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Abstract
If aHilbert geometry of twice differentiable boundary has two quadratic infinitesimal spheres,
then the Hilbert geometry is a Cayley–Klein model of the hyperbolic geometry.
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1 Introduction

Let C D denote the open segment of the points C, D ∈ R
n (n = 1, 2, . . .), and if it is on the

straight line AB of points A, B ∈ R
n , then let (A, B; C, D) denote the cross-ratio of these

points. If M is an open, strictly convex, and bounded subset of Rn (n = 2, 3, . . .), then the
function d : M × M → R defined by

d(A, B) =
{
0, if A = B,
1
2

∣∣ ln(A, B; C, D)
∣∣, if A �= B, where C D = M ∩ AB,

is a metric on M [4, p. 297] which satisfies the strict triangle inequality, i.e., d(A, B) +
d(B, C) = d(A, C) if and only if B ∈ AC ∪ {A, C}. This function d is called the Hilbert
metric on M, and M is its domain. Such pairs (M, d) are called Hilbert geometries.

Hilbert geometries are Finslerian manifolds [4, (29.6)]. We call a point P of a Hilbert
geometry (M, d) Riemannian if the Finsler norm on TPM is quadratic. By Beltrami’s
theorem [1,2] (see also [4, (29.3)]), a Hilbert geometry is Riemannian if and only if it is a
Cayley–Klein model of the hyperbolic geometry.

In this paper, we prove in Theorem 4.4 that
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810 Á. Kurusa

a Hilbert geometry in the plane has two Riemannian points if and only if it is a Cayley–
Klein model of the hyperbolic geometry.

For the proof, we need the assumption that the boundary is twice differentiable at the points,
where the line joining the twoRiemannian points intersects the boundary. Theorem 5.2 shows
that this assumption is also necessary.

Theorem 4.4 is also formulated in the language of geometric tomography [7] by Theo-
rem 5.3:

the twice differentiable boundary of a strictly convex bounded domain in the plane is
an ellipse if and only if its (−1)-chord functions are quadratic at two inner points.

2 Notations and preliminaries

Points of Rn are denoted by capital letters A, B, . . ., vectors are
−→
AB or a, b, . . ., but we use

these latter notations also for points if the origin is fixed. We denote the interior of the convex
hull of a point set P by P .

For C ∈ AB, the affine ratio (A, B; C) is defined by (A, B; C)
−→
BC = −→

AC , and it satisfies
(A, B; C, D) = (A, B; C)/(A, B; D) [4, p. 243].

If a Euclidean metric de is given, then the length of a segment AB, or of a vector
−→
AB = x

is denoted by |AB| = |x| = de(A, B).
We use the usual big-O and little-o notation. To indicate derivatives of a function or a

map, we use prime, dot or D appropriately.
If the domain M of the Hilbert geometry (M, d) is in R

n , then we identify the tangent
spaces TPMwithRn by the map ıP : v �→ P +v. This way, the Finsler function FM : M×
R

n → R associated with the Hilbert metric d can be given at a point P ∈ M by

FM(P, v) = 1

2

( 1

λ−
v

+ 1

λ+
v

)
, (2.1)

where v ∈ TPM, and λ±
v ∈ (0,∞] is such that P±

v := P ± λ±
v v ∈ ∂M [4, (50.4)].1

Equation (2.1) implies that ıP maps the indicatrix of norm FM(P, ·) into the strictly convex
set BM

P ⊂ R
n , the infinitesimal ball, with boundary

SM
P := ∂BM

P = {2(P+
v − P)(P, P+

v ; P−
v ) : v ∈ TPM},

the infinitesimal sphere. Observe here that

if � is a projective transformation on the projective completion P
n of Rn ,

then its derivative �̇ is an affine transform from each tangent space TPM of
M onto T�(P)�(M), and �̇ (SM

P ) ≡ S�(M)
�(P) holds.

(2.2)

From now on, we work only in the plane unless explicitly said otherwise.

So, infinitesimal spheres are called infinitesimal circles and denoted by CMP .
If a Euclidean metric is provided, then we frequently use the notation uϕ = (cosϕ, sin ϕ).

Further, if a bounded open domain D ⊂ R
2 is starlike with respect to a point P ∈ D, then

we usually polar parameterize the boundary ∂D with a function r : [−π, π) → R
2 defined

by r(ϕ) = r(ϕ)uϕ ∈ ∂D, where r > 0 is the radial function of D with respect to the base

1 If λ±
v = ∞, then P±

v is an ideal point.
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Hilbert geometries with Riemannian points 811

point P . For any ellipse E with center P there exists uniqueω ∈ (−π/2, π/2] and a ≥ b > 0
such that

1

r2(ϕ)
= cos2(ϕ − ω)

a2 + sin2(ϕ − ω)

b2
(2.3)

is the polar equation with respect to origin P .
We also use the notation �d := {λd : λ ∈ R} for the line through the origin with

nonvanishing directional vector d, and �ξ = �uξ as a short hand in the plane.
The following result is a rephrase of [5, Stable Manifold Theorem, p. 114]. See also [6,

Theorem 4.1]!

Theorem 2.1 Let N0 ⊂ R
2 be a neighborhood of the origin 0, and let the mapping 
 : N0 →

R
2 be of class Cl (l ∈ [1,∞]).
If there are linearly independent vectors u and v such that 
(w) = w for every w ∈

�u ∩ N0, and D
(0,0)v = kv for some k ∈ (0, 1), then in some neighborhood N ⊆ N0 of 0
the set {w ∈ N : 
(r)(w) → 0 as r → ∞} is the graph of a Cl function from �v∩N to �u∩N .

Notice that 
(r) refers to the r -th iterate, rather than, e.g., the r -th derivative.
Finally, we need the following easy consequence of [4, (28.11)]:

Let � be an affine line through point P of the Hilbert plane (M, d). Let I and J
be the points where � intersects ∂M. Let L be the common (maybe ideal) point
of the tangents of M at I and J . Then the tangents of CMP at its intersections
with � go through point L.

(2.4)

3 Utilities

Although it is known that the hyperbolic geometry is a Riemannian manifold, so its infinites-
imal spheres are quadratic, the following result gives some more details.

Lemma 3.1 Let Ee be the ellipse x2 + y2

e2
= 1, and let P = (p, 0), where p ∈ (−1, 1). Then

CEe
P is the ellipse (x−p)2

a2
+ y2

b2
= 1, where a = 1 − p2 and b = e

√
1 − p2.

Proof. According to (2.2), we can assume that e = 1 without loss of generality.
Let line P + �ξ intersect Ee in the points P ± λ±uξ . Then 1 = λ2± + p2 ∓ 2pλ± cos ξ ,

hence λ± = ±p cos ξ +
√
1 − p2 sin2 ξ . Thus (2.1) gives

1

r2(ξ)
=

( 1

λ+
+ 1

λ−

)2 = 1 − p2 sin2 ξ

(1 − p2)2
= cos2 ξ

(1 − p2)2
+ sin2 ξ

1 − p2
.

Notice that CĒe
P is a circle if and only if 1 − p2 = e

√
1 − p2, i.e., p = ±√

1 − e2 which
can only happen if e < 1. In this case, P is a focus of Ee.

From now on, we always use the following general configuration: P is a point of a 2-
dimensional Hilbert geometry (M, d); � is a straight line through P; I and J are the points
where � intersects ∂M; a coordinate system is chosen2 such that I = (−1, 0), J = (1, 0),
and P = (p, 0), where −1 < p < 1; X and Y are the points where P + �ξ intersects ∂M.
Figure 1 shows qualitative depictions of what we have in general.

2 Point (0, 1) will always be chosen outside � so as to help calculations.
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Fig. 1 Qualitative depiction of infinitesimal circles in Hilbert planes

Observe that for X ∈ ∂M we have 2FM(P, X − P) − 1 = 1/λ−
X−P > 0 by (2.1), so, as

a continuous function takes its minimal value, there is a suitably small ε > 0 such that the
map


P : Z �→ 
P (Z) = P + (P − Z)
1

2FM(P, Z − P) − 1
(3.1)

is well defined on the Minkowski sumMε := ∂M+ εB2, where B2 is the unit ball at (0, 0).
Choose theEuclideanmetric de such that {(1, 0), (0, 1)} is an orthonormal basis, and polar

parameterize CMP with respect to P by r : [−π, π) � ξ �→ r(ξ)uξ ∈ R
2. Then (2.1) gives

1

|X P| + 1

|PY | = 2

r(ξ)
. (3.2)

Thus r is twice differentiable if ∂M is twice differentiable, and

r(0) = 2|I P||P J |
|I J | = 1 − p2, hence 2|I P| − r(0) = (1 + p)2. (3.3)

Lemma 3.2 Let X ∈ I + εB2, and set Y = 
P (X). Let (x, y) = X − I and (u, v) = J − Y .
Then

v
(
1 + u

1 − p
+ O(u2)

)
= y

(1 − p

1 + p
+ x

1 − p

(1 + p)2
+ O(x2)

)
, (3.4)

and

−u = x
(1 − p)2

(1 + p)2
− y

2r ′(0)
(1 + p)3

+ x2
2(1 − p)2

(1 + p)4
− xy

r ′(0)2(3 − p)

(1 + p)5
+

+ y2
1

(1 + p)3

(
− (1 − p) + 2(r ′(0))2

(1 + p)3
+ r ′′(0)

1 + p

)
+

+ O(x3) + O(x2y) + o(y2).

(3.5)

Proof Let uξ = (X − P)/|X − P|. Then we clearly have y
1+p−x = − tan ξ = v

1−p−u , so

the expansions of 1
1−p−u and 1

1+p−x give (3.4).
To prove (3.5), we are estimating −u for the second order of x and y. We start with (3.2)

and use (3.3) as

−u = |PY | cos ξ − |P J | = cos ξ
2

r(ξ)
− 1

|X P|
− (1 − p) = r(ξ)|X P| cos ξ

2|X P| − r(ξ)
− (1 − p)

= r(ξ)(1 + p − x) − (1 − p)(2|X P| − r(ξ))

2|X P| − r(ξ)
= r(ξ)(2 − x) − 2(1 − p)|X P|

2|X P| − r(ξ)
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Hilbert geometries with Riemannian points 813

= (r(ξ) − r(0))(2 − x) + r(0)(2 − x) − 2(1 − p)|I P| + 2(1 − p)(|I P| − |X P|)
2|X P| − r(ξ)

= (r(ξ) − r(0))(2 − x) − xr(0) + 2(1 − p)(|I P| − |X P|)
2|X P| − r(ξ)

shows. Next we estimate |X P| by the binomial series so that

|X P| = ((|I P| − x)2 + y2)1/2 = |I P| − x + y2/2

|I P| − x
+ O(y4)

= |I P| − x + y2

2

( 1

|I P| + O(x)
)

+ O(y4) = |I P| − x + y2/2

1 + p
+ O(xy2) + O(y4).

(3.6)

Substitution of this into the previous formula and some rearrangements result in

−u = (1 − p)
(
2x − y2

1+p

) + (2 − x)(r(ξ) − r(0)) − x(1 − p2)

2|X P| − r(ξ)
+ O(xy2) + O(y4)

= x(1 − p)(1 − p2) − (1 − p)y2 + (2 − x)(1 + p)(r(ξ) − r(0))

(2|X P| − r(ξ))(1 + p)
+

+ O(xy2) + O(y4). (3.7)

To estimate this, we need to consider r(ξ) − r(0) and 1/(2|X P| − r(ξ)). We use the
binomial series and (3.6) to get

1

|X P| = 1

|I P| − (|I P| − |X P|) =
(
1 + p −

(
x − y2/2

1 + p
+ O(y2x) + O(y4)

))−1

= 1

1 + p
+ x

(1 + p)2
− y2/2

(1 + p)3
+ x2

(1 + p)3
+ O(xy2) + O(y4) + O(x3).

This, as sin ξ = −y/|X P|, leads to

ξ = sin ξ + O(ξ3) = −y

|X P| + O(y3) = −y

1 + p
− yx

(1 + p)2
+ O(y3) + O(yx2). (3.8)

Substitution of this into the Taylor expansion of r gives

(1 + p)(r(ξ) − r(0))

= (1 + p)
(
ξr ′(0) + ξ2

2
r ′′(0) + o(ξ2)

)

=
(

− y − yx

1 + p

)
r ′(0) + y2

1 + p

r ′′(0)
2

+ o(y2) + O(yx2) + O(y2x).

(3.9)

Again the binomial series, and then (3.3), (3.6), and (3.9) result in

1

2|X P| − r(ξ)
= 1

(2|I P| − r(0)) − (2(|I P| − |X P|) + (r(ξ) − r(0)))

= (
(1 + p)2 − (2(|I P| − |X P|) + (r(ξ) − r(0)))

)−1

= 1

(1 + p)2
+ 2x − y r ′(0)

1+p

(1 + p)4
+ O(x2) + O(xy) + O(y2). (3.10)
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814 Á. Kurusa

Putting estimates (3.9), (3.10), and (3.8) into (3.7) and confining ourselves to summands
of degree less than three, we obtain

− u + O(x3) + O(x2y) + o(y2)

=
( 1

(1 + p)3
+ 2x − y r ′(0)

1+p

(1 + p)5

)(
(x(1 − p2) − y2)(1 − p) + (2 − x)(1 + p)(r(ξ) − r(0))

)

=
( 1

(1 + p)3
+ 2x − y r ′(0)

1+p

(1 + p)5

)
(x(1 − p2) − y2)(1 − p)+

+
( 1

(1 + p)3
+ 2x − y r ′(0)

1+p

(1 + p)5

)
(2 − x)

((
− y − yx

1 + p

)
r ′(0) + y2

1 + p

r ′′(0)
2

)

= (x(1 − p2) − y2)(1 − p)

(1 + p)3
+ (2x2(1 + p) − xyr ′(0))(1 − p)2

(1 + p)5
−

−
( 2y − xy

(1 + p)3
+ 2xy

(1 + p)4
+ 4xy − 2y2 r ′(0)

1+p

(1 + p)5

)
r ′(0) + y2

(1 + p)4
r ′′(0),

where the summands that are estimated by O(x3)+ O(x2y)+o(y2) was left out. Collecting
the terms by their powers gives

−u = x
(1 − p)2

(1 + p)2
− y

2r ′(0)
(1 + p)3

+ x2
2(1 − p)2

(1 + p)4
−

− xy
r ′(0)

(1 + p)3

( (1 − p)2

(1 + p)2
− 1 + 2

1 + p
+ 4

(1 + p)2

)
+

+ y2
1

(1 + p)3

(
− (1 − p) + 2(r ′(0))2

(1 + p)3
+ r ′′(0)

1 + p

)
+ O(x3) + O(x2y) + o(y2).

This implies (3.5) after reordering the summands.

4 Hilbert geometries with two Riemannian points

In what follows, we always assume that P and Q are Riemannian points of the Hilbert
plane (M, d), � = P Q is the x-axis of the chosen coordinate system, I and J are the
intersection points of � and ∂M, I = (−1, 0), J = (1, 0), P = (p, 0) and Q = (q, 0),
where −1 < q < p < 1. Further, tI and tJ are the respective tangents ofM at I and J , and
the tangents of CMQ and CMP at their respective intersections with � are tQ

I , t
Q
J and tP

I , t
P
J ,

respectively.
Notice that the infinitesimal circle CMP is now an ellipse, so it is of form (2.3) in any

Euclidean metric. Observe that differentiation of (2.3) yields

r ′(ϕ) =
( 1

a2 − 1

b2

) sin(2ϕ − 2ω)

2
r3(ϕ),

r ′′(ϕ) =
( 1

a2 − 1

b2

)
r2(ϕ)

(
cos(2ϕ − 2ω)r(ϕ) + 3 sin(2ϕ − 2ω)

2
r ′(ϕ)

)
.

Further, using

1

r2(0)
− 1

r2(π/2)
= cos2 ω

a2 + sin2 ω

b2
− sin2 ω

a2 − cos2 ω

b2
=

( 1

a2 − 1

b2

)
cos(2ω),
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Hilbert geometries with Riemannian points 815

we obtain

r ′(0) = −r3(0)
( 1

r2(0)
− 1

r2(π/2)

) tan(2ω)

2
,

r ′′(0) =
( 1

r2(0)
− 1

r2(π/2)

)
r3(0) + 3

(r ′(0))2

r(0)
. (4.1)

Lemma 4.1 If ∂M is twice differentiable at I and J , then there is a unique ellipse E touching
M at I , J such that CEQ ≡ CM

Q and CEP ≡ CMP .

Proof If tQ
I intersects tP

J , then tI also intersects tJ in a point, say L , by (2.4). Choose a
straight line l through L that avoids M, and let � be a perspectivity that takes l into the
ideal line of R2. Then, by (2.2), �̇ (CMQ ) ≡ C�(M)

�(Q) , and �̇ (CMP ) ≡ C�(M)
�(P) , hold, where the

derivative �̇ of � is an affine transform. As affinities keep quadraticity, �(Q) and �(P)

are Riemannian points in the Hilbert geometry (�(M), d�(M)), so we can assume without

loss of generality that tQ
I ‖ tP

J .
Fix the Euclidean metric d in which CMQ is a circle and d(I , J ) = 2. Since CMQ is a circle,

t
Q
I and tP

J , and, by (2.4), also tI and tJ are perpendicular to line Q P . Figure 2 shows what
we have.

Thus we have r ′(0) = 0 and also r ′′(0) = r3(0)
( 1

r2(0)
− 1

r2(π/2)

)
by (4.1). So equation

(3.5) reduces to

−u = x
(1 − p)2

(1 + p)2
+ x2

r(0)

2(1 − p)3

(1 + p)3
− y2

r(0)

(1 − p)2

(1 + p)2
+

+ y2r(0)
(1 − p)2

(1 + p)2

( 1

r2(0)
− 1

r2(π/2)

)
+ O(x3) + O(x2y) + o(y2).

(4.2)

Assume from now on that X ∈ ∂M, hence also Y = 
P (X) ∈ ∂M.
Since tI and tJ are perpendicular to line Q P , basic differential geometry gives that the

respective curvatures of ∂M at I and J are

κI := lim
x→0

2x

y2
and κJ := lim

u→0

2u

v2
. (4.3)

So, dividing (4.2) by the square of (3.4) leads to

M

I J

Q

q

CM
Q

P

p

CM
P

tQI tPJ

tI tJ

M

I J

Q

q

CM
Q

P

p

CM
P

tQI tPJ

tI tJ

Fig. 2 Riemannian points Q, P in a Hilbert plane M
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κJ = lim
u→0

2u

v2
= lim

u→0

−2x

y2
+ 2

r(0)
−2r(0)

( 1

r2(0)
− 1

r2(π/2)

)
= −κI + 2r(0)

r2(π/2)
. (4.4)

Repeating the same procedure for the circle CMQ gives κJ = −κI + 2
1−q2 . This and (4.4)

imply

r
(π

2

)
=

√
1 − q2

√
1 − p2, (4.5)

hence Lemma 3.1 proves the statement with the ellipse x2 + y2

1−q2 = 1.

Lemma 4.2 If ∂M is twice differentiable at I and J , then E coincides ∂M in a neighborhood
of I , J , respectively.

Proof According to the last formula in the proof of Lemma 4.1, the infinitesimal circles
CEP ≡ CMP and CEQ ≡ CM

Q can be represented by polar equations of form

1

r2(ϕ)
= cos2 ϕ

a2 + sin2 ϕ

b2
, and

1

r2q (ϕ)
= 1

r2q (0)
,

respectively. Then (3.1) gives


P (P − zuϕ) = P + zuϕ

1

2FM(P, zuϕ) − 1
= P + zuϕ

1

2 z
r(ϕ)

− 1
,

hence 
P is a real analytic map onMε . It follows in the same way that 
Q is a real analytic
map on Mε . We conclude that 
 := 
Q ◦ 
P is also a real analytic map on Mε.

Let 
Q(s, t) = (u, v) = 
P (x, y), where (x, y) ∈ εB2 ⊂ Mε for an ε ∈ (0, ε). (4.6)

Observe that all three convergences (s, t) → (0, 0), (u, v) → (0, 0), and (x, y) → (0, 0)
are equivalent.

Then (3.5) gives

u = s
(1 − q)2

(1 + q)2
+ s2

2(1 − q)2

(1 + q)4
− t2

1 − q

(1 + q)3
+ O(s3) + O(s2t) + o(t2)

= x
(1 − p)2

(1 + p)2
− y

2r ′
p(0)

(1 + p)3
+ x2

2(1 − p)2

(1 + p)4
− xy

r ′
p(0)2(3 − p)

(1 + p)5
+

+ y2
1

(1 + p)3

(
− (1 − p) + 2(r ′

p(0))
2

(1 + p)3
+ r ′′

p(0)

1 + p

)
+ O(x3) + O(x2y) + o(y2).

(4.7)
Further, (3.4) gives

v = t
1 − q

1 + q

(
1 + s

1 + q
+ O(s2)

)(
1 − u

1 − q

)

= y
1 − p

1 + p

(
1 + x

1 + p
+ O(x2)

)(
1 − u

1 − p

)
.
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Hilbert geometries with Riemannian points 817

This immediately implies

t

ky
= 1 + x

1+p + O(x2)

1 + s
1+q + O(s2)

1 − u
1−p

1 − u
1−q

= 1 + x
2p

(1 + p)2
+ y

2r ′
p(0)

(1 − p2)(1 + p)2
− s

2q

(1 + q)2
+

+ O(x2) + O(s2) + O(u2) + O(xu) + O(su),

(4.8)

where k = 1−p
1+p

1+q
1−q < 1.

Now we are calculating 
. Lemma 4.1 gives r ′
p(0) = 0, and also r ′

q(0) = r ′′
q (0) = 0

holds. Equations (4.1), (3.3), and (4.5) give

r ′′
p(0) =

( 1

r2p(0)
− 1

r2p(π/2)

)
r3p(0) = rp(0)

(
1 − r2p(0)

r2p(π/2)

)
= (1 − p2)

(
1 − 1 − p2

1 − q2

)
.

Thus (4.7) gives

s
(1 − q)2

(1 + q)2
+ s2

2(1 − q)2

(1 + q)4
− t2

1 − q

(1 + q)3
+ O(s3) + O(s2t) + o(t2)

= x
(1 − p)2

(1 + p)2
+ x2

2(1 − p)2

(1 + p)4
− y2

(1 − p)2

(1 + p)2

1

1 − q2 + O(x3) + O(x2y) + o(y2).

This mutates at (x, y) = (zy2, y) to

s

k2y2
= z

1 + 2zy2

(1+p)2
+ 1

z

( t2

y2
(1+p)2

(1−p)2
1−q

(1+q)3
− 1

1−q2

) + O(z2y4) + O(zy3) + o(1)

1 + s2 2
(1+q)2

+ O(s3) + O(s2t) + o(t2)
,

(4.9)
where y �= 0, and z is close to κI /2 by (4.3) and (4.6). Further, (4.8) gives

t2

y2
(1 + p)2

(1 − p)2

1 − q

(1 + q)3
− 1

1 − q2 = 1

1 − q2

( t2

k2y2
− 1

)
= O(x2) + O(xs) + O(s2).

So, after the coordinate-transform� : (z, y) �→ (zy2, y), where y �= 0 and z is close to κI /2,

 becomes 
�(z, y) := �−1 ◦ 
 ◦ �(z, y) = �−1(
(zy2, y)), hence equations (4.8) and
(4.9) give


�(z, y) = �−1(zy2k2 + o(y2), yk + o(y2)) = (z + o(1), yk + o(y2)).

Therefore, defining 
�(z, 0) := (z, 0) extends 
� to a real analytic mapping in a neighbor-
hood of (κI /2, 0).

Summing up, the analytic map 
� fixes the points (z, 0) near (κI /2, 0) and has the
derivative D
�(κI /2, 0) = (

1 0
0 k

)
.

Thus 
� satisfies the conditions in Theorem 2.1 with vectors (1, 0) and (0, 1), so there
is a neighborhood N of (κI /2, 0) such that the set{

w ∈ N : (

�

)(r)
(w) → (κI /2, 0) as r → ∞}

is the graph of a C1 function from �(0,1) ∩ N to �(1,0) ∩ N . This proves the statement of the
lemma.
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Lemma 4.3 If two Hilbert geometries have two common Riemannian points Q and P, and
their borders coincide in some neighborhood of line P Q, then the two Hilbert geometries
coincide.

Proof Let (L, dL) and (M, dM) be Hilbert geometries with common Riemannian points Q
and P . Assume that there is a neighborhood N of line P Q that intersects the border of our
Hilbert geometries in two common arcs I0 and J0.

Let line P Q intersect I0 and J0 in points I and J , respectively. We can assume without
loss of generality that the points are ordered as I ≺ Q ≺ P ≺ J . So, we can use the notations
already introduced in this paper.

Observe that CLQ ≡ CMQ and CLP ≡ CMP , because the common arcs of ∂L and ∂M
determine small common arcs of the quadratic infinitesimal circles near line Q P . Thus both

P and 
Q map any common arc of ∂L and ∂M to a common arc of ∂L and ∂M.

We generate common arcs by defining Jk+1 := 
Q(Ik) and Ik+1 := 
P (Jk) for every
k = 0, 1, . . .. Let αk (k = 0, 1, . . .) be the angle Ik subtends at Q, and let βk (k = 0, 1, . . .)
be the angle Jk subtends at P .

To show that it is contradictory, assume that every αk and βk (k = 0, 1, . . .) is less than
π . Then we clearly have β0 < α1 < β2 < α3 < · · · < β2k < α2k+1 < β2k+2 < · · · < π .
So I = limk→∞ I2k+1 subtends angle α = limk→∞ α2k+1 ≤ π , and J = limk→∞ J2k

subtends angle β = limk→∞ β2k ≤ π . From the sequence of inequalities α = β follows,
hence 
Q(I) = J and 
P (J ) = I. Then the assumption implies that α = β < π , which
contradicts Q �= P . So one of αk or βk (k = 0, 1, . . .) is at least π , say αk ≥ π . Then
Ik ∪ 
Q(Ik) covers ∂L and ∂M, and the lemma is proved.

Theorem 4.4 If a Hilbert geometry has two Riemannian points, and its boundary is twice
differentiable where it is intersected by the line joining those Riemannian points, then it is a
Cayley–Klein model of the hyperbolic space.

Proof By Lemma 4.1, there is an ellipse E touching M in I , J , such that CEQ ≡ CM
Q and

CEP ≡ CMP . Then Lemma 4.2 shows that ∂M and E coincide in a neighborhood of line P Q.
Finally Lemma 4.3 proves that ∂M and E coincide.

5 Discussion

Theorem 4.4 can be reformulated in the language of geometric tomography [7]. It generalizes
Falconer’s [5, Theorem 3].

Theorem 5.1 Let Q and P be two points of a strictly convex bounded open domain M in the
plane. Assume that the boundary ∂M is twice differentiable where it intersects line Q P. If
the (−1)-chord functions at Q and P are quadratic, then ∂M is an ellipse.

Falconer’s [5, Theorem 4] gives that for any two fixed points P, Q several distinct strictly
convex bounded open domains M exist in the plane such that P, Q ∈ M, the (−1)-chord
functions at P and Q are equal to 1, the boundary ∂M is differentiable at I , J ∈ P Q ∩ ∂M
and twice differentiable everywhere else, and ∂M is not an ellipse. Observe that in such
an M there can not exist a third inner point with quadratic (−1)-chord function, because
then ∂M has to be an ellipse by Theorem 5.1. Reformulating these to Hilbert geometries we
obtain the following.
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Theorem 5.2 Let de be a Euclidean metric on the plane, and let CQ and CP be unit circles
with centers Q and P, respectively.

Then there are several distinct non-hyperbolic Hilbert geometries (M, d) such that CQ

and CP are the only quadratical infinitesimal circles in (M, d). The boundary of such a
Hilbert geometry is twice differentiable except where it intersects line Q P.

How theHilbert geometries given in this theorem relate to the hyperbolic geometry remains
an interesting question.

Theorem4.4 also raises the problem to determine those pair of ellipses that are infinitesimal
circles of a Hilbert geometry. This can be done by following the proof of Lemma 4.1; the
details remain to the interested reader for now.

One can specialize [7, Theorem 6.2.14, p. 247] to the following:

Let L and M be bounded convex open domains in R
2 with boundaries ∂L and ∂M

belonging to C2+δ for some δ > 0. Let P and Q be in L ∩ M, and suppose that L
and M have equal (−1)-chord functions at these points. Then line P Q intersects
∂L ∩ ∂M in two points I and J . If ∂L and ∂M have equal curvatures at I and J ,
then L = M.

This gives the following result which is more general, but weaker for the quadratical case
than the combo of the lemmas in the previous section.

Theorem 5.3 If two Hilbert geometries (L, dL) and (M, dM) in the plane R
2 with bound-

aries of class C2+δ(S1), where δ > 0, have two common infinitesimal circles CLP ≡ CMP and
CLQ ≡ CMQ , and have equal curvatures at the points where line P Q intersects the boundaries,
then M ≡ K.

Notice that this theorem states only a coincidence and therefore implies a weaker version
of Theorem 4.4 only together with Lemma 4.1.

It is proved in [8, Theorem 2] that perpendicularity in a Hilbert geometry is reversible for
two lines if the perpendicularity of these two lines is also reversible with respect to the local
Minkowski geometry at the intersection of the lines3. Calling such points Radon points, the
question arises

How many Radon points are needed to deduce the
hyperbolicity of a Hilbert geometry?

(5.1)

Kelly and Paige proved in [9] that a Hilbert geometry is a Cayley–Klein model of the hyper-
bolic geometry if the perpendicularity is symmetric. Since the Riemannian points are Radon
points, Theorem 4.4 supports our conjecture that the existence of two Radon points implies
the symmetry of the perpendicularity if twice differentiability of the boundary is provided. If
not, then Theorem 5.2 proves that even two Riemannian points are not enough to guarantee
the symmetry of perpendicularity in Hilbert geometries.

Looking for possible higher dimensional analogs of Theorem 4.4 one can use [3,
(16.12), p. 91] which says that

a convex body in R
n (n ≥ 3) is an ellipsoid if and only if for a fixed

k ∈ {2, . . . , n − 1} every k-plane through an inner point intersects it in a
k-dimensional ellipsoid.

This immediately implies the following generalization of Theorem 4.4.

3 Thus, perpendicularity in the plane is symmetric at a point if and only if the indicatrix of the localMinkowski
metric is a Radon curve [10].
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Theorem 5.4 If a Hilbert geometry has twice differentiable boundary and has a Riemannian
point P such that for some fixed k ∈ {2, . . . , n − 1} on every k-plane through P there is an
other Riemannian point, then it is a Cayley–Klein model of the hyperbolic space.
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