Mg₂Al-E-Cin, Mg₂Al-Z-Cin, Mg₂Al-NO₃ LDHs; assignments are according to ref. [39].

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na-E-Cin	Mg ₂ Al-E-Cin	Na-Z-Cin	Mg ₂ Al-Z-Cin	Mg ₂ Al-NO ₃	Assignment by ref. [39]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			608		623	δ(OMg,AlO)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		635	623	631	706	δ(OMg,AlO)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	690	686	690	683		α (CCC)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	721	717	710			$\Phi(CCC)+\gamma(CH)$ ar
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	773	777	758	764		γ(CH)ar+γ(HCCO)+γ(OC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						OC)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			799	791	795	v(Mg,AlO6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					830	δ(Mg,AlOH)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	849	850	856	856		$\beta s(COO-)+\beta(CH)cinn$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	878	880		882	883	γ(CH)ar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			932	941		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	972	978		968		γ(CCH)cinn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1005	1007		α (CCC)+ ν (CCC)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1032	1032		β (CH)ar+ ν (CC)ar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1074	1070	1074	1076		β (CH)ar+ ν (CC)ar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1182	1184		β (CH)ar+ ν (CC)ar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1211	1211		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1244	1248				β(CH)cinn
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1294	1290			1356	β (CH)cinn+ ν (CC)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1357	1363		vs(COO ⁻)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1386	1388	1386	β (CH)ar+ β (CH)cinn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1413	1394				vs(COO ⁻)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1450		1450			β (CH)+ ν (CC)ar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1498	1499	1491	1493		β (CH)+ ν (CC)ar
1576 1595 ν(CC)ar+ β(CH)+ α(CCC) 1639 1637 1647 1637 1643 ν(C-C)cinn	1546	1537	1562	1550		vas(COO ⁻)
1639 1637 1647 1637 1643 $v(C-C)cinn$		1576	1595			$v(CC)ar + \beta(CH) + \alpha(CCC)$
	1639	1637	1647	1637	1643	v(C=C)cinn

Infrared vibration band (cm⁻¹)

Fig. S1. Molecular structures of E-Cin and Z-Cin.

Fig. S2. IR spectra of the A: pristine Zn₂Al-LDH, B: sodium E-cinnamate, C: sodium Z-cinnamate, D: Zn₂Al-E-Cin LDH, E: Zn₂Al-Z-Cin LDH.

Fig. S3 (A) X-ray diffractograms and (B) IR spectra of a) Zn_2Al -E-Cin LDH, b) Zn_2Al -Z-Cin LDH, c) Zn_2Al -E-Cin LDH (solid state) irradiated at 254 nm for 2 h, d) Zn_2Al -E-Cin LDH (slurry phase – suspended in methanol) irradiated at 254 nm for 2 h.

Fig. S4. UV-Vis spectra of the supernatants of the mixture of sodium E-cinnamate and Mg₂Al LDH, A: before irradiation, after various irradiation times, B: 1 h, C: 2 h, D: 3 h, E: 4 h and F: 24 h.

Fig. S5. UV-Vis spectra of the supernatants of the mixture of sodium *E*-cinnamate and Zn_2Al LDH A: before the irradiation, after various irradiation times B: 1 h, C: 2 h, D: 3 h, E: 4 h and F: 24 h.

Fig. S6. UV-Vis spectra of the supernatants of ZnAl-E-Cin LDH A: before irradiation, after irradiation for B: 1 h, C: 2 h, D: 3 h and E: 4 h.