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Abstract 

Background: Despite its clinical relevance, cerebral amyloid angiopathy (CAA) is 

underdiagnosed worldwide. This retrospective study aimed to assess the incidence, etiology, 

predictors, and outcome of intracerebral hemorrhages (ICHs) in this region, with special focus 

on possible underlying CAA. 

Methods: Database screening of acute cares with intracranial hemorrhage diagnosis within 

01/07/2014–01/07/2018 were conducted, analyzing medical records and imaging. Spontaneous 

ICHs were classified as deep (basal ganglionic/thalamic/brainstem) and lobar/cerebellar (i.e., 

CAA-compatible) ICHs. Probable/definite CAA was established using the modified Boston 

criteria in a subgroup with ‘complete’ radiological/neuropathological work-up. The ability of 

several factors to discriminate between deep and lobar/cerebellar ICHs, between 

probable/definite CAA and non-probable CAA cases, and to predict 1-month case fatality was 

assessed. 

Results: Of the 213 ICHs identified, 121 were in deep and 92 in lobar/cerebellar localization. 

Sub-analysis of 47 lobar/cerebellar ICHs with ‘complete’ work-up identified 16 

probable/definite CAA patients, yielding an estimated 14.7% prevalence of CAA-related ICHs. 

Chronic hypertension was the most prevalent risk factor for all types of ICHs (including CAA-

related), with hypertensive excess and younger age being independent predictors of deep 

whereas antiplatelet use of lobar/cerebellar localization. The 1-month case fatality was 33.8%, 

driven predominantly by age and INR>1.4. Probable/definite CAA diagnosis was 

independently predicted by age, prior intracranial hemorrhage, and antiplatelet use. 

Conclusions: First in this region and among the few in the literature, this study reports a 

remarkable prevalence of CAA-related ICHs, emphasizing the need for an increased awareness 

of CAA and its therapeutic implications, especially regarding antiplatelets among the elderly. 

Keywords: cerebral amyloid angiopathy, epidemiology, intracerebral hemorrhage, lobar, 

predictor.  
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Introduction 

Stroke is one of the leading causes of death and disability globally. After ischemic 

stroke, intracerebral hemorrhage (ICH) is the second most prevalent type, accounting for some 

10% of all cases (Feigin et al. 2009). The most common known risk factors of spontaneous 

ICHs include advanced age, chronic hypertension, cerebral amyloid angiopathy (CAA), alcohol 

and drug abuse, and antithrombotic medications (Aguilar and Brott 2011). Recent studies 

further highlight the role of systemic inflammation in determining ICH propagation and 

outcome, and implicate the potential protective role of substances with anti-inflammatory 

properties (Di Napoli et al. 2014; Di Napoli et al. 2016). 

Based on etiological considerations, ICHs are commonly classified into deep ICHs (i.e., 

originating from blood vessels in the basal ganglia, thalamus, or brainstem), predominantly 

associated with chronic hypertension/hypertensive arteriopathy, and lobar ICHs, which are 

most frequently related to CAA and, relatively less frequently, to other etiologies such as 

vascular malformations or tumors (Ikram et al. 2012). The distribution of cerebral microbleeds 

(CMBs) follows a similar anatomical pattern, with chronic hypertensive (a.k.a. hyaline) 

arteriopathy associating primarily with CMBs in deep localizations and CAA typically 

associating with lobar CMBs, sparing the deep structures (Greenberg et al. 2009). Of note, 

cerebellar ICHs and CMBs can be attributable to either chronic hypertensive arteriopathy or 

CAA (Greenberg and Charidimou 2018); therefore, their classification in the literature is not 

unequivocal, some authors classifying them as deep (Labovitz et al. 2005) or non-lobar (Zia et 

al. 2007; Samarasekera et al. 2015) while others omitting them from analyses (Falcone et al. 

2013), analyzing them separately (Samarasekera et al. 2012), or using alternative classifications 

(Gregoire et al. 2010). 

In CAA, cortical and leptomeningeal small arteries/arterioles and capillaries are 

degenerated due to the progressive deposition of β-amyloid peptides, associating with both 

CAA-related ischemic alterations (including microinfarctions and leukoaraiosis) and different 

types of hemorrhages (including CMBs and ICHs in lobar (and cerebellar) localization, and 

cortical superficial siderosis (CSS, a.k.a. convexity subarachnoid hemmorhage (SAH))) 

(Yamada 2015). 

Clinical manifestations of CAA can be various, ranging from asymptomatic stage to 

fatal ICHs. Typically, CAA-related ICHs are recurrent and cause various neurological deficits 

(depending on localization), headache, and epileptic seizures with or without loss of 

consciousness (Yamada 2015). Patients usually develop slowly progressive cognitive 

impairment due to multiple CMBs and microinfarctions (i.e., vascular neurocognitive disorder 

or mixed-type neurocognitive disorder, in the presence of concomitant Alzheimer’s disease 

(AD) pathology). In addition, CAA patients frequently experience transient ischemic attack 

(TIA)-like events, a.k.a. transient focal neurological episodes (TFNEs) or ‘amlyoid spells’; 

these events are, however, presumed to be due to focal epileptic activity secondary to CSS and 

not thrombotic in origin (Yamada 2015). 

Magnetic resonance imaging (MRI) sequences sensitive to susceptibility artefacts 

generated by hemosiderin deposits of previous micro- and macrobleeds, such as gradient echo 

(GRE), susceptibility-weighted imaging (SWI), or T2* sequences, in addition to a set of clinical 

characteristics, make it possible to establish a probabilistic diagnosis of CAA in vivo with high 

diagnostic accuracy (Greenberg and Charidimou 2018). The original Boston criteria was 
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modified in 2010 recognizing CSS as part of CAA-related alterations (Linn et al. 2010). This 

Modified Boston criteria (with increased sensitivity and retained specificity) enables 

establishing the diagnosis of possible CAA and probable CAA without histological 

confirmation (i.e., biopsy specimen or post mortem tissue) in patients above 55 years, with the 

presence of a single hemorrhagic alteration (ICH, CMB, or CSS) in lobar localization without 

other cause allowing the diagnosis of possible CAA, and >1 of such hemorrhagic alterations 

without other cause meeting the diagnosis of probable CAA (Linn et al. 2010). While deep 

(basal ganglionic, thalamic, and brainstem) hemorrhagic alterations preclude the diagnosis of 

both possible and probable CAA, cerebellar bleeds are allowed, albeit not counted for the 

diagnosis (Greenberg and Charidimou 2018). Definite CAA diagnosis can be established only 

via full post mortem histological investigation. 

CAA is by no means infrequent. Affecting some 5% of the population over 65 years of 

age (Biffi and Greenberg 2011), its prevalence is comparable to that of AD (Lobo et al. 2000) 

(with which it shows some 70-80% overlap (Jellinger 2002; Brenowitz et al. 2015)) and atrial 

fibrillation (AF) (Majeed et al. 2001). Though curative therapy is lacking, the clinical relevance 

of the diagnosis is high. Indeed, the use of anticoagulants is contraindicated in CAA according 

to current guidelines due to a 7-10-fold increase in the risk of ICH (Kernan et al. 2014; 

Heidbuchel et al. 2015). The use of antiplatelet therapy should also be carefully considered in 

CAA, due to an up to 4-fold increase in the risk of recurrent ICH in general population after 

lobar ICH (Biffi et al. 2010) and a 2-fold prevalence of lobar CMBs in patients suffering ICH 

while on antiplatelet therapy (Gregoire et al. 2010). Though prior ICH has always been an 

absolute contraindication for systemic thrombolysis in acute ischemic stroke, a >10 CMB 

number per se has recently been introduced as a contraindication due to uncertain benefit 

(Powers et al. 2018). Despite the high prevalence and relevance among the elderly, the 

establishment of a clinical diagnosis of CAA to our experience has been sporadic. Based on the 

discrepancy between the expected frequency of CAA among the elderly and the experienced 

occurrence of CAA diagnosis in the routine clinical practice, our aim was to asses the frequency 

of the different types of spontaneous ICHs observed in our stroke center with special focus on 

estimating the underlying prevalence of CAA, by means of the retrospective re-evaluation of 

written and imaging documentation. Emphasis was given on the analysis of the predictive value 

of putative risk factors for ICH location, probable/definite CAA diagnosis, and fatal outcome. 

 

Materials, patients, and methods 

Via screening the electronic database, patients who received acute in-patient care in our 

center between 01/07/2014 and 01/07/2018 with any of the intracranial hemorrhage-related 

International Classification of Diseases (ICD) diagnosis codes were identified. Reviewing the 

imaging scans and medical records, spontaneous ICHs were separated from intracranial 

hemorrhages with traumatic etiology, cases with SAH, primary intraventricular hemorrhage, 

and hemorrhagic transformation of ischemic stroke, and from cases with inadequate coding. 

Spontaneous ICHs were further classified according to hematoma localization as deep ICHs 

(basal ganglia, thalamus, or brainstem) and lobar/cerebellar ICHs (regions compatible with the 

diagnosis of probable CAA, enabling the estimation of the prevelance of underlying CAA). 

The prevalence of different etiologies behind lobar/cerebellar ICHs was assessed in a 

subpopulation who underwent ‘complete’ clinical work-up, defined as being subjected to 
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computed tomography angiography (CTA) or magnetic resonance angiography (MRA) as well 

as MRI-SWI (if structural etiology was not identified by angiography) and/or post mortem 

neuropathological work-up. Definite CAA, probable CAA, and possible CAA diagnoses were 

retrospectively established or revised as per the Modified Boston criteria (Linn et al. 2010). An 

ICH was considered CAA-related if met the criteria for probable and/or definite CAA. 

Clinical data collected about the patients included their age at the time of ICH, sex, 

history of intracranial vascular events (including TIA, clinical episode of ischemic or 

hemorrhagic stroke), family history of any stroke, prior episodes of loss of consciousness, 

chronic hypertension, hypertensive excess at presentation (defined as ≥180 mmHg systolic 

blood pressure), current use of antiplatelet and/or anticoagulant drugs, as well as the 

international normalized ratio (INR) values on admission for ICH. Case fatality (lethality) was 

defined as fatal outcome within 1 month secondary to the ICH event in the absence of evidence 

for unrelated cause of death (e.g., cardiac arrest). 

For statistical analysis, the SPSS 20.0 software (IBM Corp., Armonk, New York, USA; 

RRID:SCR_002865) was used. For comparative assessment of continuous variables, 

parametric (Student t) or non-parametric (Mann-Whitney U) tests were used after normality 

analysis with the Shapiro-Wilk test. For comparative analysis of discrete variables, cross-

tabulation analysis was used by the Chi2 test, applying Fisher’s exact values when appropriate. 

Backward conditional multivariate binary logistic regression analyses were used to assess the 

effect of predictors found to be significant in the univariate comparative analyses. The binary 

outcomes were deep ICHs vs. lobar/cerebellar ICHs, case fatality at 1 month vs. alive at 1 

month, and probable/definite CAA vs. non-probable CAA (including all deep ICHs and the 

subgroup of lobar/cerebellar ICH with ‘complete’ clinical work-up not meeting the criteria for 

probable/definite CAA). The level of significance was p<0.05. Data within the text are 

presented as mean±standard error of the mean (SEM) or median [interquartile range] in the 

cases of normal or non-normal distribution, respectively. 

 

Results 

Revision of diagnoses, estimation of CAA-related ICH prevalence 

A total of 324 patients having received any intracranial hemorrhage-related ICD codes as 

leading diagnosis in the given period were identified. After exclusions, 213 spontaneous ICHs 

were identified (Fig. 1). Among spontaneous ICHs, 121 deep ICHs (110 (51.6%) localized to 

the basal ganglia/thalamus and 11 (5.2%) to the brainstem) and 92 lobar/cerebellar ICHs (85 

(39.9%) localized to any cerebral lobe and 7 (3.3%) to the cerebellum) were detected (Fig. 2a). 

Out of lobar/cerebellar ICHs, 47 had ‘complete’ clinical work-up, of whom 2 proved to 

be definite CAA post mortem (Online Resource 1) and 14 were consistent with the diagnosis 

of probable CAA clinically (Fig. 3; one of them also became definite post mortem), rendering 

(16/47) 34.0% of all ‘completely’ worked-up lobar/cerebellar ICHs and (considering this rate 

as representative for all lobar/cerebellar ICHs) an estimated 14.7% of all spontaneous ICHs to 

be CAA-related. CMBs were present in 92.9% of probable CAA cases, with 42.9% having >10 

CMBs, whereas CSS was present in 78.6%, with 57.1% of probable CAA cases having diffuse 

CSS.  In addition, 10 patients met the criteria for possible CAA, and another 5 patients would 

have also meet criteria for probable (1) and possible CAA (4) except for their age being under 

55. In 12 cases (25.5%), structural (i.e., secondary) etiologies such as arteriovenous 
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malformation, ruptured aneurysm, sinus thrombosis, dural arteriovenous fistula or metastatic 

tumor were detected, whereas 4 cases (8.5%) were consistent with hypertensive arteriopathy 

(Fig. 2b). Out of the 14 probable CAA cases identified, originally only 4 had received CAA at 

least as suspected diagnosis (28.6%). 

 

Analysis of possible discriminators of ICH subgroups  

The median age of the 213 patients with spontaneous ICH was 69.1 [60.3–79.0] years, 

with the lobar/cerebellar ICH group being significantly older compared to deep ICHs (74.5 

[65.9–82.0] vs. 64.7 [57.9–76.6] years; p<0.001; Table 1). 

The distribution of sex was significantly different between deep and lobar/cerebellar ICH 

groups (p=0.029), with a remarkable male preponderance in deep ICHs (66.9%) and a close to 

even ratio in lobar/cerebellar ICHs. 

The frequency of prior episode(s) of TIA (TFNE), ischemic stroke, intracranial 

hemorrhage, and loss of consciousness in all ICHs were 10.5%, 12.4%, 8.1%, and 8.1%, 

respectively, being comparable between deep and lobar/cerebellar ICH groups. 

The family history for either ischemic or hemorrhagic stroke (specification was not 

possible) was positive in 32.5%, with no between-group difference. 

A total of 16.7% of ICH cases were on anticoagulant therapy at presentation, 74.3% 

because of AF. Three-quarter (77.1%) of anticoagulated patients were on a vitamin K antagonist 

(VKA; warfarin (4/27) or acenocoumarol (23/27)), 88.9% of whom had an INR>1.4 at 

presentation. Two patients were on rivaroxaban, one on apixaban, together making up 8.6% of 

anticoagulated patients, while other direct oral anticoagulants (DOACs) were not represented. 

In 5 patients (14.3%), different doses of low-molecular-weight heparin (LMWH) were used. 

The frequency of anticoagulant use at presentation was comparable between ICHs in deep and 

lobar/cerebellar localizations. Notably, out of the 7 lobar/cerebellar ICH patients with a positive 

history of intracranial hemorrhage, 3 were on therapeutic anticoagulation, and 2 of them were 

on antiplatelet treatment as well. Antiplatelet use was present in 32.2%, with a significant 

preponderance in lobar/cerebellar (43.3%) compared to deep ICHs (23.7%; p=0.003). 

Altogether 7.7% of ICH patients were on combined antithrombotic regimen (on both 

anticoagulant and antiplatelet therapy), the significant majority (75.0%) suffering a 

lobar/cerebellar ICH (p=0.016). 

A total of 191 ICH patients were known for chronic hypertension (89.7%), which was the 

most prevalent risk factor for both deep and lobar/cerebellar ICHs, with no significant between-

group difference. On the other hand, 61.5% of ICH patients experienced hypertensive excess 

(systolic blood pressure >180 mmHg) at presentation, in a significantly higher rate in the deep 

compared to the lobar/cerebellar ICH group (71.2% vs. 48.9%, respectively, p=0.001). 

Analyzing the risk factors with significant between-group difference (age, sex, 

antiplatelet use, combined antithrombotic treatment, and hypertensive excess at presentation) 

in a multivariate binary logistic regression model revealed advanced age (p=0.014; odds ratio 

(OR)=1.03) and antiplatelet use (p=0.043; OR=1.96) to be statistically significant independent 

predictors of a lobar/cerebellar ICH, and hypertensive excess to be a strong significant 

independent predictor of deep ICH (p=0.002; OR=0.39). 
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Case fatality 

The 1-month case fatality of ICH patients was 33.8%, with no significant difference 

between deep and lobar/cerebellar ICH groups (Table 1). Significant determinants of 1-month 

case fatality in ICHs as a whole were age, prior TIA, current anticoagulant use, and INR>1.4 

in univariate comparisons, with only advanced age (p=0.003; OR=1.04) and INR>1.4 (p=0.035; 

OR=2.51) proven to be independent predictors of case fatality in multivariate analysis (Online 

Resource 2). 

 

Analysis of factors to predict CAA 

The probable/definite CAA subgroup had the highest mean age at ICH presentation 

(75.9±2.3 years), significantly higher compared to non-probable CAA patients (65.6±1.1 years; 

p=0.002). This was associated with a significant female predominance in probable/definite 

CAA (62.5%) as opposed to the male predominance (64.5%) in the comparator (p=0.035). 

Some 31.3% of probable/definite CAA cases had prior clinical event(s) of intracranial 

hemorrhage and exactly the same rate had prior TIA/TFNE, significantly higher than in the 

non-probable CAA group (6.8% (p=0.008) and 7.4% (p=0.010), respectively). 

The ratio of patients on antiplatelet (56.3%) within the definite/probable CAA subgroup 

was remarkably higher compared to non-probable CAA patients (25.2% (p=0.009)). 

Other factors and case fatality were not significantly different in the comparative 

analyses; of note, chronic hypertension was invariably prominent (Table 2). 

Multivariate analysis of factors significant in the univariate comparative analyses 

revealed older age (p=0.012; OR=1.08), prior intracranial hemorrhage (p=0.005; OR=8.53), 

and antiplatelet use (p=0.042; OR=3.45) as independent significant predictors of 

definite/probable CAA diagnosis. 

 

Discussion 

Aiming to assess the predictors and outcome of spontaneous ICHs of different 

localization with particular focus on the prevalence of underlying CAA, this study identified 

hypertensive excess and younger age as independent predictors of deep whereas antiplatelet use 

of lobar/cerebellar localization, age and INR>1.4 as indepenent predictors of 1-month case 

fatality, and age, prior intracranial hemorrhage, and antiplatelet use as independent predictors 

of probable/definite CAA diagnosis, in addition to an estimated prevelance of CAA-related 

ICHs comparable to prior publications. 

The timely identification of patients with probable CAA is imperative, as it is associated 

with serious therapeutic consequences, especially regarding the avoidance of 

antithrombotic/thrombolytic medications, with increasing literature demonstrating a higher risk 

of harm compared to benefit (Yamada 2015). Despite these, CAA is considered to be 

underdiagnosed worldwide, its epidemiology is largely based on neuropathological case series, 

and the prevalence of CAA among ICH patients (i.e., CAA-related ICH) with/without 

associated potential risk factors have only been addressed by a few studies on clinical grounds 

(Online Resource 3) (Meretoja et al. 2012; Yeh et al. 2014; Roh et al. 2018; Jamieson et al. 

2012; Palm et al. 2013). Consequently, our aim was to revise all spontaneous ICH cases in our 

center in a 4-year period, with special focus on identifying patients with probable/definite CAA, 

and analyzing associated risk factors and fatal outcome. 
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The 213 ICH cases detected represent an incidence of approximately 13.3/100,000 

persons/year, resembling the 12-15/100,000 persons/year reported in the U.S. (Aguilar and 

Brott 2011). In our study, 51.6% of spontaneous ICHs originated in the basal ganglia/thalamus, 

3.3% in the cerebellum, 5.2% in the brainstem, and 39.9% were of lobar localization. According 

to international data reporting 35-70%, 5-10%, 5-10%, and 15-30%, respectively (Aguilar and 

Brott 2011), this suggests a relative overrepresentation of lobar ICHs compared to expectations, 

highlighting the relevance and necessity of an increased awareness of CAA in this population. 

This ratio is similar to Swedish and U.S. findings with 43.2% and 40.5% rates of lobar ICHs, 

respectively (Zia et al. 2007; Broderick et al. 1993). The analysis of risk factors confirmed ICH 

as the disease of the elderly (the median 69.1 years being consistent with previous reports 

(O'Donnell et al. 2010)). In particular, older age proved to be an independent predictor of 

lobar/cerebellar (i.e., CAA-compatible) ICH localization, resembling findings for lobar ICHs 

(Labovitz et al. 2005; Matsukawa et al. 2012; Weimar et al. 2011). Hypertension was by far the 

most common coexistent factor (~90%) irrespective of ICH localization. Identifying 

hypertension as primary risk factor for ICHs is consistent with international meta-analyses 

(Ikram et al. 2012; O'Donnell et al. 2010; Ariesen et al. 2003); however, its prevalence was 

higher than in many individual studies (Zia et al. 2007; Yeh et al. 2014; Broderick et al. 1993), 

albeit similar to some reports from Europe (Smajlovic et al. 2008; Safatli et al. 2016). Despite 

the concept that chronic hypertension would associate more with deep ICHs, our results 

emphasize that it is essentially present in any subtypes of ICHs (in line with some prior 

observations (Broderick et al. 1993)) and only an extreme hypertension around the event 

demonstrated to be a significant (in fact the strongest) predictor of deep ICHs. Male sex, a factor 

frequently reported as a risk for ICH (Labovitz et al. 2005; Ariesen et al. 2003; van Asch et al. 

2010), was also slightly overrepresented in the pooled cohort (60.6%), driven, however, entirely 

by deep ICHs (66.9%), with the sex rate of lobar/cerebellar ICHs being ~50%, recapitulating 

prior observations (Labovitz et al. 2005; Zia et al. 2007; Yeh et al. 2014). The use of 

antithrombotics were frequent (41.1%), with antiplatelet use proven to be an independent 

predictor of lobar/cerebellar ICH localization. The results were practically identical when using 

the traditional lobar vs. non-lobar comparison (Online Resource 4). 

The 1-month case fatality of all ICHs was 33.8%, with no significant effect of 

localization. This rate is consistent with a previous report from this region (Ovary et al. 2004) 

and similar to reports from U.S. (Labovitz et al. 2005), being somewhat favorable compared to 

international median of 40.4% in a recent meta-analysis (van Asch et al. 2010). The 

identification of age as an independent decisive factor recapitulates this meta-study (van Asch 

et al. 2010). Though resembling findings of SMASH-U studies for medication-related ICHs 

(Meretoja et al. 2012; Yeh et al. 2014), the independent prognostic value of admission INR>1.4 

(but not of anticoagulant use per se in the multivariate analysis) is a novelty (reported previously 

only in primary lobar ICHs (Falcone et al. 2013)), giving an additional context to the risk posed 

by anticoagulants, particularly VKAs. 

The analysis of potential clinical predictors of CAA-related ICHs revealed older age 

(~8% increase in risk per year) and prior intracranial hemorrhage (~8.5-fold risk) as 

independent significant predictors of probable/definite CAA diagnosis, which is consistent with 

the notion that CAA is the disease of the elderly (Yamada 2015) and CAA-related ICHs are 

often recurrent (Biffi and Greenberg 2011). These, together with the female predominance in 
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probable/definite CAA (though proven to be not independent of age) recapitulate key 

observations of a recent study from the U.S. comparing their probable/definite CAA-related 

ICH group with hypertension-related ICHs (as per SMASH-U) (Roh et al. 2018), and concord 

with autopsy studies demonstrating female predominance in CAA-related ICHs (Attems et al. 

2008; Hirohata et al. 2010). 

Highlighting its primary role in ICH development irrespective of etiology, our data 

indicates that pre-existing hypertension is invariably associated with definite/probable CAA 

diagnosis (93.8%), with the prevalence of hypertensive excess at presentation (46.7%) not being 

significantly different from the comparator group either. 

Though significant only at the univariate level, a remarkably high rate of definite/probable 

CAA patients (31.3%) had experienced prior ‘TIA’ compared to non-probable CAA (7.4%), 

presumably representing ‘amyloid spells’, suggested to be of epileptic origin. Interpreting these 

events as ‘ischemic’ necessarily adds to the inherited risk of ICH in CAA, due to the consequent 

initiation of antiplatelet therapy. Indeed, antiplatelet and anticoagulant drugs are considered a 

risk for ICH in CAA. Our study concords with this, revealing 68.8% of ICH patients with 

definite/probable CAA to be under at least one type of antithrombotic medication, with the 

multivariate analysis identifying antiplatelet (but not anticoagulant) use as an independent 

predictor of probable/definite CAA diagnosis. The 3.3-times higher prevalence of 

probable/definite CAA diagnosis in antiplatelet users vs. non-users resembles the 2-fold 

prevalence of lobar microbleeds in antiplatelet user ICH patients in a previous study (Gregoire 

et al. 2010). 

Underlying the relevance of missed diagnoses, a patient with fatal CAA-related ICH was 

on combined antithrombotic therapy despite a prior lobar ICH 1 year before the index ICH, 

having an SWI scan at first ICH already consistent with probable CAA, retrospectively. 

Our study has a number of limitations, including its retrospective nature, resulting in a 

certain amount of random missing values regarding some clinical factors analyzed, decreasing 

their statistical power. Strengths include the relatively large subject number, to our knowledge 

being among the largest studies reporting multivariate binary analysis of clinical discriminators 

of ICH localization, overtaken by a study from Japan (Matsukawa et al. 2012) and Germany 

(Weimar et al. 2011). Additional strength is the unprecedented rigor that probable and possible 

CAA diagnoses were established in (and thus CAA-related ICH prevalence estimated based on) 

a subgroup with ‘complete’ work-up including MRI-SWI and angiography (not allowing CT-

only), increasing diagnostic sensitivity and specificity. 

 

Conclusion 

This study provides an in-depth retrospective analysis of spontaneous ICHs, with 

particular focus on the prevalence and clinical predictors of CAA-related ICH, first in a country 

from this region, and among the few reports previously published in the literature. We conclude 

that CAA-related ICHs are at least as frequent (14.7%) in our population as reported 

internationally (5-20%). Notably, the remarkably low rate of clinically and radiologically 

established probable CAA diagnosis puts a significant percentage of the population, especially 

the elderly under antiplatelet therapy (as demonstrated), at a high risk of possibly lethal ICHs. 

This highlights the need for an increased awareness of CAA by both neurologists and 

radiologists. 
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Fig. 1 

Flow diagram of the process of identifying spontaneous intracerebral hemorrhages (ICHs) 

 

 

 

Fig. 2 

a) Localization of spontaneous intracerebral hemorrhages (ICHs). b) The distribution of 

underlying etiologies within lobar/cerebellar ICHs 
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Fig. 3 

Representative axial MRI-SWI images of probable CAA patients at different parts of the 

spectrum. a) Diffuse CSS with multiple lobar CMBs and ICHs of different ages. b) Diffuse (but 

less extensive) CSS with a recurrent lobar ICH and a single CMB. c) No CSS but multiple lobar 

CMBs accompanying a recent lobar ICH. The deep structures (i.e., basal ganglia, thalamus, and 

brainstem) are consistently devoid of hemorrhagic pathology 

CAA, cerebral amyloid angiopathy; CMB, cerebral microbleed; CSS, cortical superficial 

siderosis; ICH, intracerebral hemorrhage; MRI, magnetic resonance imaging; SWI, 

susceptibility-weighted imaging.  
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Table 1 Discriminators of spontaneous ICHs with regard to localization 
 

  Lobar/cerebellar Deep MW/Chi2 multivariate logistic regression 

  ICH ICH  p p OR (95%CI) 

Patient number  92 121 - -  

Age at event* y 74.5 [65.9–82.0] 64.7 [57.9–76.6] <0.001 0.014 1.03 (1.01–1.06) 

Sex (male/female) % 52.2 66.9 0.029 >0.05 - 

Prior ischemic stroke % 12.0 12.7 >0.05 - - 

Prior intracranial hemorrhage % 7.7 8.5 >0.05 - - 

Prior TIA (TFNE) % 14.1 7.6 >0.05 - - 

Prior loss of consciousness % 9.8 6.8 >0.05 - - 

Family history for any stroke % 37.5 28.8 >0.05 - - 

Anticoagulant use % 20.9 13.4 >0.05 - - 

INR>1.4 % 18.4 11.4 >0.05 - - 

Antiplatelet use* % 43.3 23.7 0.003 0.043 1.96 (1.02–3.75) 

Combined antithrombotic use % 13.3 3.4 0.016 >0.05 - 

Hypertensive excess* % 48.9 71.2 0.001 0.002 0.39 (0.21–0.71) 

Chronic hypertension % 88.0 90.9 >0.05 - - 

Case fatality (1-month) % 34.8 33.1 >0.05 - - 

 

MW/Chi2, Mann-Whitney test (for Age at event) or Chi2 test (for other variables); CI, 

confidence interval; ICH, intracerebral hemorrhage; INR, international normalized ratio; OR, 

odds ratio; TIA, transient ischemic attack; TFNE, transient focal neurological episode; y, year 

(median [interquartile range]); bold font indicates variables with significant difference in 

univariate analyses; * indicates significant predictors in the multivariate analyses. 
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Table 2 Discriminators of spontaneous ICHs with regard to probable/definite CAA diagnosis 

  Probable/definite Non-probable St/Chi2 multivariate logistic regression 

  CAA CAA p p OR (95%CI) 

Patient number  16 152  -  

Age at event* y 75.9±2.3 65.6±1.1 0.002 0.012 1.08 (1.02–1.15) 

Sex (male/female) % 37.5 64.5 0.035 >0.05 - 

Prior ischemic stroke % 18.8 10.7 >0.05 - - 

Prior intracranial hemorrhage* % 31.3 6.8 0.008 0.005 8.53 (1.94–37.58) 

Prior TIA (TFNE) % 31.3 7.4 0.010 >0.05 - 

Prior loss of consciousness % 18.8 6.0 >0.05 - - 

Family history for any stroke % 42.9 29.1 >0.05 - - 

Anticoagulant use % 18.8 12.8 >0.05 - - 

INR>1.4 % 20.0 10.4 >0.05 - - 

Antiplatelet use* % 56.3 25.2 0.009 0.042 3.45 (1.05–11.38) 

Combined antithrombotic use % 6.4 4.1 >0.05 - - 

Hypertensive excess % 46.7 64.2 >0.05 - - 

Chronic hypertension % 93.8 88.8 >0.05 - - 

Case fatality (1-month) % 31.3 28.9 >0.05 - - 

 

St/Chi2, Student t-test (for Age at event) or Chi2 test (for other variables); CI, confidence 

interval; ICH, intracerebral hemorrhage; INR, international normalized ratio; OR, odds ratio; 

TIA, transient ischemic attack; TFNE, transient focal neurological episode; y, year 

(mean±SEM); bold font: indicates variables with significant difference in univariate analyses; 

* indicates significant predictors in multivariate analyses. 
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Online Resource 1 Neuropathology of definite cerebral amyloid angiopathy (CAA) cases. a) 

Leptomeningeal and penetrating cortical arteries with thickened Congo red-positive walls, 

demonstrating apple-green birefringence under the polarized microscope (insets). b) Immunostaining 

for amyloid-β reveals denegerated vessel walls with typical double-barrel formation, with occasional 

widening of the perivascular space and perivascular amyloid-β deposition (inset). c) Subcortical 

microbleeds with erythrocyte extravasation, hemosiderin deposition, and characteristic central pallor 

with a central arteriole/capillary (often occluded; lower-left inset (Crossmon)), occasionally with 

immunopositivity for amyloid-β (upper-right inset). d) Cortical superficial (i.e., subarachnoid) siderosis 

with apparent siderophage activity (occasionally also laden with diffuse amyloid-β-immunopositive 

material; inset). e) All 3 patients with definite CAA demonstrated different amount of amyloid-β plaque 

pathology in addition to CAA. f) Only 2 of the 3 definite CAA patients showed Tau pathology in the 

examined regions with neurofibrillary tangles and dystrophic neurites (inset), reflecting the ~70% 

overlap with Alzheimer’s disease pathology. 
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Online Resource 2 Predictors of 1-month case fatality in spontaneous ICHs 

 

  Case fatality Alive MW/Chi2 multivariate logistic regression 

  at 1 month at 1 month p p OR (95%CI) 

Patient number  72 138 - - - 

Age at event* y 75.3 [66.4–82.4] 65.4 [56.3–76.8] <0.001 0.003 1.04 (1.01–1.07) 

Sex (male/all) % 65.3 58.0 >0.05 - - 

Localization (deep/all) % 55.6 58.7 >0.05 - - 

Prior ischemic stroke % 15.9 10.9 >0.05 - - 

Prior intracranial hemorrhage % 7.2 8.8 >0.05 - - 

Anticoagulant use % 25.7 11.7 0.010 >0.05 - 

INR>1.4* % 23.6 8.7 0.004 0.035 2.51 (1.07–5.88) 

Antiplatelet use % 29.0 33.8 >0.05 - - 

Combined antithrombotic use % 10.1 5.9 >0.05 - - 

Hypertensive excess % 66.7 60.2 >0.05 - - 

Chronic hypertension % 88.9 89.9 >0.05 - - 

 

MW/Chi2, data obtained from the Mann-Whitney test (for Age at event) or the Chi square test 

(for all other variables); CI, confidence interval; ICH, intracerebral hemorrhage; INR, 

international normalized ratio; OR, odds ratio; TIA, transient ischemic attack; TFNE, transient 

focal neurological episode; y, year (data is presented in median [interquartile range]); bold font 

indicates variables with significant difference in comparative analyses; * indicates significant 

predictors in the model controlling for all variables significant in the comparative analyses. 

Three cases were excluded from the analyses due to unrelated cause of death, as per definition. 
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Online Resource 3 Overview of studies reporting CAA-related ICH prevalence on clinical grounds. 

The studies are separated based on whether they reported subgroups of CAA diagnosis or not. 

 Jamieson 2012 [1]a Meretoja 2012 [2] 

SMASH-U 

Palm 2013 [3] 

semi-SMASH-Ua 

Roh 2018 [4] 

semi-SMASH-Ua 

Present study 

definite CAA 0 0.0% 10 4.9% 0 0.0% 2 2.0% 3 11.5% 

supportive histopathology for CAA 0 0.0% 2 1.0% 0 0.0% 6 6.0% 0 0.0% 
probable CAA 6 11.3% 36 17.6% 15 34.1% 47 46.5% 13 50.0% 

possible CAA 47 88.7% 157 76.6% 29 65.9% 46 45.5% 10 38.5% 

all ICHs (spontaneous) 136  1013  152  425  213  
all CAAs / all ICHs 53 39.0% 205 20.2% 44 28.9% 101 23.8% 26/47/92 23.9%c 

probable-definite CAAs / all ICHs 6 4.4% 48 4.7% 15 9.9% 55 12.9% 16/47/92 14.7%c 

MRI / all ICHs NA  15.1%  20.4%  NA  37.1%  
MRI / all CAAs NA  20.5%  NA  71.3%b  96.2%d  

SWI / all ICHs NA  NA  NA  NA  31.0%  

SWI / CAAs NA  NA  NA  NA  92.3%d  
angiography / all ICHs NA  25%  26.3%  NA  55.4%  

angiography / all CAAs NA  NA  NA  NA  100.0%  

cerebellar ICHs excluded from CAA yes  yes  yes  no  no  

           

           

 Yeh 2014 [5] 

SMASH-U 

Cappellari 2015 [6] 

semi-SMASH-Ue 

Owolabi 2017 [7] 

SMASH-U 

Wu 2017 [8] 

SMASH-U 

Forlivesi 2018 [9] 

SMASH-U 

definite CAA NA  NA  NA  NA  NA  

supportive histopathology for CAA NA  NA  NA  NA  NA  
probable CAA NA  NA  NA  NA  NA  

possible CAA NA  NA  NA  NA  NA  

all CAAs / all ICHs 463 12.2% 62 14.6% 1 2.4% 344 23.7% 51 16.6% 
all ICHs (spontaneous) 3785  424  42  1452  308  

probable-definite CAA / all ICHs NA  NA  NA  NA  NA  

MRI / all ICHs NA  NA  NA  NA  NA  
MRI / all CAAs NA  NA  NA  NA  NA  

SWI / all ICHs NA  NA  NA  NA  NA  

SWI / CAAs NA  NA  NA  NA  NA  
angiography / all ICHs 25.0%  NA  NA  NA  NA  

angiography / all CAAs 39.1%  NA  NA  NA  NA  

cerebellar ICHs excluded from CAA yes  no  yes  yes  yes  

 
CAA, cerebral amyloid angiopathy, ICH, intracerebral hemorrhage; MRI, magnetic resonance imaging; NA, not available; SWI, susceptibility-

weighted imaging;  

a structural etiologies not included (i.e., primary ICHs only) 

b all probable/supported/definite CAA but 3 had MRI (SWI rate undisclosed); those without MRI had supportive intraoperative histology. 

c data extrapolated from the rate within adequately worked-up lobar/cerebellar ICHs (i.e., MRI-SWI and angiography or neuropathology required), as 

detailed in the manuscript. 

d all probable/definite CAA but 1 had MRI and all but 2 had SWI; those without MRI/SWI had definite CAA diagnosis post mortem. 

e brainstem ICH was allowed in CAA. 
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Online Resource 4 Discriminators of spontaneous ICHs with regard to lobar vs. non-lobar 

localization 

 

    MW/Chi2 multivariate logistic regression 

  Lobar ICH Non-lobar ICH  p p OR (95%CI) 

Patient number  85 128 - -  

Age at event* y 74.7 [66.2–82.2] 64.9 [57.8–76.6] <0.001 0.006 1.04 (1.01–1.06) 

Sex (male/female) % 52.9 65.6 >0.05 - - 

Prior ischemic stroke % 12.9 12.0 >0.05 - - 

Prior intracranial hemorrhage % 8.3 8.0 >0.05 - - 

Prior TIA (TFNE) % 15.3 7.2 >0.05 - - 

Prior loss of consciousness % 10.6 6.4 >0.05 - - 

Family history for any stroke % 37.8 29.0 >0.05 - - 

Anticoagulant use % 20.2 14.3 >0.05 - - 

INR>1.4 % 17.3 12.5 >0.05 - - 

Antiplatelet use* % 44.6 24.0 0.002 0.041 1.97 (10.3–3.76) 

Combined antithrombotic use % 13.3 4.0 0.018 >0.05 - 

Hypertensive excess* % 48.2 70.4 0.001 0.003 0.39 (0.21–0.72) 

Chronic hypertension % 88.2 90.6 >0.05 - - 

Case fatality (1-month) % 35.3 32.8 >0.05 - - 

 

MW/Chi2, Mann-Whitney test (for Age at event) or Chi2 test (for other variables); CI, 

confidence interval; ICH, intracerebral hemorrhage; INR, international normalized ratio; OR, 

odds ratio; TIA, transient ischemic attack; TFNE, transient focal neurological episode; y, year 

(median [interquartile range]); bold font indicates variables with significant difference in 

univariate analyses; * indicates significant predictors in the multivariate analyses. 

 


