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A B S T R A C T

Persicaria maculosa (Polygonaceae) has been used as edible and as medicinal plant since ancient times. As a result
of multistep chromatographic purifications, chalcones [2′-hydroxy-3′,4′,6′-trimethoxychalcone (1), pashanone
(2), pinostrobin chalcone (3)], flavanones [6-hydroxy-5,7-dimethoxyflavanone (4), pinostrobin (5), onysilin (6),
5-hydroxy-7,8-dimethoxyflavanone (7)], flavonol [3-O-methylgalangin (8)], stilbene [persilben (9)], dia-
rylheptanoids [1,7-diphenylhept-4-en-3-one (10), dihydroyashabushiketol (12), yashabushidiol B (13)] and 3-
oxo-α-ionol-glucoside (11) were isolated from P. maculosa. The present paper reports for the first time the
occurrence of diarylheptanoid-type constituents in the family Polygonaceae. Cytotoxicity of 1–5, 7 and 9–11 on
4 T1 mouse triple negative breast cancer cells was assayed by MTT test. None of the tested compounds reduced
the cell viability to less than 80% of the control. On non-tumorigenic D3 human brain endothelial cells the
decrease of cell viability was observed in case of 1 and 2. Further impedance measurements on 4 T1 and D3 cells
a concentration-dependent decrease in the cell index of both cell types was demonstrated for 1, while 2 proved to
be toxic only on endothelial cells.

1. Introduction

The genus Persicaria (smartweed) (family Polygonaceae) includes
about 100 species nearly worldwide [1]. The plants are perennials or
annuals [2–3]. Persicaria maculosa Gray (syn. Polygonum persicaria L.,
lady's thumb) is an annual plant, native to Europe and widely dis-
tributed as a weed throughout temperate and tropical North and South
America, Asia, North Africa and Australia [4].The Cherokee, Chippewa,
and Iroquois native Americans prepared simple or complex decoctions
of P. maculosa, which they used as dermatological, urinary, gastro-
intestinal, and veterinary aids, for cardiac diseases, and as an analgesic
[5]. The plant has also been used to treat e.g. diarrhoea and infectious
diseases, and the leaves and young shoots can be eaten in salads [6].
Previous phytochemical studies revealed the presence of stilbenes, fla-
vonoids, phenolic acids, sesquiterpenes and diterpenes in this species
[2,7–8].

In vitro pharmacological studies demonstrated the antibacterial,
antifungal and insecticidal activities of the plant [9,10], while in in vivo

studies the hydroalcoholic extract of the herb exhibited anti-in-
flammatory effect and decreased locomotion after intraperitoneal ad-
ministration to rats; therefore, it possessed spasmolytic activity [11]. As
concerns the chemical constituents responsible for the observed activ-
ities, persilben, a unique naturally occurring E-stilbene attracted great
interest because of its antimicrobial, antifungal and antioxidant activ-
ities and its good penetration through biological membranes in con-
sequence of its high lipophilicity [12,13]. Moreover, flavonoids of the
plant have anti-inflammatory and antioxidant activities. Different ex-
tracts prepared by our group from P. maculosa were investigated on G
protein-activated inwardly rectifying K+ channel (GIRK) using patch
clamp method. The CHCl3 extract of the plant exhibited high GIRK
channel inhibitory activity at 0.1 mg/mL concentration [9].

In continuation of our work on P. maculosa, thirteen compounds
(1−13), among them chalcones, flavanones, flavonol, diarylhepta-
noids, a stilbene derivative and an α-ionol-glycoside were identified.
Cytotoxic activity of the isolated compounds 1–5, 7 and 9–11 was
evaluated against 4T1 and D3 cell lines in vitro.
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2. Experimental section

2.1. General experimental procedures

Vacuum liquid chromatography (VLC) was carried out on silica gel
G (15 μm, Merck); preparative thin-layer chromatography (preparative
TLC) was performed on silica gel 60 F254 plates (Merck). Medium-
pressure liquid chromatography (MPLC) was performed by a Biotage
SP1™ Purification System using a KP-C18HS 40 +M column. HPLC was
performed on a LiChrospher RP-18 (5 μm, 250 × 4 mm, Merck) column
using mixture of acetonitrile–H2O as mobile phase on a Waters 600
instrument. NMR spectra were recorded on a Bruker Avance DRX 500
spectrometer at 500 MHz (1H) and 125 MHz (13C). The peaks of the
residual solvents were taken as reference. Two-dimensional data were
acquired and processed with standard Bruker software. In the 1He1H
COSY, HSQC and HMBC experiments, gradient-enhanced versions were
used. ESI and APCI mass spectra were recorded on an API 2000 triple
quadrupole mass spectrometer equipped with an electrospray and APCI
interfaces.

2.2. Plant material

Persicaria maculosa Gray was collected in the flowering period in
Homoródalmás (Hungary) in July 2012. Botanical identification was
performed by G. J. (Institute of Water Management and Irrigation,
Szent István University, H-5540 Szarvas, Hungary). A voucher spe-
cimen (No. 811) has been deposited at the Herbarium of the
Department of Pharmacognosy, University of Szeged, Szeged, Hungary.

2.3. Extraction and isolation

The air-dried and ground whole plants of P. maculosa (3.15 kg) were
extracted with MeOH (20 L) at room temperature. The crude extract
was concentrated in vacuo and subjected to solvent–solvent partition
first with 3 × 500 mL n-hexane, then with 3 × 500 mL of CHCl3. After
evaporation, the CHCl3 phase (36.8 g) was fractionated by MPLC on
reversed-phase silica gel, using a gradient system of MeOH–H2O (from
3:7 to 8:2). The fractions were combined into twelve subfractions
(I–XII) according to the TLC monitoring. Subfraction IV (229.4 mg) was
separated by VLC on silica gel, using a gradient system of
CH2Cl2–acetone (from 99:1 to 8:2) to yield 13 main fractions (IV/1–13).
Fraction IV/5 was further purified by preparative TLC with
CH2Cl2–MeOH (4:1) to yield compound 11 (3.2 mg). Subfraction IX
(282.8 mg) was chromatographed by VLC on silica gel with the gradient
system of cyclohexane–CH2Cl2–acetone (from 5:5:0 to 0:95:5). After
TLC monitoring, 12 main fractions (IX/1–12) were obtained. Fraction
IX/1 was subjected to preparative TLC on silica gel using
cyclohexane–CH2Cl2–acetone (5:5:1) as developing system, to yield
compounds 10 (2.3 mg) and 12 (1.8 mg). Fraction IX/3 was also pur-
ified by prep. TLC with cyclohexane–CH2Cl2–MeOH 40:20:1, and
compounds 9 (2.8 mg) and 7 (4.5 mg) were afforded. Fraction IX/4
(30.3 mg) was chromatographed by Sephadex LH-20 gel using MeOH as
eluent, and thereafter by prep. TLC with cyclohexane–CH2Cl2–MeOH
20:30:1 to obtain compounds 6 (5.2 mg) and 13 (4.0 mg). Fraction XI
(229.4 mg) was separated by normal phase VLC, which was eluted with
the gradient system of CH2Cl2–MeOH (from 99:1 to 9:1) to yield 13
main fractions (XI/1–13). Compound 5 (4.8 mg) was obtained from
fraction XI/2 (8 mg) by RP-HPLC, using acetonitrile–H2O (9:1) (iso-
cratic elution, flow: 0.5 mL/min). Fraction XI/5 (76.5 mg) was purified
by Sephadex LH-20 gel chromatography, using MeOH as eluent to yield
6 subfractions (XI/5/1–6). From subfraction XI/5/2 compounds 2
(4.5 mg) and 8 (1.1 mg) were separated by prep. TLC, using tolue-
ne–ethyl acetate–MeOH (5:4:1). Compound 1 (7.0 mg) was obtained
from subfraction XI/5/3 by prep. TLC using CH2Cl2–acetone (19:1).
Compound 3 (3.1 mg) was crystallized from fraction XI/7, and 4
(2.2 mg) from fraction XI/10.

2.3.1. Characterization of pinostrobin chalcone (3)
Orange crystals, m.p. 149–150 °C; 1H NMR (500 MHz, CDCl3) δ ppm

14.1 (1H, s, 2’OH), 7.86 (1H, d, J = 15.6 Hz, H-β), 7.76 (1H, d,
J = 15.6 Hz, H-α), 7.59 (2H, m, H-2, H-6), 7.38 (3H, m, H-3–H-5), 6.01
and 5.94 (2 × 1H, 2 × d, J = 1.0 Hz, H-3′, H-5′) 3.91 (3H, s, OCH3);
ESI-MS positive m/z 293 [M + Na]+, 271 [M + H]+, 167 [C8H7O4]+.

2.3.2. Characterization of 6-hydroxy-5,7-dimethoxyflavanone (4)
White crystals, m.p. 148–149 °C; 1H NMR (500 MHz, CD3OD) δ ppm

7.53 (2H, d, J = 7.3 Hz, H-2′, H-6′), 7.42 (2H, t, J = 7.2 Hz, H-3′, H-5′),
7.37 (1H, t, J = 7.3 Hz, H-4′), 6.17 (1H, s, H-8), 5.49 (1H, dd, J = 12.7,
2.9, H-2), 3.80 (3H, s, 5-OCH3), 3.76 (3H, s, 7-OCH3), 3.01 (1H, dd,
J = 12.7, 16.7 Hz, H-3a), 2.76 (1H, dd, J = 16.7, 3.0, H-3b); 13C NMR
(125 MHz, CD3OD): δ ppm 192.0 (C-4), 159.7 (C-5), 159.4 (C-6), 140.5
(C-1′), 131.1 (C-7), 129.7 (C-3′, C-5′), 129.6 (C-4′), 127.2 (C-2′, C-6′),
106.3 (C-10), 94.2 (C-8), 80.6 (C-2), 61.4 (7-OCH3), 56.2 (5-OCH3),
46.4 (C-3).

2.3.3. Characterization of pinostrobin (5)
Yellow solid; 1H NMR (500 MHz, CD3OD) δ ppm 12.0 (1H, s, 5-OH),

7.50 (2H, d, J = 7.4 Hz, H-2′, H-6′), 7.42 (2H, t, J = 7.2 Hz, H-3′, H-5′),
7.37 (1H, t, J = 7.1 Hz, H-4′), 6.10 (1H, d, J = 1.8 Hz, H-8), 6.06 ((1H,
d, J = 1.8 Hz, H-6), 5.59 (1H, dd, J = 12.5, 2.6 Hz, H-2), 3.82 (3H, s,
OCH3), 3.13 (1H, dd, J = 12.8, 17.1 Hz, H-3a), 2.82 (1H, dd, J = 17.1,
2.9 Hz, H-3b); APCI-MS m/z 271 [M+H]+, 167 [M–C8H8]+, 131, 103.

2.3.4. 3-Methylgalangin (8)
Yellow powder; 1H NMR (500 MHz, CD3OD) δ ppm 8.06 (2H, m, H-

2, H-6′), 7.55 (3H, m, H-3’–H-5′), 6.43 (1H, d, J = 2.0 Hz, H-8), 6.23
(1H, d, J = 2.0 Hz, H-6), 3.80 (3H, s, OCH3); ESI-MS positive m/z 285
[M + H]+, 270 [M + H-CH3]+.

2.3.5. Persilben (9)
Yellowish powder; 1H NMR (500 MHz, CDCl3) 13.9 (1H, s, COOH),

8.15 (1H, d, J = 15.6, Hα), 7.86 (1H, d, J = 15.6 Hz, Hβ), 7.65 (2H, m,
H-2, H-6), 7.40 (3H, m, H-3–H-5), 6.88 (1H, s, H-6), 6.10 (1H, s, H-4),
3.91, 3.86 (2 × 3H, 2 × s, 2 × OCH3).

2.4. Cell culture and toxicity tests

4T1 (mouse triple negative breast cancer cells) were cultured in
RPMI 1640 medium supplemented with 5% foetal bovine serum (FBS)
(both from Thermo Fischer Scientific, Waltham, MA, USA). D3
(hCMEC/D3 human cerebral microvascular endothelial cells) were kept
in rat tail collagen coated dishes in EBM-2 medium complemented with
2% FBS and EGM-2MV kit (all of them purchased from Lonza, Basel,
Switzerland).

For MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium
bromide) assay, cells were plated in 96-well plates (Corning, Corning,
NY, USA) in a density of 5000 4 T1 cells/well or 25,000 D3 cells/well.
After 24 h, half of the medium was replaced with serum-free medium,
containing the compounds in a final concentration of 10, 20 or
50 μmol/L. Control wells received solvent (DMSO) in max. 0.2% con-
centration. After 48 h, MTT reagent (Sigma-Aldrich, St. Louis, MO,
USA) was added to the cells in a final concentration of 2.5 mg/mL. After
incubation at 37 °C for one hour, acidified isopropanol solution was
added to each well. Absorbance was measured at 595 nm with a
FLUOstar OPTIMA microplate reader (BMG LABTECH, Offenburg,
Germany).

For impedance measurements, cells were plated in 96-well E-plates
having micro-electrodes integrated on the bottom (ACEA Biosciences,
San Diego, CA, USA), and allowed to attach onto the electrode surface.
After 24 h, cells were treated with the test compounds as described
above. Electrical impedance was recorded in real-time using an
xCELLigence® Real-Time Cell Analysis (RTCA) instrument (ACEA
Biosciences). Cell impedance (which depends on cell number, degree of
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adhesion, spreading and viability), expressed in arbitrary units (cell
index) was automatically calculated by the software of the instrument.

3. Results and discussion

3.1. Isolation and structure elucidation of the compounds

MeOH extract was prepared from dried whole plant of P. maculosa
and subjected to solvent-solvent partition, yielding n-hexane, CHCl3
and remaining aqueous extracts. The CHCl3 extract was fractionated by
medium pressure liquid chromatography on reversed phase silica gel
resulting twelve fractions. Further purification of the fractions with
combination of different chromatographic techniques (VLC, prep TLC,
Sephadex LH-20 gel chromatography and HPLC) resulted in the isola-
tion of thirteen compounds (1–13).

Eight compounds (1–8) are belonging to the group of flavonoids,
interestingly all of them have an unsubstituted ring B. Three chalcones
were identified as 2′-hydroxy-3′,4′,6′-trimethoxychalcone (1), 2′,6′-di-
hydroxy-3′,4′-dimethoxychalcone (pashanone = polygochalcone, 2),

and 2′,6′-dihydroxy-4′-methoxychalcone (pinostrobin chalcone, 3) by
comparison with reference data [14,15]. Pinostrobin (5) [16,17], and
three isomeric rare flavanones, 6-hydroxy-5,7-dimethoxyflavanone (4)
[18], 5-hydroxy-6,7-dimethoxyflavanone (onysilin, 6) [19], and 5-hy-
droxy-7,8-dimethoxyflavanone (7) [22] were identified by analysis of
their 1D and 2D NMR spectra and comparison with the data published
in the literature [22]. In previous studies, onysilin (6) and 5-hydroxy-
7,8-dimethoxyflavanone (7) were differentiated on the basis of minor
difference in 13C NMR data, UV spectra with shift reagents, and melting
points [22,20]; however, in our HMBC investigations clear arguments
were found for structural assignment of 6 and 7 (Fig. 1).

In the present experiment, the only isolated flavonol is 3-O-me-
thylgalangin (8) [21]. Compound 9 was identified as the known per-
silben [15], and compound 11 as (6R,9S)-3-oxo-α-ionol-glucoside
based on the NMR and optical rotation data [αD

28 + 43° (c 0.19,
MeOH)] [22]. Compound 10 revealed to be 1,7-diphenyl-4-en-3-hep-
tanone based on 1D and 2D NMR and MS data, which were in agree-
ment with published data [23].

Close analogues of 10, (5S)-1,7-diphenylhept-5-ol-3-one (=dihy-
droyashabushiketol) (12) [measured [α]D = +14 (c 0.1, CHCl3)] [24],
and (3S,5S)-1,7-diphenylhept-3,5-diol (=yashabushidiol B) (13)
[measured [α]D =−5 (c 0.1, CHCl3)] [25] were also identified from P.
maculosa. Our NMR measurements allowed previously unpublished 1H
and 13C NMR assignments for compounds 3, 4, 5, 8, and 9, these data
are listed in Materials and Methods section.

3.2. Chemotaxonomic significance

A variety of diarylheptanoids have been isolated previously from
plant families Aceraceae, Actinidiaceae, Betulaceae, Burseraceae,
Casuarinaceae, Juglandaceae, Leguminosae, Myricaceae, and
Zingiberaceae, but the present paper reports for the first time the oc-
currence of diarylheptanoid-type constituents in the family
Polygonaceae [26]. The isolation of compounds 10, 12, and 13 pro-
vided new chemotaxonomic information, the presence of diarylhepta-
noids might serve as a chemotaxonomic marker for Persicaria species.
1,7-Diphenylhept-4-en-3-one (10) was reported previously only as the
metabolite of Alpinia officinarum (Zingiberaceae) with potent PAF re-
ceptor binding inhibitory and inducible NO synthase protein and mRNA
expression suppressing activities [27,28]. Dihydroyashabushiketol
(12), and yashabushidiol B (13) were isolated formerly from Alpinia,
Acorus, Ammomum and Alnus species, with cytotoxic activity against
IMR-32 human neuroblastoma cells [29]. These compounds were pre-
viously obtained by chemical synthesis, too [30,31].

The present experiment afforded the first isolation of chalcones 1, 3
and flavanone 4 from the family Polygonaceae. 2’-Hydroxy-3′,4′,6′-tri-
methoxychalcone (1) was obtained formerly from Annonaceae,
Piperaceae and Rosaceae species [32], while pinostrobin chalcone (3)
from Alpinia species [18]. 6-Hydroxy-5,7-dimethoxyflavanone (4) was
isolated previously only from Piper hispidum [21]. Onysilin (6), 5-hy-
droxy-7,8-dimethoxyflavanone (7), 3-O-methylgalangin (8), 3-oxo-α-
ionol-glucoside (11) were isolated previously from different species of
family Polygonaceae [33].

Fig. 1. Diagnostic HMBC correlations (H→C) of compounds 6 and 7 between 5-
OH and C-5, C-6 and C-10 (chemical shifts shown in δ ppm).
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Flavonoids have generally been used as chemotaxonomic marker in
genus Polygonum. The most common feature of Polygonum and
Persicaria genus was hold the flavonoid spectrum with glycosylated
and/or methoxylated derivatives of kaempferol, quercetin, myricetin,
apigenin and luteolin, glycosylated at C-3 [34]. Interestingly in our
study, with except of 3-O-methylgalangin (8), chalcones and flavanones
were isolated, among them biogenetically related chalcone–flavanone
pairs, such as pinostrobin chalcone (3) and pinostrobin (5), and pa-
shanone (2) and 5-hydroxy-7,8-dimethoxyflavanone (7). This finding
serves as a chemotaxonomic marker; the common occurrence of chal-
cone–flavanone pairs is regarded as taxonomic characteristic only to
Polygonum and Persicaria genus in Polygonaceae family.

3.3. Evaluation of biological effects of compounds isolated from P.
maculosa

In order to test the possible toxic effects of the isolated compounds
on tumor cells, at first an MTT assay was performed on proliferating
mouse breast cancer cells. At 10 μM concentration, none of the tested
compounds (1–5, 7 and 9–11) reduced viability of 4 T1 cells to less than
80% of the control after 48 h of treatment (not shown). As a model of
non-tumorigenic cells, D3 human brain endothelial cells were used.
Confluent D3 monolayers were treated with the test compounds at
concentrations of 10 and 20 μM, and real-time impedance measure-
ments were performed, which revealed that only 2′-hydroxy-3′,4′,6′-
trimethoxy chalcone (1) and pashanone (2) decreased cell index
(Fig. 2). MTT assay data were in line with this result, showing a con-
centration-dependent decrease in the viability of D3 cells in response to
2′-hydroxy-3′,4′,6′-trimethoxy chalcone (1) and pashanone (2) (Fig. 3).

As a next step, we aimed to characterize in detail the effects of
compounds 1 and 2 on tumor and normal cells. Impedance measure-
ments did not show tumor cell selectivity; a concentration-dependent
decrease in the cell index of both cell types was found in response to 2′-
hydroxy-3′,4′,6′-trimethoxy chalcone (1), while pashanone (2) proved
to be toxic only on endothelial cells (Figs. 4 and 5).

MTT data confirmed the results obtained with impedance mea-
surements (Fig. 6).

In the course of our studies, chalcone (1–3), flavanone (4–7), fla-
vonol (8), diarylheptanoid (10,12,13), stilbene (9), and ionol (11)
derivatives were isolated from P. maculosa, most of them having che-
motaxonomic significance. The cytotoxicity assays of selected com-
pounds (1–5, 7 and 9–11) on tumorigenic 4 T1 mouse triple negative
breast cancer and non-tumorigenic D3 human brain endothelial cells by
impedance measurements and MTT assay revealed moderate activity of
two chalcones, 2′-hydroxy-3′,4′,6′-trimethoxy chalcone (1) and

pashanone (2), the other compounds did not show any potency. A
concentration-dependent decrease in the cell index of both cell types
was demonstrated for 2′-hydroxy-3′,4′,6′-trimethoxy chalcone (1),
while pashanone (2) proved to be toxic only on endothelial cells.

Previous studies have been proved that chalcones are promising
antitumor lead compounds due to their antioxidant, cytotoxic, and
apoptosis inducing activities. The cytotoxicity of chalcones against
tumor cell lines may be the result of disruption of the cell cycle, in-
hibition of angiogenesis, mitochondrial uncoupling, apoptosis induc-
tion, antiproliferation, and antimetastasis. For antimitotic activity, the
α,β-unsaturated carbonyl part, the planar structure geometry, and
presence of methoxy and 2′ oxygenated substituents are favourable
features [35,36]. 2’-Hydroxy-3′,4′,6′-trimethoxychalcone (1) and pa-
shanone (2) fulfil these requirements.

Although the tumor specificity of chalcones has been reported
several times, e.g. in comparing sensitivity of HepG2 cells to normal
liver cells; osteosarcoma to bone marrow and small intestinal epithelial
cells; murine leukemia cells to normal human lymphocytes; and human
prostate cancer cells to normal human prostate epithelial cells [37], the

Fig. 2. Impedance of D3 human brain endothelial cells treated for 48 h with
compounds 1–5, 7, and 9–11 isolated from Persicaria maculosa. Doxorubicin
was used as a positive control of toxicity. * P < .01 compared to control
(ANOVA and Bonferroni's post-hoc test).

Fig. 3. Viability of D3 cells treated for 48 h with 2′-hydroxy-3′,4′,6′-trimethoxy
chalcone (1) and pashanone (2), as assessed by MTT assay. * P < .01 com-
pared to control (ANOVA and Bonferroni's post-hoc test).

Fig. 4. Impedance changes of D3 cells treated with 2′-hydroxy-3′,4′,6′-tri-
methoxy chalcone (1) and pashanone (2) in concentrations of 10, 20 or
50 μmol/L. * P < .01 [1 and 2 in 20 and 50 μmol/L concentrations] compared
to control, as assessed by comparing areas under curves with ANOVA and
Bonferroni's post-hoc test.
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tumor specificity could not be presented in our experiment when
chalcones 1 and 2 on 4T1 mouse triple negative breast cancer and non-
tumorigenic D3 human brain endothelial cells were tested.
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