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Abstract

Paleopathological diagnosis of tuberculosis (TB) essentially relies on the identification of

macroscopic lesions in the skeleton that can be related to different manifestations of TB.

Among these alterations, granular impressions (GIs) on the inner skull surface have been

considered as pathognomonic features of tuberculous meningitis (TBM). GIs may be estab-

lished by pressure atrophy of the tubercles formed on the outermost meningeal layer during

later stages of TBM. Although GIs were used as diagnostic criteria for TBM in the paleopath-

ological practice since the late 20th century, their diagnostic value has been questioned. To

contribute to strengthening the diagnostic value of GIs, a macroscopic investigation–focus-

ing on the macromorphological characteristics and frequency of GIs–was performed on

skeletons of known cause of death from the Terry Collection. The χ2 analysis of our data

revealed that GIs were significantly more common in individuals who died of TB than in indi-

viduals who died of non-TB causes. Furthermore, GIs were localized on the inner surface of

the skull base and of the lower lateral skull vault. The localization pattern and distribution of

GIs on the endocranial surface resemble that of the tubercles observed in the affected

meninges during the pathogenesis of TBM. Our results strengthen the tuberculous origin of

GIs and imply that they can be considered as specific signs of TBM. Therefore, GIs can be

used as diagnostic criteria for TBM in the paleopathological practice, and the diagnosis of

TBM can be established with a high certainty when GIs are present in ancient human bone

remains.

Introduction

Tuberculosis (TB), commonly referred as the “White Plague”, is one of the oldest known infec-

tious diseases that has been afflicting humans and animals for thousands of years [1–2]. It is

caused by several pathogenic mycobacterial species that belong to the Mycobacterium
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tuberculosis complex (MTBC), with M. tuberculosis (sensu stricto) being the most common

cause of TB in humans [3–5]. TB bacteria are usually transmitted by the airborne route; there-

fore, the disease primarily affects the lungs (i.e., pulmonary TB) [5–9]. Nonetheless, the hema-

togenous or lymphogenous spread of the pathogens to other parts of the body, including the

skeleton or the central nervous system (CNS), results in the development of extra-pulmonary

TB [6,10]. Different manifestations of extra-pulmonary TB (e.g., miliary TB, skeletal TB, and

CNS TB) together constitute up to 25% of all active TB cases [10]. TB bacteria that reach the

alveoli in the lungs may be eliminated by the host’s immune system [5–6,9]. However, in most

people, the pathogens are able to escape eradication and invade into the lung parenchyma [5–

8,11]. The presence of TB bacteria triggers the recruitment of an increasing number of

immune cells (e.g., macrophages and lymphocytes) to the sites of infection [5–8]. Ultimately,

there is the formation of tuberculous granulomas–also known as tubercles–that are the hall-

mark features of TB [5–9,11]. Tubercles provide an isolated microenvironment in which host

cells interact to control and prevent dissemination of the infection [5–8]. However, tubercles

also function as a survival niche in which TB bacteria can replicate or persist in a dormant

state within the lung tissue until opportunity arises for them to reactivate and spread [5–8]. In

the minority of people affected (*10%–mainly in infants and children), tubercles fail to con-

tain the infection and TB bacteria can disseminate throughout the lung or into other parts of

the body [5–8,11]. The infection progresses into active TB disease (i.e., the infected person

becomes symptomatic and contagious), usually within the first two years after exposure [5–

8,11]. In approximately 90% of the cases, TB infection is latent (i.e., the infected person is

asymptomatic and not contagious) [5–9,11]. In latent TB infection (LTBI), pathogens remain

dormant within the tubercles for a long time (even for a lifetime), with subsequent reactivation

occurring in about 5–15% of people with LTBI [5–7,9]. The processes underlying the reactiva-

tion of TB disease from latency are still poorly understood, and often, no known or suspected

risk factors can be identified [5–9,11]. Nonetheless, certain factors, including malnutrition,

human immunodeficiency virus (HIV) infection, and diabetes mellitus, have been mentioned

as potential risk factors for LTBI reactivation in the modern medical literature [8,11].

The growing HIV/acquired immune deficiency syndrome (AIDS) pandemic, as well as the

emergence of multidrug-resistant TB have played a significant role in the resurgence of TB

since the late 1980s [4,9–10]. Subsequently, the disease has been declared a global public health

threat by the World Health Organization (WHO) in 1993 [12]. According to the WHO esti-

mates, approximately 1.7 billion people– 23% of the total population of the world–have LTBI

today [13]. In 2017, there were approximately 10.0 million incident cases of active TB globally

and the disease remained one of the top ten causes of death and the leading cause of death

from a single infectious agent (ranking above HIV/AIDS), with accounting for 1.6 million

deaths [13]. The global public health emergency presented by TB today has sparked a renewed

interest and funding to the research of the disease and of its etiological agents, including sci-

ence projects concerning the origin and evolutionary history of the MTBC, as well as the

paleopathological diagnostics for TB [5,13–14].

The paleopathological research of TB is essentially based upon the macromorphological

diagnosis of the disease in ancient human bone remains [14–15]. It provides invaluable data

on the different manifestations of TB, as well as on the effects of the disease upon human mor-

tality and morbidity around the world throughout prehistoric and historic times [14–15].

Using modern medical knowledge, paleopathologists endeavor to establish a retrospective

diagnosis of TB by macroscopically identifying pathological conditions (e.g., spinal TB and TB

arthritis of the large, weight-bearing joints) in human skeletons that may be related to the dis-

ease [16–17]. However, utilization of modern diagnostic criteria for TB in the paleopathologi-

cal practice may not always be appropriate. On the one hand, probable TB-related bony
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changes observed in recent cases may differ from those detectable in ancient human bone

remains (due in part to the introduction of antibiotics in the treatment of the disease) [16,18–

20]. On the other hand, in living TB patients, bony changes cannot be surveyed with macro-

morphological methods but with medical imaging techniques, such as X-ray radiography,

computed tomography (CT), and magnetic resonance imaging (MRI), only [18–19]. Neverthe-

less, subtle bony alterations are mostly impossible to be visualized by modern imaging meth-

ods [18–19]. Therefore, subtle bony changes are not relevant to the diagnosis of TB in living

patients and are not described as diagnostic criteria for the disease by physicians in the modern

medical literature, even if they can be potentially important elements of TB identification for

paleopathologists [16,19,21].

The assessment of TB frequency in past human populations has traditionally relied upon

the paleopathological diagnosis of spinal TB and/or TB arthritis of the large, weight-bearing

joints only [16,18–22]. In modern clinical assessments, osteoarticular TB occurs in less than

2% of all patients with active TB. In consideration that skeletal TB is identified in about 3–5%

of all the TB cases in prehistoric and historic times, it is difficult to assess the true frequency of

the disease in human osteoarchaeological material from the pre-antibiotic era based only on

the above-mentioned diagnostic criteria [17–18,20,22].

Since the late 20th century, a number of studies [e.g., 15–32] were performed on osteoarch-

aeological series and documented skeletal collections to contribute to the establishment of a

more reliable and accurate paleopathological diagnosis of TB and to the assessment of a more

relevant disease frequency in past human populations. These studies [e.g., 15–32] have

revealed a positive correlation between different manifestations of TB (e.g., skeletal TB, pulmo-

nary TB and/or TB pleurisy, and TB meningitis (TBM)) and subtle bony alterations. Schultz

[24–26] and Schultz & Schmidt-Schultz [27] have identified granular impressions (GIs) on the

inner surface of the skull as one of these bony changes. GIs are small (0.5–1.0 mm in diameter),

relatively shallow (less than 0.5 mm in depth), roundish impressions with smooth margins and

walls [24–28,30]. They represent a pathological process that affects only the superficial part of

the inner lamina of the skull with no diploic and/or ectocranial involvement [24–28,30]. GIs

generally appear as isolated or confluent lesions grouped in clusters on the inner surface of the

skull base or sometimes of the lower lateral skull vault: they are particularly situated in the

orbital part of the frontal bone, the greater wings of the sphenoid bone, the squamous part of

the temporal bones, and the lateral and squamous parts of the occipital bone [24–28]. Accord-

ing to the results of Templin [28], Templin & Schultz [29], Schultz [24–26], and Schultz &

Schmidt-Schultz [27], GIs may be established by pressure atrophy of the tubercles formed in

the dura mater during later stages of TBM [24–29]. By using light and scanning electron

microscopy, the intra vitam character of GIs and the mechanism of their origin can easily and

convincingly be described in macerated bone specimens [24–29]. GIs were named as “sharply

demarcated erosive defects” by Hershkovitz and his colleagues [31], but the lesions have an

erosive macroscopic appearance with more irregular shape and sharper walls and margins

only when the pathological process progresses and the tubercles resulting in the impressions

become caseous. (It should be noted that although having very similar names in the scientific

literature, granular impressions and granular foveolae (i.e., impressions of the arachnoid gran-

ulations) should not be mistaken for each other, since they refer to two different lesion types

affecting the inner surface of the skull.) GIs were described by Schultz [24–26] and Schultz &

Schmidt-Schultz [27] as pathognomonic features of TBM; however, their diagnostic value has

been questioned [33].

In the first half of the 20th century, bony changes associated with TBM were distinctly

described in the pathological literature [e.g., 34–36]. These literature data can help paleopa-

thologists in the establishment of a more reliable diagnosis of TBM and in the assessment of a
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more relevant frequency of TBM in human osteoarchaeological material. Besides the patholog-

ical literature from the first half of the 20th century, the detailed analysis of well-documented

collections of pre-antibiotic era skeletons (e.g., Hamann–Todd Human Osteological Collec-

tion, Robert J. Terry Anatomical Skeletal Collection, and Coimbra Identified Skeletal Collec-

tion) serves as a unique and important basis for determining the appropriate paleopathological

diagnostic criteria for TB in past human populations, since 1) bone remains of individuals

identified to have died of TB and not treated with antibiotics may exhibit similar TB-related

bony changes to those of observable in skeletons of people who lived in the past; 2) in contrast

to living TB patients, skeletons of known cause of death can be surveyed not only with medical

imaging techniques but also directly with macromorphological methods; and 3) even subtle

bony changes can be recognized in them [16–17,19,21,37]. In the last three decades, the Terry

Collection has been used to define and refine paleopathological diagnostic criteria for TB in

several studies [e.g., 18,22,38–40]; nonetheless, GIs were beyond the scope of the aforemen-

tioned research projects.

The main aim of our study is to expand knowledge and understanding about the develop-

ment of GIs and to improve their paleopathological interpretation, along with strengthening

their diagnostic value in the identification of TBM in human osteoarchaeological material.

This is accomplished by presenting results of a macroscopic investigation–focusing on the

macromorphological characteristics and frequency of GIs in skeletons of known cause of

death from the Terry Collection. The macroscopic examination was performed on all individ-

uals recorded to have died of different manifestations of TB in the Terry Collection. The con-

trol group consists of randomly selected individuals from the Terry Collection, identified to

have died of causes other than TB.

The objectives of our paper are:

1. To macroscopically evaluate the selected skeletons from the Terry Collection for the pres-

ence of GIs;

2. To compare the frequencies of GIs between individuals recorded to have died of TB versus

those identified to have died of causes other than TB;

3. To macromorphologically characterize GIs regarding the localization, extent, and number

of lesions on the affected cranial bone(s); and

4. To evaluate the diagnostic value of GIs.

Materials and methods

Materials

The Robert J. Terry Anatomical Skeletal Collection–currently curated in the Department of

Anthropology at the National Museum of Natural History (Smithsonian Institution, Washing-

ton, DC, USA)–consists of 1,728 human skeletons, mostly from the pre-antibiotic era [37]. For

each individual, there is a series of documentary forms providing various biographical infor-

mation (e.g., age at death, sex, and cause of death) and basic anthropological data [37]. The

Terry Collection serves as an invaluable resource for anthropological and medical research,

including defining and refining diagnostic criteria for specific infectious diseases, such as TB,

in osteoarchaeological series from the pre-antibiotic era [37].

As part of a comprehensive research project [41], macromorphological characteristics, fre-

quencies, and co-occurrences of pathological alterations probably related to different manifes-

tations of TB were evaluated on all individuals (N = 302) recorded to have died of TB (e.g.,
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pulmonary TB, miliary TB, peritoneal TB, and skeletal TB), and on a control group consisting

of randomly selected individuals (N = 302) from the Terry Collection, identified to have died

of non-TB (NTB) causes (e.g., other infectious diseases, cardiovascular problems, cancer, and

external causes, such as suicide or homicide). From the 604 skeletons, 177 were excluded from

the examination considering GIs: the skullcap was missing in two cases, the skull was not sec-

tioned in a further 173 cases, and age at death was uncertain in two additional cases. The

remaining sample consisted of 427 skeletons. The seven old adolescent (16–19 years old; three

males and four females) and 420 adult (�20 years old; 272 males and 148 females) individuals

with skulls sectioned in the transverse plane (and occasionally also in the mid-sagittal plane)

were divided into two main groups on the basis of their causes of death:

• TB group, consisting of 234 individuals (169 males and 65 females) identified to have died of

TB, with age at death ranging from 16 to 81 years (S1 Table and S1A Fig); and

• Control (NTB) group, composed of 193 individuals (106 males and 87 females) recorded to

have died of causes other than TB, with age at death ranging from 20 to 90 years (S2 Table

and S1B Fig).

Methods

No permits were required for the described study, which complied with all relevant regula-

tions. The endocranial surface of the 427 selected skulls was macroscopically surveyed for the

presence of GIs. To reduce the risk of being biased, the study personel had no information on

the cause of death of the examined individuals during the macromorphological evaluation of

the 427 selected skulls. A lamp was always positioned at a distance of a few centimeters from

the bone surface, since the examined bony changes can have a very subtle appearance that

makes their detection difficult. For each selected individual, detailed written and pictorial

descriptions of all observed GIs were made on a data collection sheet prepared for the current

research project. The affected cranial bone(s) (considering the left and right greater wings of

the sphenoid bone as two separate bones); the number of detected lesions in the affected cra-

nial bone(s) (unifocal or multifocal); and the extent of the endocranial surface area the

observed lesion(s) covered (x) in the affected cranial bone(s) (4-level scale: 1) x< 25%, 2) 25%

� x< 50%, 3) 50%� x< 75%, and 4) 75%� x) were also recorded.

After the detailed macromorphological evaluation of the 427 selected skeletons, all collected

information was entered into a spreadsheet in Microsoft Office Excel 2016, and subsequent

statistical analysis of the data was performed: absolute and percentage frequencies of GIs were

calculated in both the TB group and NTB group; and χ2 testing of the data to determine the

significance of difference (if any) in frequencies of GIs between the two groups was undertaken

using the MedCalc statistical software package.

Results

During the macroscopic investigation, GIs were detected in 17.33% (74/427) of the skeletons

examined–in 29.06% (68/234) of the TB group and in 3.11% (6/193) of the NTB group. The χ2

testing of the frequencies of GIs in individuals with TB as the cause of death and individuals

with NTB causes of death revealed a statistically extremely significant difference between the

two groups (χ2 = 47.922, df = 1, P<0.0001).

From a total of 68 individuals with GIs in the TB group, 53 died of pulmonary TB (S1

Table). Five additional individuals died of other types of TB, such as skeletal TB (three cases),

TBM (one case), and peritoneal TB (one case); whereas in the remaining ten cases, the type of
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TB as the cause of death was not specified on the morgue record and/or death certificate (S1

Table). Among the NTB causes of death of individuals with GIs, cardiovascular problems

(three cases), cancer (two cases), and peritonitis (one case) were recorded (S2 Table).

Concerning the localization of GIs, the most commonly affected area of the inner surface of

the skull was the squamous part of the occipital bone (Figs 1 and 2A) in both the TB group

(62/68, 91.18%) (S3A Table) and NTB group (6/6, 100.00%) (S3B Table). Furthermore, GIs

were quite often observed in the orbital part of the frontal bone (TB group: 32/68, 47.06%;

NTB group: 4/6, 66.67%) (Figs 1 and 2B and S3A and S3B Table) and in the squamous part of

the left (TB group: 20/68, 29.41%; NTB group: 2/6, 33.33%) and right (TB group: 20/68,

29.41%; NTB group: 3/6, 50.00%) temporal bones (Figs 1 and 2C and S3A and S3B Table).

Occasionally, the involvement of the left (TB group: 10/68, 14.71%; NTB group: 1/6, 16.67%)

and right (TB group: 19/68, 27.94%; NTB group: 1/6, 16.67%) greater wings of the sphenoid

bone (Figs 1 and 2D and S3A and S3B Table), as well as the left (TB group: 6/68, 8.82%; NTB

group: 1/6, 16.67%) and right (TB group: 10/68, 14.71%; NTB group: 1/6, 16.67%) parietal

bones (predominantly along the squamous suture) (Figs 1 and 2C and S3A and S3B Table),

was also registered. In both groups, less than four cranial bones (considering the left and right

greater wings of the sphenoid bone as two separate bones) were simultaneously affected by GIs

in approximately two-thirds of individuals (TB group: 49/68, 72.06%; NTB group: 4/6,

66.67%).

Regarding the number of presented lesions among individuals identified to have died of

TB, GIs were particularly recorded as multifocal bony changes in the occipital (53/62, 85.48%)

and frontal (24/32, 75.00%) bones, as unifocal alterations on the left (9/10, 90.00%) and right

(14/19, 73.68%) greater wings of the sphenoid bone and in the left (4/6, 66.67%) and right (6/

10, 60.00%) parietal bones; whereas the frequencies of unifocal (9/20, 45.00%) and multifocal

(11/20, 55.00%) GIs were similar in both temporal bones (S3A Table). Among individuals

recorded to have died of causes other than TB, only two GIs involving the left and right greater

wings of the sphenoid bone were registered as unifocal alterations (S3B Table). As for the

extent of the detected lesions, the majority of GIs observed in the TB group covered less than

one-fourth of the endocranial surfaces in all cranial bones examined (S3A Table). Nonetheless,

the extent of GIs in the squamous part of the right temporal bone and on the right greater

wing of the sphenoid bone exceeded one-fourth of the inner surfaces quite often: in 30.00% (6/

20) and 42.11% (8/19) of cases, respectively (S3A Table). In the NTB group, only three GIs

detected on the left and right greater wings of the sphenoid bone and in the squamous part of

the occipital bone covered more than one-fourth of the endocranial surfaces (S3B Table).

Discussion and conclusions

In the paleopathological literature, GIs (sharply demarcated erosive defects [31]) on the inner

surface of the skull have been considered as pathognomonic features of TBM–established by

pressure atrophy of the tubercles formed in the dura mater (in close vicinity to blood vessels

affected by TBM) during later stages of the disease [24–27]. However, the diagnostic value of

GIs in the paleopathological identification of TB has been questioned: Roberts and her col-

leagues [33] have argued against that GIs can be of tuberculous origin. Their basis of argument

is that: 1) TBM is not always accompanied by the formation of meningeal tubercles that could

result in pressure atrophy on the inner surface of the skull, and consequently, the development

of impressions; 2) in cases with macroscopically visible meningeal tubercles, no endocranial

changes were described in the modern medical literature; 3) the typical course of TBM is not

long enough to allow bony changes to occur on the inner surface of the skull; and 4) only a

weak association between the presence of GIs and TB have been found by Hershkovitz and his
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Fig 1. Typical localizations of GIs on the inner surface of the skull base. Blue: most commonly affected areas, orange: commonly affected

areas, and yellow: less commonly affected areas (drawing by Luca Kis).

https://doi.org/10.1371/journal.pone.0230418.g001
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colleagues [31] during the examination of skeletons of known cause of death from the Hamann–

Todd Collection. (However, their investigations focused not on GIs but on serpens endocrania
symmetrica, another endocranial alteration type that may be associated with TBM but not patho-

gnomonic to the disease.) According to Roberts and her colleagues [33], further investigations on

GIs in skeletons of known cause of death or in skeletons from osteoarchaeological series with an

independent confirmation of the diagnosis of TB (e.g., by light and scanning electron microscopy

[27] or by biomolecular methods, such as ancient DNA, lipid biomarker, and extracellular matrix

(ECM) protein [42] analyses) are needed to clarify the exact etiology of GIs.

Besides paleopathological evaluation of skeletons, detailed knowledge of the pathogenesis

of CNS TB forms, especially of TBM, is essential to gain a better understanding of the patho-

logical processes that underlie the development of GIs. CNS TB (one of the most devastating

clinical manifestations of TB) occurs in approximately 1% of all active TB cases and accounts

Fig 2. Typical localizations of GIs on the inner surface of the skull. A) The squamous part of the occipital bone (Terry No. 562, 17-year-old, female, died of pulmonary

TB), B) The orbital part of the frontal bone (Terry No. 933R, 40-year-old, male, died of peritoneal TB), C) The squamous part of the temporal bone and the area along the

squamous suture on the parietal bone (Terry No. 522, 30-year-old, male, died of pulmonary TB), and D) The greater wing of the sphenoid bone (Terry No. 566, 40-year-

old, male, probably died of TB).

https://doi.org/10.1371/journal.pone.0230418.g002
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for 5–15% of extra-pulmonary TB cases [43–48]. CNS TB usually results from hematogenous

dissemination of TB bacteria from a primary location outside the CNS (such as the lungs or

the gastrointestinal tract) and is characterized by a slowly progressive granulomatous inflam-

matory reaction that may affect the meninges, or the brain or spinal cord parenchyma [43,49–

50]. The disease develops in two stages [43,45,48,51]. The initial stage involves the formation

of small (0.5–2 mm) tubercles − also known as Rich foci − around TB bacteria deposited in the

CNS via blood circulation during or shortly after the bacteremic stage of primary infection or

late reactivation of TB elsewhere in the body [43–46,48,51–54]. Following their establishment,

Rich foci may remain dormant for many years [43–45,52–53]. Later, the enlargement or rup-

ture of one or more Rich foci results in the development of different types of CNS TB (e.g.,

TBM, tuberculomas, and TB abscesses) [43,46,48–49,52]. The most common form of the dis-

ease is TBM that accounts for 70–80% of all cases with CNS TB [44,49]. TBM usually develops

subsequent to the rupture of one or more meningeal, subpial, and/or subependymal caseating

Rich foci into the subarachnoid space or into the ventricular system, both occupied by the

cerebrospinal fluid (CSF) [43–45,49,52–56]. The release of sufficient numbers of TB bacteria

into the CSF triggers the onset of diffuse granulomatous inflammation of the leptomeninges

(i.e., the pia and arachnoid mater), with a strong predilection for the basal areas of the brain

[43–45,49,52–55]. In earlier stages of the disease, the pathological process extends predomi-

nantly along the blood vessels of the leptomeninges (particularly of the pia mater) [34]. TBM is

characterized by the formation of tubercles on the pia and arachnoid mater [34,57]. Nonethe-

less, not only the leptomeninges but additionally, the outermost meningeal layer (i.e., the dura
mater) that is directly adherent to the inner surface of the skull, can be affected by tubercles in

later stages of TBM [35,57]. Besides the small tubercles formed in the meninges, characteristic

pathological features of TBM include enhancing basal meningeal exudate, progressive hydro-

cephalus, and vasculitis of blood vessels adjacent to or traversing the exudate [34,43,45,52,55–

56]; as a rule, the formation of tubercles precedes the development of the latter ones [35].

One of the most important risk factors for TBM is age [45–47]. In low-income and middle-

income countries with a high incidence of TB, children under the age of five years represent

the most vulnerable group affected by the disease, usually developing TBM within 3–6 months

of primary infection [45,52–53,58–60]. However, in high-income countries with a low inci-

dence of TB, TBM occurs predominantly in adults, particularly in immigrants from TB-

endemic regions of the world and in HIV-positive people, who are five times more likely to

develop the disease than HIV-negative individuals [43,45–46,53,58–60]. In adults, TBM usu-

ally results from the reactivation of dormant Rich foci, often many years after the primary

infection [58]. At any age, TBM is one of the most severe extra-pulmonary manifestations of

TB, with high short-term mortality and substantial excess morbidity among survivors: approx-

imately one-third of the affected individuals die of the disease and up to one-half of the survi-

vors remain with serious neurological sequels, despite the initiation of anti-tuberculosis

therapy [43–44,48,58,61]. Early, accurate diagnosis and prompt, adequate treatment are crucial

in determining the clinical outcome of TBM [43, 53,56,59,62]. If left untreated, TBM usually

leads to death within 4–6 weeks after the onset of its symptoms [63]; nonetheless, in some

cases [e.g., 64–70], the disease has a protracted course that can last for several months or even

years. Therefore, in such cases, the duration of the disease is long enough to allow bony

changes to occur on the inner surface of the skull.

Although no endocranial alterations were described in cases with macroscopically visible

meningeal tubercles in the current medical literature, it does not mean that GIs cannot be con-

sidered as diagnostic criteria in the paleopathological practice. On the one hand, bony changes

associated with TBM were distinctly described in the pathological literature from the first half

of the 20th century (preceding the introduction of antibiotics in the management of TB) [e.g.,
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34–36]. At autopsy of TBM patients, groups of isolated but mostly confluent, small, and dim-

pled impressions established by pressure atrophy of the tubercles (i.e., GIs), vestiges of hemor-

rhages developed in close vicinity to the affected blood vessels (i.e., abnormal blood vessel

impressions and periosteal appositions), and certain roughnesses indicating characteristic

resorption of the bone tissue (i.e., very flat and small erosive bone loss that can be recognized

only with low-power microscopy) were observed on the endocranial surface of the skull base

and of the lower lateral skull vault after the removal of the dura mater [34–36]. However,

autopsy practices have changed over time, and in the present, the dura mater is not completely

removed from the basal areas of the skull; thus, there is no detection of the aforementioned

bony changes on the endocranial surface. Additionally, the identification of TBM in living

patients is usually based on clinical signs and symptoms, CSF findings, and radiological char-

acteristics [43–47,52–53,55]. Similar to periosteal new bone formations on the visceral surface

of ribs [18–19], GIs have a very subtle appearance and may be impossible to be visualized by

the modern medical imaging techniques. On the other hand, the manifestation of TBM in past

human populations may differ from that of modern medical cases due in part to the introduc-

tion of antibiotics in the treatment of TB; and therefore, probable TB-related bony changes,

including GIs, may not occur in recent cases [16,18–19,21]. However, as it has been suggested

by Roberts and her colleagues [33], the detailed analysis of well-documented skeletal collec-

tions from the pre-antibiotic era can serve as a unique and important basis for determining the

diagnostic value of GIs in the paleopathological identification of TBM, since 1) individuals

from such collections–who were not treated with antibiotics–can directly be surveyed with

macromorphological methods; 2) even subtle bony changes, such as GIs, can be recognized in

them; and 3) the manifestation of TBM, and consequently, the appearance of likely TBM-asso-

ciated lesions may be similar to those of observable in ancient human bone remains.

During the macroscopic evaluation of the 427 selected skeletons with sectioned skulls from

the Terry Collection, we found that GIs were ten times more common in individuals recorded

to have died of TB than in individuals identified to have died of causes other than TB. Our

findings are constituting evidence that there is a positive correlation between GIs and TB. The

results of our research project fit in with those of previous studies [e.g., 24–27] concerning the

specificity of GIs for TBM, as GIs affected only six individuals in the NTB group (S2 Table).

Five out of the above-mentioned six individuals show probable TBM-associated endocranial

alterations other than GIs (four cases: abnormally pronounced digital impressions ([e.g., 23–

26,71] and one case: periosteal appositions [e.g., 23–26]) (S4 Table) and/or likely TB-related

non-endocranial bony changes (two cases: periosteal new bone formations on the visceral sur-

face of ribs [e.g., 16,18–21], two cases: vertebral hypervascularization [e.g., 15,17,32,72–73],

two cases: signs of extra-spinal osteomyelitis [e.g., 74–75], and one case: signs of hypertrophic

pulmonary osteopathy [e.g., 31,38–40,76]) (S5 Table). It must be noted that even if the

recorded cause of death of individuals surveyed in the Terry Collection may not have been TB,

individuals could still have suffered from the disease but their death was attributed to another

medical condition [18–19]. Moreover, there is always the possibility that an inaccurate cause

of death was registered on the morgue record and/or death certificate of individuals from the

Terry Collection. Thus, it is possible that in the aforementioned six cases, the observed endo-

cranial and non-endocranial bony changes resulted from TB. In summary, the findings of our

study confirm those of Schultz [e.g., 24–26] and Schultz & Schmidt-Schultz [27] that GIs can

be considered as pathognomonic features of TBM; and therefore, the paleopathological diag-

nosis of TBM can be established with a high certainty when GIs are present in ancient human

bone remains. The localization pattern and distribution of GIs on the endocranial surface

resemble that of the tubercles observed in the affected meninges during the pathogenesis of

TBM that further strengthens their tuberculous origin.
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Since the beginning of the 21st century, a number of molecular evolutionary studies [e.g.,

77–82] have improved our knowledge on the origin and evolutionary history of the MTBC, as

well as on the co-evolution of its members with the human and various wild and domesticated

animal hosts. However, the results of the aforementioned research projects are unfortunately

insufficient and controversial [2–4]. Paleomicrobiological analyses of biological remains (e.g.,

DNA, lipid biomarkers, and ECM proteins) of TB bacteria extracted from skeletons and mum-

mies of people who lived in the past [e.g., 42,83–87] have provided invaluable novel data not

only on the evolution of TB but also on its paleoepidemiology throughout prehistoric and his-

toric times. Findings of recent paleoepidemiological studies on human osteoarchaeological

series from the pre-antibiotic era [e.g., 88–90] have confirmed the complementarity of paleo-

microbiological, microscopic, and traditional, macromorphology-based paleopathological

analyses. Their combined application may contribute to facilitating the establishment of a

more reliable and accurate paleopathological diagnosis of TB in ancient human bone remains

and the assessment of a more relevant frequency of the disease in past human populations

[14,91–92].

The above-mentioned examinations require specific scientific knowledge on the macro-

morphological diagnostics of TB that underlines the importance of our research project, since

its results strengthen the tuberculous origin of GIs and imply that they can be considered as

specific signs of TBM. Therefore, GIs can be used as diagnostic criteria for TBM in the paleo-

pathological practice, and the diagnosis of TB can be established with a high certainty when

GIs are present in ancient human bone remains. Thus, our findings provide paleopathologists

with a stronger basis for identifying TB and with a more sensitive means of assessing the fre-

quency of the disease in human osteoarchaeological material. Refinement of macromorpholo-

gical diagnostic criteria and their application in the paleopathological practice may open new

perspectives also in the evolutionary research of TB.

It should be mentioned that because of the composition of the Terry Collection [37], there

were no children that could be examined (the youngest individual of the Terry Collection died

at the age of 16 years); however, according to the modern medical literature, children under

the age of five years represent the most vulnerable group affected by TBM [45,52–53,58–59].

Therefore, the major limitation of our research project was the absence of children in the

examined skeletal material. In the future, further investigations on human skeletons of known

cause of death from documented collections other than the Terry Collection are necessary to

confirm the trends noted in our study. It would also be very useful to examine not only adult

but child skeletons of known cause of death to determine whether or not the frequency of GIs

is similar to that of observed in adults in the Terry Collection.

Finally, our findings may draw physicians’ attention to the rather high prevalence of menin-

geal involvement in TB patients. This may contribute to further improving the modern medi-

cal practice regarding the identification of TBM. Although TBM occurs in less than 1% of all

cases with active TB [58] and the vast majority of the individuals in our TB group were identi-

fied to have died of pulmonary TB (only one of them was recorded to have died of TBM) (S1

Table), about one-third of them revealed GIs suggestive of TBM on the endocranial surface.

Our results fit in with those of autopsy studies revealing that a large number of individuals

died of pulmonary TB without developing neurological signs and symptoms exhibited tuber-

cles in the CNS. This indicates that involvement of the CNS in pulmonary TB is quite common

[93]. Some recent studies showed that about three-fourths of the patients with CNS TB had

pulmonary TB 6–12 months prior to the onset of neurological symptoms [61]. The above-

mentioned findings may incite physicians to check pulmonary TB patients for involvement of

the CNS even if they do not present with neurological signs and symptoms suggestive of the

disease. In such cases, this may facilitate the establishment of an early, accurate diagnosis and
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the initiation of a prompt, adequate treatment that are crucial in determining the clinical out-

come of TBM.
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Beitrag zur Paläopathologie. Aesch, Switzerland: Anthropologisches Forschungsinstitut & Basel, Swit-

zerland: Anthropologische Gesellschaft; 1993.

24. Schultz M. The role of tuberculosis in infancy and childhood in prehistoric and historic populations. In:

Pálfi G, Dutour O, Deák J, Hutás I, editors. Tuberculosis: Past and present. Szeged, Hungary: TB

Foundation & Budapest, Hungary: Golden Book Publisher; 1999. pp. 503–507.

25. Schultz M. Paleohistopathology of bone: A new approach to the study of ancient diseases. Am J Phys

Anthropol. 2001; 116(Suppl. 33): 106–147. https://doi.org/10.1002/ajpa.10024 PMID: 11786993

26. Schultz M. Light microscopic analysis in skeletal paleopathology. In: Ortner DJ, editor. Identification of

pathological conditions in human skeletal remains. San Diego, CA, USA: Academic Press; 2003. pp.

73–107. https://doi.org/10.1016/B978-012528628-2/50043-0

27. Schultz M, Schmidt-Schultz TH. Is it possible to diagnose TB in ancient bone using microscopy?. Tuber-

culosis 2015; 95(Suppl. 1): S80–S86. https://doi.org/10.1016/j.tube.2015.02.035 PMID: 25744278

28. Templin O. Die Kinderskelete von Bettingen im Kanton Basel-Stadt (Schweiz). Eine paläopathologische
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