
  

Dent. J. 2020, 8, 43; doi:10.3390/dj8020043 www.mdpi.com/journal/dentistry 

Review 

Utility of Photodynamic Therapy in Dentistry: 
Current Concepts 

Anette Stájer 1,*,†, Szilvia Kajári 1,†, Márió Gajdács 2,†, Aima Musah-Eroje 3,† and Zoltán Baráth 3,† 

1 Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64,  

6720 Szeged, Hungary; szilvia.kajari@gmail.com 
2 Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös 

utca 6., 6720 Szeged, Hungary; gajdacs.mario@med.u-szeged.hu 
3 Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64.,  

6720 Szeged, Hungary; aima1993@hotmail.co.uk (A.M.-E.); barzol34@gmail.com (Z.B.) 

* Correspondence: stajeranette@gmail.com; Tel.: +36-62-545-283 

† These authors contributed equally to this work. 

Received: 2 April 2020; Accepted: 29 April 2020; Published: 7 May 2020 

Abstract: The significant growth in scientific and technological advancements within the field of 

dentistry has resulted in a wide range of novel treatment modalities for dentists to use. 

Photodynamic therapy (PDT) is an emerging, non-invasive treatment method, involving 

photosensitizers, light of a specific wavelength and the generation of singlet oxygen and reactive 

oxygen species (ROS) to eliminate unwanted eukaryotic cells (e.g., malignancies in the oral cavity) 

or pathogenic microorganisms. The aim of this review article is to summarize the history, general 

concepts, advantages and disadvantages of PDT and to provide examples for current indications of 

PDT in various subspecialties of dentistry (oral and maxillofacial surgery, oral medicine, 

endodontics, preventive dentistry, periodontology and implantology), in addition to presenting 

some images from our own experiences about the clinical success with PDT. 
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1. Introduction, History of Photodynamic Therapy 

Over the past century, the significant growth in scientific and technological advancements 

within the field of dentistry has resulted in a wide range of novel treatment modalities that are 

available for dentists to use; these advancements have revolutionized the dental care of patients in 

the 21st century [1–3]. One such advancement is the use of photodynamic therapy (PDT), which is an 

emerging, non-invasive treatment method, involving chemical agents as photosensitizers (PS), light 

of a specific wavelength and the generation of singlet oxygen (1O2) and reactive oxygen species (ROS) 

in the presence of endogenous molecular oxygen to eliminate unwanted eukaryotic cells (e.g., 

malignancies in the oral cavity) or pathogenic microorganisms (e.g., in bacterial, fungal or parasitic 

infections) [4,5]. The utility of PDT in medicine is a relatively recent discovery, however, the earliest 

description of its theoretical basis and application can be dated back all the way to the ancient 

Egyptians [6,7]. According to their beliefs, the Sun alone possessed healing powers against certain 

skin conditions, such as vitiligo, psoriasis and skin cancer [6,8]. In addition, the pivotal “Ebers 

Papyrus” (being one of the oldest and most important Egyptian ancient medical texts, dating back to 

about 3000 B.C.) describes the use of plants, such as parsnips (Pastinaca sativa) and parsley 

(Petroselinum crispum) to make powders, which were placed on depigmented lesions of the skin [9,10]. 

Upon exposure to sunlight, this resulted in skin pigmentation, an effect that was similar to a sunburn. 

Whilst the ancient Egyptians were the pioneers of this method, their theoretical understanding (i.e., 
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beliefs) of the phenomenon was later proved to be incorrect, based on novel scientific advancements 

[9,10]. In addition, the ancient Greeks were also among the first people to utilize phototherapy in the 

history of mankind. Today, this practice of using sunlight (or light in general) as a therapeutic agent 

is known as phototherapy or heliotherapy [11,12]. The term “heliotherapy” is of Greek origin, and its 

creation is attributed to Hippocrates (460–370 B.C.), the “Father of Medical Science”. After travelling 

to Egypt, he recommended sunlight for the restoration of health. Civilizations in India and China 

have also described the healing properties of sunlight for various pathologies [7,11,12]. 

In the Western world, the basics of modern phototherapy were first established in the 1890s, by 

the Danish scientist Niels Finsen, who worked extensively with light sources ranging from small 

active rays to ultraviolet radiation; his research enabled others to later use these light sources as a 

therapeutic modality against lupus vulgaris and smallpox [13,14]. For his innovative contribution to 

medical science (highlighting the significance of this topic), he was awarded a Nobel Prize in 1903 

[15]. Another discovery of paramount importance was by the German medical student Oscar Raab 

and his supervisor Prof. Hermann von Tappeiner in 1900; during their search for novel anti-malarial 

drugs, the medical student noticed that paramecia (a type of aquatic microorganism, which was used 

as a model organism at that time) incubated with acridine orange (AO) dye died at a faster rate after 

a thunderstorm, compared with when there was no storm [16]. This experiment provided similar 

results when the AO-treated paramecia were exposed to sunlight from the adjacent window, 

compared with when incubated in a dark room. This serendipitous discovery led von Tappeiner to 

postulate that the light may have played a role in accelerating the chemical–biological reaction. This 

phenomenon was termed “photodynamiche” (german for photodynamic effect), and his theory was 

that oxygen was required for the photosensitization process to occur [17]. In a book published by von 

Tappeiner in 1907, the results of his clinical experiments (in collaboration with the German 

dermatologist Albert Jesionek) were summarized: they used the xanthene dye eosin in conjunction 

with illumination to treat basal cell carcinoma of the skin, condyloma acuminata of the female 

genitalia and lupus vulgaris, resulting in favorable outcomes [18]. This was the first, real clinical use 

of PDT to treat a disease, in addition to contributing critically to the emergence of PDT [16,17]. 

PDT was revolutionized (and the complete understanding of the mechanism of action was 

attained) after the boom in the (bio)chemistry field and of porphyrin compounds. In 1913, the 

Austrian physician Fredrich Meyer-Betz experimented on himself, with an IV injection of 200 mg 

hematoporphyrin (a derivative of protoporphyrin IX, where the two vinyl groups have been 

hydrated) [19,20]. Upon light exposure, he noted the development of extreme pain and swelling, 

which was confined to the areas exposed to light; this area remained photosensitive for several 

months after the incident. He concluded that hematoporphyrin was a PS agent. Further research led 

by Schwartz et al. in 1955, also recognized that a hematoporphyrin derivative was a more efficient 

PS, and in comparison, this molecule targeted cancerous cells more effectively and gave better overall 

results [21]. Their results highlighted that hematoporphyrin accumulates in cancerous tissues, which 

further sped up the development of novel porphyrin-based photosensitizers and their application in 

the treatment of malignant disorders [21]. The additional surge of interest towards PDT began after 

the studies on various hematoporphyrin derivatives by Lipson and Schwartz at the Mayo Clinic in 

the 1960s, which was further accelerated by pioneering studies in both basic science and clinical 

applications by Dougherty et al. [22]. Their research group (together with the topic of PDT) has 

gained recognition after they conducted clinical PDT trials on a global scale; in addition, they have 

established (in 1986) the International Photodynamic Association and expanded it to almost every 

country around the world [22,23]. As a result, PDT was approved by the Worldwide Food and Drug 

Administration in 1999 to treat precancerous skin lesions of the face or scalp and has extensively been 

used to treat cancers and certain other diseases. In parallel, Photofrin® (partially purified version of 

hematoporphyrin) received approval for the management of several malignant disorders in the 

majority of developed countries [24]. To date, Photofrin® is the most extensively studied and clinically 

used photosensitizer. PDT has been proposed to be useful in almost all facets and specialties of 

medicine, and the possible applications keep expanding every day [25]; however, there is a limited 

amount of publications on the relevance of PDT in dentistry. Currently, the main indication of 
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phototherapy is to treat infants born with neonatal jaundice—a treatment that was developed in the 

United Kingdom some 50 years ago [26]. 

The aim of this review article is to summarize the history, general concepts, advantages and 

disadvantages of PDT and to provide examples for the current indications of PDT in various 

subspecialties of dentistry, in addition to presenting some images from our own experiences about 

the clinical success with PDT. 

2. The Theoretical Basis of PDT 

PDT is a therapeutic alternative, combining photophysical and photochemical processes, 

resulting in biological effects [27]. The process includes the excitation of PS with light (a physical 

process), which is followed by photochemical reactions of the excited PS with various cellular 

substrates and molecular oxygen, eventually leading to cell death. Interestingly, each element of PDT 

is non-toxic individually (generally, although some PSs may exert toxic adverse events in larger 

doses), however, when the photosensitive material is coupled with light of a specific wavelength, the 

resulting chemical reaction results in the formation of toxic species, causing cell death by various 

molecular mechanisms [28]. In the following section, the main components of PDT and the 

mechanism of action for these treatments are described. 

2.1. Photosensitizers (PS) 

PS agents are special compounds used in PDT. Depending on the type of agent used, the PS is 

either intravenously injected into the bloodstream (where it will travel to its target area), ingested 

orally or it is applied topically to the location that requires treatment [29]. In order to take effect, 

photosensitizers require activation by a well-defined wavelength of light, which will initiate the 

mechanism needed to target and eradicate unhealthy tissue [30]. Regarding their chemical structure, 

PSs are usually macrocyclic compounds with a heterocyclic ring structure that is similar to 

chlorophyll or heme, although other PSs have also been described, e.g., some pharmaceutical 

compounds possessing photosensitizing effects (e.g., phenothiazines, sulfonamides, psorales, 

hypericin) (Figure 1) [29,30]. They can be classified based on their chemical structure but are more 

commonly grouped into three broad families based on their clinical characteristics [31]. 

First generation PSs have been available since the 1970s and the early 1980s. Most of these 

compounds are cyclic tetrapyrroles, comprising substituted derivatives of porphyrin, chlorin and 

bacteriochlorin, while clinically-relevant compounds most frequently are structural derivatives of 

hematoporphyrin [29,30]. First generation agents have many drawbacks, e.g., high aggregation 

tendency, lack of specificity, low solubility in physiological liquids and cutaneous phototoxicity. 

Thus, most of the first generation PSs are unsuitable (by current standards) for use in PDT, but they 

provided a source for the synthesis of new PSs that have complied with modern requirements from 

pharmaceutical compounds [32]. Hematoporphyrin is commercially known as Photofrin®, which is 

the most extensively studied and clinically used photosensitizer to date. This PS agent was approved 

for the management of lung, bladder, esophageal and early stage cervical cancers in the 1950s, while 

its significance as a PS agent was discovered years later [33,34]. Additionally, hypericin, eosin, 

methylene blue and rose bengal have also been previously employed as PS agents; nowadays, they 

are used in different indications [35]. 

Second generation PSs (e.g., verteporfin, talaporfin, temoporfin) were developed in the late 

1980s, as an attempt to improve the efficacy of first generation agents, in addition to gaining better 

pharmacokinetic properties and a lower toxicity [29,30]. In addition, these PSs have a near infrared 

absorption and a high 1O2 yield compared with the first generation compounds [36]. These molecules 

include core or structurally modified or substituted porphyrins, bacteriochlorins, chlorins, 

phthalocyanines or other macrocyclic compounds [37]. In addition to the abovementioned 

tetrapyrrolic compounds, fullerenes (allotrope structure of carbon, composed of 60 carbons arranged 

in soccer ball shape) are another class of novel second generation PSs [38]. Chemically, the presence 

of condensed aromatic rings in these molecules leads to an extended p-conjugation that is a desirable 

property for PS molecules; nevertheless, the functionalization of these compounds is necessary for 
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them to be soluble in biological solvents [37]. The most commonly used and well-known are 5-

aminolevulinic acid (ALA; acting as a pro-drug) and a structurally modified version of 

hematoporphyrin (such as benzoporphyrin derivatives) [29,30,39]. ALA is a so-called intrinsic 

photosensitizer, that is converted in situ to protoporphyrin IX; the introduction of exogenous ALA in 

vivo inhibits the first step of porphyrin synthesis, resulting in the accumulation of protoporphyrin IX 

in the tissue [29,30,39]. Topical ALA and its ester derivatives have been approved by the FDA and 

used to treat many diseases, like pre-cancer conditions, basal and squamous cell carcinoma of the 

skin, Bowen’s disease, and actinic (solar) keratoses and gastrointestinal cancers [40]. 

Third generation PSs are the most recently developed compounds of medical importance; the 

derivatives of the second generation PS compounds possess various functional groups to which 

conjugation is possible by multifarious synthetic strategies, therefore this may lead to several 

advantages in their use [29,30]. As a general rule, these are second generation PS compounds that are 

usually conjugated with some biological molecules or they have built in “photo-quenching” 

properties, i.e., these photosensitive materials only become activated at their specific target site (e.g., 

protein, receptor) [41]. Possible carrier molecules for the former group includes monoclonal 

antibodies, non-antibody-based protein carriers, monosaccharides, polymers, polymeric 

nanoparticles (NPs) or liposomes; while cellular markers for the latter group include tumor surface 

markers (e.g., epidermal growth factor receptor), receptors (e.g., low-density lipoprotein (LDL) 

receptors, transferrin receptors, folic acid receptors, integrin receptors) and transporters (e.g., glucose 

transporters) [29,30,41]. The conjugation of fullerenes with polyethylene glycol (PEG) increases their 

tumor localization and increases their solubility in water-based solvents and in vivo biological 

conditions [38]. 

The requirements for an optimal photosensitizer are the following: commercial availability in its 

pure chemical form, cost-effectiveness, ease of administration, long wavelength absorbing-capacity, 

low dark toxicity but strong photocytotoxicity, good selectivity towards target cells and rapid 

elimination [27]. Although there is currently no PS which adheres to all the above-mentioned criteria, 

this list provides a general guideline for the development of novel agents [25]. Currently, there are 

only a few PSs that have received official approval for clinical use around the world, thus it is 

imperative to carry out more research in this field to find additional compounds for treatment 

regimens [29,30,37,41]. The use of PSs may be activated by daylight, leading to first or second degree 

burns to the skin, which may discourage both clinicians and patients from using these agents [42]. It 

is suggested that patients can get around this by avoiding direct sunlight for several hours, until the 

drug is fully eliminated from the body, however, this is not always possible. There is a need for more 

research and investment to find alternative PSs that work with the same or an improved efficacy, but 

with shorter half-lives and rapid elimination from the body [29,30,37,41]. In addition, the 

development of novel PSs should address issues with mutagenicity selectivity and the more precise 

targeting of PSs, dependable activation by an appropriate wavelength of light (both of which were 

the main objectives during the development of third generation PSs) and options for pain-free 

outpatient therapy [29,30,37,41,43,44]. The possible development of photosensitizers with longer 

activation wavelengths will also allow for deeper tissue penetration. 
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Figure 1. Examples of clinically relevant photosensitizer (PS) compounds. A: Photofrin® 

(hematoporphyrin or dihematoporphyrin ether); B: Visudyne® (verteporfin); C: 5-aminolevulinic acid 

(ALA); D: talaporfin sodium (LS11); and E: Foscan® (temoporfin). 

2.2. Light Source 

The clinical approach of PDT largely depends on the choice of the appropriate light (at a specific 

wavelength), light delivery (to activate the PS) and a sufficient PS concentration in the presence of 

oxygen at the target tissue [45]. All the main factors of PDT light delivery have an important role to 

support successful treatments, which results in its excellent therapeutic effects; nonetheless, 

treatment specifications (light dose, dose rates, resulting tissue destruction) are characteristic to each 

tissue type, which must be considered before therapy [45,46]. The light wavelength is directly 

proportionate to the tissue penetration, with light (i.e., red light in the visible wavelengths) that is 

transmitted easily through tissues being optimal for use in PDT [47,48]. The range of light to be used 

in PDT ranges between 600–900 nm; below 600 nm is unsuitable as endogenous molecules (e.g., 

heme) would predominantly capture most incoming photons. In contrast, the energy content of the 

photons above 900 nm is not enough to generate 1O2 species [49]. In clinical practice, most PSs are 

activated by red light (with a wavelength ranging between 630–700 nm), which corresponds to a 

penetration depth range of 0.5–1.5 cm. This limits the depth of tissue death and defines the 

therapeutic effect [45,46]. 

The delivery of light for PDT is characterized by the indication of PDT, the size, shape and 

anatomical location of the lesion [45,46]. Additionally, the intensity of the produced light should be 

uniform, to allow for dose calculations during treatment. In the beginnings of PDT, so-called non-

coherent light sources (phosphor-coated sodium lamps, tungsten filament, quartz halogen, xenon arc 

and metal halide lamps) were used; the advantage of these lamps is that they can produce spectra of 

wavelengths to accommodate various photosensitizers (additionally, if combined with optical filers, 

they can produce selective wavelengths), they are safe, inexpensive, easy to use and they can cover 

large areas [45,46,50,51]. However, as they release a significant amount of heat, have a low light-

intensity and poor dose control, they are not extensively used [45,46]. Lasers (including gold or 

copper vapor-pumped dye lasers, argon-pumped dye lasers and potassium titanyl phosphate (KTP)- 

or neodymium/yttrium aluminum garnet (Nd/YAG)-pumped dye lasers) also represent a viable light 
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source, however, laser-based light sources are very complex to handle, labor-intensive and expensive 

[34,45,46,52]. Light-emitting diode (LED)-based laser systems are an emerging light source for PDT 

because they are cost-effective, portable and easy to handle overall [45,46,50]. Another advantage of 

LED-based systems is that the tip of these emitting fibers may be made in various shapes and uniform 

diffusion may be achieved with the use of a light applicator (or so-called diffuser) [53]. 

2.3. Role of Oxygen and Oxygen Species, Molecular Mechanisms of Action 

Oxygen is the last component needed for the photodynamic reaction to take place [24,48]. 

Several studies have shown that PDT efficacy is an oxygen-dependent process [54]. This oxygen 

dependence is generally believed to be required for the generation of 1O2 and ROS, which are believed 

to be responsible for most photodynamic processes in biological systems [55]. The photodynamic 

process begins with the excitation of a photosensitizer (PS) using a light source, which leads to 

subsequent photochemical reactions of the excited PS with the cellular substrates or molecular 

oxygen that ultimately result in cell death [25]. In its ground state, the photosensitizer has two 

electrons (e-) in opposite spins in the low energy molecular orbitals [10,56]. When light is absorbed, 

one of these e- is excited to a higher energy molecular orbital, without changing its spin; this is called 

the singlet excited state [57]. In order to return to the ground state, the excited PS will do one of two 

things: it will a.) radiate energy in the form of light (fluorescence) or b.) result in non-radiative decay 

through the release of heat energy during a process called internal conversion (IC) [58,59]. If the 

electrons in a molecule from a singlet ground state become excited to a higher energy level (through 

the radiation of absorption), they may either form an excited 1O2 (where the pair of electrons on the 

same energy level have opposite spins) or a 3O2 (the excited electron is in parallel, i.e., they have the 

same spin as the ground state electron). The radiationless process of transition between two electronic 

states of spin multiplicity (in this case, between the 1O2 and 3O2 state) is termed intersystem crossing 

(ISC) [25,58,59]. The 3O2 state PS will also dissipate its energy by radiative (phosphorescence) or by 

nonradiative processes (releasing energy in the form of heat) in order to come back to the ground 

state [58,59]. During PDT, the excited 3O2 state will either directly react with cellular substrates by the 

transfer of electrons and eventually produce oxygenated products (Type I reaction) or it will transfer 

energy to molecular oxygen, leading to the generation of highly reactive 1O2 species (Type II reaction) 

within the biological environment (summarized in Figure 2) [25,60–62]. The 1O2 oxygen is the most 

damaging species as it reacts with biological molecules, e.g., unsaturated lipids and amino acids of 

proteins (tryptophan, histidine and methionine) [25,60,61]. A singlet excited state PS is unable to react 

with cellular substrates, as its lifetime is very short (ranging from nano to pico seconds), whereas a 

triplet state PS, that has a significantly longer lifetime (ranging from micro to milli seconds) can 

efficiently carry out these reactions [25,60,61,63]. The biological outcome of PDT on a cellular level is 

dependent of the reaction type that occurs; Type I reactions usually result in necrosis, a sudden, rapid 

cell death mechanism that effects a large numbers of cells simultaneously, without sparing the 

surrounding cells; this “collateral damage” is mediated by the release of cellular materials and 

cytokines into the surrounding extracellular environment [25,60,61,64]. Generally, higher doses of a 

PS and high fluorescence rates lead to a more extensive destruction of the cell membrane, leading to 

necrosis [65]. The formation of ROS is the main cause of necrosis during PDT. Type II reactions will 

result in either apoptosis or autophagy; apoptosis is a programmed cell death (PCD) mechanism, 

induced by a variety of intracellular signaling pathways, which is considered the primary mechanism 

of cell death in PDT [64]. Consequently, low doses of PDT-related damage most often lead to 

apoptosis, whereas high-level damage mainly leads to necrosis. During the early stages of apoptosis, 

morphological changes occur (the condensation of chromatin and nuclear/DNA fragmentation), 

while later on—depending on the apoptotic pathway initiated—the activation of the conserved 

biochemical cascade occurs [66–68]; in the late stages of the intrinsic apoptotic pathway, this results 

in the activation of the apoptosome and caspase-9, while in the extrinsic pathway, the processes are 

mediated by caspases-8 and -10. Consequently, the activation of both pathways leads to the activation 

of endonucleases and caspases-3 and -7, and subsequent cell death [66–68]. In contrast, autophagy is 

a regulated biochemical mechanism, where the apoptotic “machinery” is absent; during this process, 
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unnecessary or dysfunctional cellular components are removed by a self-digesting mechanism, using 

lysosomes, where lysosomal enzymes degrade and recycle these components [62,66]. It must be noted 

that the type of PS, the extent of the generated ROS and the level of photo-induced damage all 

influence the extent of autophagy, which may be both cytoprotective and cytotoxic [66]. 

 

Figure 2. A diagram, illustrating the various changes in energy levels, which provide the physical and 

molecular basis for photodynamic therapy (PDT) (adapted from [25]). 1O2: singlet oxygen, 3O2: triplet 

oxygen, A = absorption of photons, F = fluorescence (emission), P = phosphorescence S = singlet state, 

T = triplet state, IC = internal conversion, ISC = intersystem crossing, EET= energy transfer through 

excitation, and ET = transfer of electrons, R = substrate. 

3. Application of PDT in the Various Fields of Dentistry 

3.1. PDT in Oral and Maxillofacial Surgery, Oral Medicine and Oral Surgery 

PDT has proved itself to be a promising tool in the treatment of pre-malignant and malignant 

lesions of the head and neck region, including the oral cavity [33,46]; while the use of PDT in the 

diagnosis of these lesions in the oral cavity is a relatively new, it is an important advancement in 

dentistry. In recent practice, the topical application of the photosensitizer ALA is used as a diagnostic 

tool for oral lesions, in a procedure known as ALA-based photodynamic diagnosis [69]. ALA is 

topically applied to the suspected lesion, where it accumulates and increases the tissue fluoresce of 

the lesion when it is illuminated. The measurable difference between the fluorescence levels of 

normal and pre-malignant tissues allows for the distinction between malignant and non-malignant 

lesions [27,69]. Evidence of its utility is depicted in a study by Sharwani et al. [70], where patients 

with suspected oral leukoplakia underwent an ALA-based photodynamic diagnosis. Afterwards, a 

surgical biopsy was taken from the same examination site. The results of the fluorescence 

spectroscopy were then compared with histopathology and showed that dysplastic lesions have a 

higher fluorescence than benign oral lesions without changes in the green autofluorescence, further 

verifying the validity of an ALA-based photodynamic diagnosis [69]. However, it is also important 

to note that ALA has a tissue penetration depth of 1–1.5 mm, so this method is only applicable for 

superficial lesions [39,71]. This explains the poor registration of some cytological and biochemical 

changes that occurred in some of the dysplastic tissues in the experiment. This diagnostic process is 

of paramount importance as oral leukoplakia and oral verrucous hyperplasia are some of the most 

common pre-malignant lesions that may transform into squamous cell carcinoma (SCC) or verrucous 

carcinoma (VC) of the mouth [72]. The detection of dysplasia in leukoplakia lesions increases the 

change for a subsequent malignancy to occur by 30% [72,73]. 

PDT is also known to be an effective treatment modality for pre-malignant lesions and early 

stage tumors of the head and neck region [56]. The advantage of PDT over conventional treatments 

is based on its minimal invasiveness and selective tumor destruction, with the preservation of healthy 
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tissues [37,56]. This means that oral and facial prosthetics may be avoided since in many cases, PDT 

can be used over conventional surgical resection [4]. Here, the aesthetic advantage to the patient is 

obvious, as the use of facial prosthetics present many psychological challenges for the patient. The 

preservation of facial structures means patients’ quality of life will not be diminished as the ability of 

speech, eating and other activities will not be compromised by PDT [74]. Compared with 

conventional chemotherapy or radiotherapy as a treatment option, PDT poses the advantage that the 

number of sessions is not limited, and the side effects of PDT do not last as long and are not as severe 

[74,75]. Several PSs have the advantageous chemical property of concentrating in the histological site 

of malignancies, sparing healthy tissue. This has been demonstrated by studies that use the second 

generation photosensitizer temoporfin (m-THPC), commercially marketed as Foscan® [34,35]. Dilkes 

et al. investigated the efficacy of Foscan®-mediated PDT within the years of 1996–2003. In one such 

experiment, 19 patients who had T1 and T2 grade lesions of the oral cavity and pharynx were treated 

with temoporfin [76]. Although 48% of the patients needed multiple sessions of PDT for the treatment 

to be effective, 90% of the patients showed a complete response; in addition, 10 out 19 patients 

remained disease free, within a follow-up period of 6–100 months [76,77]. The efficacy of temoporfin-

mediated PDT in 25 patients with primary squamous cell carcinomas of the lip, over a period of 12 

weeks, was also evaluated by Kubler et al.; 24 of the patients (96%) showed a complete remission 

after the treatment [78]. Of note, the remaining patients showed a partial response to the treatment, 

but were successfully re-treated with another session of m-THPC-mediated PDT, then subsequently 

showed a complete response at seven months after the re-treatment. Furthermore, the functional 

results were excellent in all the patients, without any signs of restricted mouth opening or impaired 

lip closure [78]. Although both experiments showed significant and promising results to argue for 

the use of PDT-mediated anticancer therapy, it is important to note that the lesions being 

experimented on are only pre-malignancies and early stage tumors of the head and neck; outcomes 

of this treatment strategy are not as good as in the treatment of advanced carcinomas with PDT [76–

78]. This is probably due to a limited ability to adequately deliver laser light to the tumor because of 

the low penetration depth of Foscan® [47]. Similarly, the utility of ALA was also demonstrated in pre-

malignant lesions, however, due to the limited depth of the topical ALA, the use of this PS is restricted 

to superficial lesions [39]. 

Among the various pathologies of the oral cavity, bacterial, viral and fungal lesions present an 

important factor for patient presentation in dental practices [79–81]. Although the use of PDT in 

infectious diseases of the oral cavity may seem uncommon, there is increasing interest toward this 

treatment modality in this field [82]. For example, oral candidiasis, a common fungal disease caused 

by Candida spp., frequently presents amongst patients wearing dentures, or patients with underlying 

immunosuppression, xerostomia, smoking, type-II diabetes, a hormonal imbalance or those 

undergoing hormone therapy [83]. Conventionally, oral candidiasis is treated using topical 

antifungal medications (solutions or creams), but these infections have the tendency to re-occur, 

especially in individuals who are presented with risk factors. Antimicrobial PDT has shown 

promising results in the treatment of oral candidiasis [84]. This was demonstrated in an in vitro study, 

which successfully used Photofrin®-mediated PDT to target various Candida species [85]. It is 

important to note that selectivity is an important factor, which needs to be taken into consideration 

during these treatments, as healthy human cells may also be destroyed using these agents, as well as 

the oral tissue infected with Candida spp. [86]. In oral candidiasis, a topical application may be applied 

by the selection of the affected areas only, and light can be applied to those regions only, making 

these infections treatable by PDT, without antifungal agents (presented in Figure 3). PDT has also 

been described to be used for the management of lesions in the oral cavity caused by the herpes 

simplex virus (or HSV), which are also commonly seen in clinical practices [87]. PDT, using 

methylene blue as a photosensitizer has been considered as an option in the treatment of herpes 

labialis; results have shown a decrease in the recurrence of vesicles and an increase in the comfort 

level of patients. The lesions in these patients healed more rapidly and significantly and no acute side 

effects of PDT were noted [88]. 
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Figure 3. PDT of lingual candidiasis (photo courtesy of R. Szabó DMD, J. Arentz DMD and T. Nave 

DMD). A: C. albicans infection of the tongue before PDT treatment; B: application of PS compound; C: 

irradiation; and D: C. albicans infection of the tongue 36 h after PDT treatment, showing remission. 

In oral surgery, there is relevance in the use of PDT in both the prevention and treatment of 

alveolar osteitis and post-extraction pain [89]. This was proven in 2004, when Neugebauer et al. used 

the photosensitizer HELBO Blue and a diode laser to successfully reduce the prevalence of alveolar 

osteitis [45]. Their study examined 100 patients who had at least one or multiple contralateral teeth 

extracted within the time interval of one week. One side (which was chosen at random) was treated 
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with PDT, and the other side was treated conventionally in a standardized protocol. A recall 

appointment was given, and the extraction site was examined. The post-extraction pain was 

measured using an analogue pain scale of 0–100. The results showed that alveolar osteitis remained 

in 1 out of the 50 cases for the group that was treated with PDT, yet this was the case for 13 patients 

(out of 50) who were treated conventionally [45]. The pain assessment score for each group was 

scored after the extraction procedure and in the recall appointment a week later. After extraction, the 

scores for the group treated with PDT ranged 11.2 ± 9.8, while it was 19.0 ± 12.2 in the control group. 

The following week, the PDT group provided scores of 2.4 (±9.2), while the control group scored 13.1 

(±25.2). This difference was significantly lower for the first and eighth days of post-surgery in the 

PDT group [45]. The researchers concluded that the significantly lower incidence of alveolar osteitis 

after PDT seems to be an emerging modality for the prevention of alveolar osteitis [89]. 

3.2. PDT in Endodontics 

In endodontics, it is essential to achieve and maintain sterility inside the root canal by the 

complete elimination of bacterial species colonizing it and causing infections [90]. This ultimately 

eliminates any chance of re-infection and allows for the healing of periapical tissues to occur [91]. 

Conventionally, this process is achieved by a mechanical treatment of the infected root canal, as well 

as the use of chemical irrigation agents. Recently, research has been conducted to support the use of 

PDT in conjunction with conventional chemo-mechanical preparations (Figure 4) [92]. The most 

recent evidence was shown by Okamoto et al.; after conventional root canal treatment was carried 

out on five anterior and deciduous teeth, PDT was conducted using the photosensitizer methylene 

blue and a 660 nm laser light [93]. The root canal was then irrigated with saline and a sealant was 

placed. Microbiological samples of the infected and disinfected root canal were taken, and the 

bacterial colonies were examined under a microscope. The results showed a bacterial reduction from 

37.6% to a whopping 100%, further underlying the statement that PDT can be considered an 

alternative method to act as a support to root canal disinfection [93]. Compared with irrigation by the 

conventional sodium hypochlorite (which is considered to be the gold standard for root canal 

irrigation), PDT has shown very promising results. PDT has proven itself to be a very effective 

antibacterial agent, against both Gram-positive and Gram-negative endodontic bacteria [94], 

particularly Enterococcus faecalis, which has high levels of resistance to conventional chemo-

mechanical irrigation systems; additionally, it is an extremely problematic species because of its 

resistance mechanisms to multiple antibiotics [95]. The photodynamic effect of methylene blue was 

investigated on Actinomyces israelii, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella 

intermedia, all of which are common endodontic pathogens [96,97]. In this in vitro experiment, 

experimentally infected root canals of extracted teeth were treated. The results after a session of PDT 

using the methylene blue photosensitizer showed an 80% reduction in the colony forming units. The 

authors suggested PDT to be an effective method when used alongside a standard endodontic 

treatment, providing that the PDT parameters are at their optimum [90,96]. 

 

Figure 4. Example of PDT in endodontic treatment (photo courtesy of R. Szabó DMD, J. Arentz DMD 

and T. Nave DMD). A: Extracted lower incisor after chemo-mechanical preparation and application 
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of the PS into the canal; B: penetration of the PS into the canal, 7 hrs after application, the PS already 

shows penetration into the apical region and lateral canals; and C: treatment with laser light; the PDT 

light system is able to align the laser light in a way to allow for the activation of as many as possible 

PSs inside the canal to achieve the optimum effect. Following this step, root canals may be obturated. 

Chronic periapical periodontitis is a chronic inflammation of the periapical tissues, which 

usually occurs when bacteria from a necrotic tooth together with their toxins infect the periapical 

tissues surrounding the associated tooth [98]. Symptoms remain silent and the condition is usually 

discovered accidentally on a radiograph that shows a radiolucent lesion with sharp boarders. If left 

untreated, this small lesion may grow and become a radicular cyst [98]. Conventionally, this 

condition is treated with a two-visit root canal treatment that uses calcium hydroxide due to its 

antibacterial properties. In cases such as these, the endodontic therapy has a reduced success rate; 

commonly, these infections may persist, and retreatment may be required [94]. There is evidence to 

suggest that PDT may be beneficial as an adjunct to root canal treatment in the case of chronic 

periodontitis [25,99]. Garcez et al. enrolled 20 patients who suffered from chronic periapical 

periodontitis and had radiological symptoms [100]. A two-visit root canal treatment using PDT was 

performed, with polyethylene imine (PEI) as the photosensitizer and a fiber optic diode laser. 

Microbiological samples were taken on three occasions: firstly, after the access cavity was created, 

which highlighted the bacteria that were initially responsible for the infection; the second sample was 

taken after the chemo-mechanical preparation, and the final was taken after the PDT was performed. 

Following this, calcium hydroxide was placed in the root canal and the patient was recalled one week 

later for the same procedure to be repeated. The samples taken were examined microscopically and 

compared to each other. The results highlighted that including PDT as an adjunct in the treatment 

showed a significantly higher log reduction in the number of periodontal pathogens; overall, these 

results showed that the use of PDT in a two-visit root canal treatment enhanced the antibacterial 

effect of the treatment [100]. Figure 5 shows the representative cases from our practice: the X-rays 

were taken before and after PDT to measure the success of PDT in the treatment of chronic periapical 

periodontitis. 

 

Figure 5. Success of PDT in the treatment of chronic periapical periodontitis (photo courtesy of R. 

Szabó DMD, J. Arentz DMD and T. Nave DMD). A: The X-ray on the left shows the condition 

immediately after PDT, and the X-ray on the right shows the condition 4 months later; note the 



Dent. J. 2020, 8, 43 12 of 21 

 

significant decrease in the size of the periapical lesion; B: the X-ray on the left shows the condition 

immediately after PDT, and the X-ray on the right shows the condition 12 months later; note the 

significant decrease in the size of the periapical lesion. The same case is depicted in a lower molar 

tooth with chronic periodontitis, where C shows the condition immediately after the endodontic 

treatment and PDT, and D shows the condition after 3 months after the endodontic treatment, PDT 

therapy and root canal obturation; note the significant decrease in the size of the periapical lesion. 

3.3. PDT in Preventive Dentistry 

Dental caries is a chronic disease that usually begins on the oral surface of the teeth and spreads 

to deeper areas. It is the result of an imbalance between tooth demineralization and remineralization 

[101,102]. The demineralization is caused by acids released through the anaerobic carbohydrate 

metabolism of bacteria within the dental plaque, primarily by Streptococcus mutans [103,104]. 

Therefore, the formation of dental plaque is one of the hallmarks in the initial phases of caries 

development. It can be said that the elimination of the pathogenic microorganisms from the teeth by 

the removal of dental plaque is essential in the prevention and control of tooth decay [105,106]. This 

process can be achieved clinically by PDT-assisted plaque removal, a procedure also known as 

photodynamic antimicrobial chemotherapy (PACT) [107]. During this procedure, lasers of differing 

wavelengths are used as light sources with various PSs. Its use has been first described by Bevilacqua 

et al. [108], who used toluidine blue and an LED laser light, while the clinical utility of this method 

was investigated clinically by Wilson et al. [109,110]. Both in vitro and in vivo experiments yielded 

promising results [108–110]. It has been a well-known phenomenon that microorganisms may be 

eliminated by the combined used of dyes and light, however, the interest towards antimicrobial PDT 

was reduced by the discovery and clinical use of antibiotics [111]. However, this situation has 

changed drastically, due to the emergence and spread of multidrug resistant microorganisms (e.g., 

the ESKAPE group of bacteria [112]) and the recognition of the role of bacteria embedded in biofilms 

in the oral cavity (e.g., P. gingivalis in periodontitis) [113]. The advantage of this method is that it is 

presumed to be very unlikely that bacteria would develop resistance to the cytotoxic action of 1O2 or 

ROS (which have a direct effect on extracellular molecules), therefore, the use of PACT would not 

lead to further developments in resistance [114,115]. In addition, it has been proposed that 

polysaccharides present in the bacterial biofilm are also susceptible to this induced photo-damage; 

this (in addition to its multi-target antimicrobial mechanism) is an important advantage of PACT, 

compared with antibiotic therapy [107,114,115]. PACT should be considered as a potential alternative 

treatment, especially if the infection in question is localized in the oral cavity or the skin [116]. 

3.4. PDT in Periodontology 

Successful periodontal therapy is based upon the ability to eliminate bacteria from the infected 

site. This is achieved by mechanical debridement of the bacteria through scaling root planning (SRP) 

and curettage, or through periodontal surgical methods; the measure is usually chosen depending 

on the level of damage to the periodontal tissues. As PDT is known to be an effective antibacterial 

technique, there is evidence to suggest its efficacy in the treatment of periodontal diseases (Figure 6) 

[107,114,115]. The idea that PDT can be used in the treatment of chronic periodontal disease has been 

proposed and investigated [117]. An in vitro study by Anderson et al. was carried out to compare the 

effectivity of PDT against conventional SRP in the non-surgical treatment of periodontitis [118]. 

Thirty-three patients with periodontitis—that ranged from moderate to advanced—were placed into 

three groups at random and treated with either PDT that used the methylene blue photosensitizer 

and a diode laser, SRP alone or a combination of PDT and SRP. The efficacy of each group was 

measured according to periodontal parameters that included bleeding on probing (BOP), probing 

pocket depth (PD) and clinical attachment level at 3-, 6- and 12-week intervals [118]. According to 

their results, the third group, who received a combination of PDT and SPR, showed the most 

promising clinical results. Braun et al. also demonstrated the positive effects of using PDT alongside 

subgingival scaling for the treatment of chronic periodontitis [119]. Twenty patients were enrolled in 

this study, who presented with chronic periodontitis; all teeth received subgingival SRP, followed by 



Dent. J. 2020, 8, 43 13 of 21 

 

PDT treatment on two of the quadrants. The sulcus flow rate and BOP were examined at the initial 

baseline, at one week and then three months after the treatment. In addition, the relative clinical 

attachment level (RCAL), PD and gingival recession (GR) were evaluated at the baseline and three 

months after the treatment [119]. Their results showed an improvement in these factors by the three 

months in the group that received the additional PDT compared with the group treated with 

conventional methods. Some reports also suggest that the inclusion of PDT in the indication of 

aggressive periodontitis may also be relevant [120]. A split-mouth design study was conducted by 

De Oliveira et al., where 10 patients with aggressive periodontitis were treated by PDT that used 

phenothiazine as the PS and a 690 nm laser light in two quadrants; in contrast, the remaining two 

quadrants were treated by SRP including both hand and mechanical instruments [121]. The plaque 

index (PI), gingival index (GI), BOP, PD, GR and RCAL were measured at the baseline and three 

months after the treatment. Initially, the PI scores were 1.0 ± 0.5 in both groups; however, after the 

three-month evaluation, the plaque scores were reduced and remained low throughout the study. 

The results also showed that a pronounced change in the GI and BOP was shown in both groups after 

the three months [121]. 

 

Figure 6. Example of PDT in periodontal therapy (photo courtesy of R. Szabó DMD, J. Arentz DMD 

and T. Nave DMD). A: X-ray shows a perio-endo lesion of a tooth before PDT; and B: X-ray shows 

the condition three months after PDT. Bone regeneration is visible showing clear signs of clinical 

improvement. 

3.5. PDT in Implantology 

In dental interventions, peri-implantitis is a localized inflammatory process that affects the bone 

and tissue surrounding the dental implant. The occurrence of peri-implantitis is the result of bacterial 

contamination and colonization of the surface of the implant. When left untreated, peri-implantitis 

leads to implant failure as well as bone and tissue loss, significantly influencing the quality of life of 

the affected patients [122]. Conventionally, peri-implantitis is treated by decontamination using 

physical, chemical and mechanical means to remove as much bacteria as possible from the infected 

site [123]. However, the exact amount of bacterial and non-bacterial residue that must be removed 

from the implant surface to achieve stable and predictable clinical results post-treatment is unknown. 

Research into the application of PDT in the treatment of peri-implantitis was recently conducted by 

Dörtbudak et al., which aimed to assess the efficacy of PDT in peri-implantitis against P. gingivalis, P. 

intermedia and Aggregatibacter actinomycetemcomitans [124]. They used the PS toluidine blue and 

irradiation with a diode laser on the implant surface of n = 15 patients that showed clinical and 

radiological signs of peri-implantitis. Microbiological samples were taken at the baseline, after the 

treatment with the toluidine blue PS and using a combined treatment of toluidine blue that was 

irradiated using a diode laser at 690 nm [124]. The cultures from the three groups were quantitatively 
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examined for the abovementioned microorganisms. The results showed that treatment of peri-

implantitis with a PS alone (i.e., without light sensitization) resulted in significant reductions in P. 

intermedia and A. actinomycetemcomitans compared with the original values, while this was not 

established for P. gingivalis. In contrast, the results from the full PDT treatment using both the 

photosensitizer and laser light together showed significantly higher reductions of bacterial loads 

(including P. gingivalis), however, it is important to note the complete elimination of bacteria was not 

achieved [124]. This led the authors to conclude that PDT yielded favorable results in the treatment 

of peri-implantitis. There is evidence to suggest that the use of PDT in combination with mechanical 

debridement around the infected implant surface provides a useful tool in the treatment of peri-

implantitis and peri-implant mucositis [125]. 

However, these findings were recently challenged and contradicted by Esposito et al.; in their 

study, n = 80 patients were enrolled who showed clinical and radiological signs of peri-implantits. 

Forty of the patients were treated conventionally by non-surgical or surgical means, and the others 

were treated with PDT using the FotoSan system [126]. The study was carried out over the period of 

12 months, followed by a follow-up evaluation. The criteria used to measure the success of the 

treatment were as follows: implant failures, recurrent peri-implantitis, implant complications, 

changes in peri-implant marginal bone level (RAD), PD changes and number of re-treatment sessions 

needed. In their report, one implant treated with PDT failed compared with the no failure of cases in 

the control group; in four patients, complications arose, and three of these patients were treated by 

PDT. The recurrence of peri-implantitis was observed in six patients (three from each group) and 29 

implants were re-treated between 1–4 times in the PDT group vs. 33 re-treated implants 1–4 times in 

the control group [126]. Nevertheless, the peri-implant marginal bone levels remained stable, while 

PPD had significantly reduced in both groups at the 1-year mark, with no statistically significant 

differences between the groups. Based on these results, the authors concluded that the use of PDT in 

conjunction with conventional mechanical cleaning did not significantly improve the clinical 

outcomes [126]. Figures 7 and 8 represent examples from our own practice about the use of PDT in 

periodontology. 

 

Figure 7. Treatment of patients with peri-implantitis with PDT and BIOOSS bone graft material (photo 

courtesy of R. Szabó DMD, J. Arentz DMD and T. Nave DMD). A: X-ray of diagnosis of peri-

implantitis before treatment; and B: X-ray 3 months after treatment with PDT and BIOOSS bone graft 

material. Bone regeneration is visible showing a clear sign of healing. 
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Figure 8. PDT in the treatment of periimplantitis, using the Photolase® PDT system (photo courtesy 

of Z. Baráth DMD PhD). A: Initial stage peri-implantitis; B: surgical flap elevation; C: application of 

photosensitizer after surgical debridement; and D: conditions directly after the diode laser therapy. 

4. Concluding Remarks 

The currently available literature illustrates that the use of PDT within dentistry appears to be 

very promising, although the development of PDT is still in its “infant” stage. PDT offers a non-

invasive treatment modality that has the potential to become applicable in all fields of dental 

medicine. Currently, the most frequent use of PDT clinical practice is in the treatment of cancers of 

the head and neck, showing various advantages compared with the conventional surgical resection 

methods. However, the use of PDT in head and neck oncology is limited by the inability of PSs to 

penetrate deeply into tissues, meaning it can only be used in the treatment of early and local 

neoplasms and not for advanced carcinomas. Further research into finding a photosensitizer that can 

penetrate deeper into tissues or one that can be used systemically must be undertaken to maximize 

its utility within this field. Photodynamic antimicrobial therapy is of great importance, particularly 

in an era when minimally invasive dentistry and prevention are at the forefront of the aims of dental 

medicine. In oral medicine, PDT has overcome problems associated with antibacterial, antiviral and 

antifungal resistance, and it can also be used against all microbes as many times as needed. Photofrin® 

and some other PSs have received FDA approval for some 30 years now, and can be applied in the 

PDT of oral lesions, but many dentists are not aware of its application. Therefore, more advertising 

about the utility of PDT in oral medicine (and the same may be said about oral surgery) in the form 

of clinical trials and case studies are needed for dentists worldwide to become informed of the 
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benefits of its use. The fact that PDT poses no threat of antibiotic resistance is what makes it so useful 

in endodontic applications. It must be noted that PDT will not replace conventional chemo-

mechanical preparation methods, as it does not have the ability to mechanically remove infected 

tissue from the root canal like mechanical instruments, a substantive effect as high as chlorhexidine 

or a tissue dissolving ability like sodium hypochlorite; however, when used in conjunction with these 

conventional methods, results have been successful enough to merit its use. Although there is very 

limited information about PDT and its use in endodontics, PDT produces reliable results in the 

treatment of chronic periapical periodontitis. PDT offers an effective and professional way to remove 

plaque and therefore reduce the incidence of caries, a method of primary prevention. This method is 

highly effective against main caries-causing bacteria as well as other Gram-positive and Gram-

negative strains. In order for the use of PDT as a preventative measure to become more popular, more 

clinical research showing its efficacy needs to be made available. Although the clinical evidence 

concerning the utility of PDT in periodontology is limited, PDT shows promising results, particularly 

in the treatment of chronic periodontitis. Research has concluded that PDT is at its highest efficacy 

when used as an adjunctive treatment to conventional debris meant methods that include SRC; PDT 

however, is not as effective in the treatment of aggressive periodontitis. Similar to periodontology, 

available research suggests that PDT in implantology is at its highest efficacy when used as an adjunct 

in the treatment of peri-implantitis, which is most likely due to its antibacterial characteristics. It must 

be noted however, that a lot of the practical cases in this field have been conducted on dogs and not 

humans. Therefore, more human studies need to be conducted to show the extent of its utility. 

As a final analysis, the fact that PDT offers a minimally invasive approach, has an exceedingly 

broad spectrum of action against pathogens without posing resistance, causes few reversible adverse 

effects and that it is already readily available and economic to use suggests that PDT poses a great 

utility within the field of dentistry. One must be aware of its main limitation, which is the fact that 

the systemic administration of photosensitizers leads to a local accumulation of them in their target 

tissue, consequently causing a period of photosensitivity on the skin. Overall, PDT shows great 

potential as a treatment modality and can be considered an important tool in the treatment of oral 

diseases, both as the sole therapeutic agent or its use as an adjunctive tool. 

Author Contributions: S.K., M.G. and A.M.-E. performed the literature review; S.K., A.S. and Z.B. are 

experienced in the utility of PDT in clinical practice and provided insight during the preparation of the 

manuscript; M.G. A.S. and Z.B. provided financial support, supervised the manuscript writing and editing. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. The APC was kindly funded by the Multidisciplinary 

Digital Publishing Institute (MDPI) as a part of “Dentistry Journal Travel Awards 2019”. M.G. was supported 

by the National Youth Excellence Scholarship (Grant Number NTP-NTFÖ-18-C-0225) and ESCMID’s “30 under 

30” Award. 

Acknowledgments: The authors would like to acknowledge R. Szabó DMD, J. Arentz DMD and T. Nave DMD 

for providing some of the figures presented in this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest, monetary or otherwise. 

References 

1. Slavkin, H.C. Evolution of the scientific basis for dentistry and its impact on dental education: Past, present, 

and future. J. Dent. Educ. 2012, 76, 28–35. 

2. Polverini, P.J.; Krebsbach, P.H. Research and Discovery Science and the Future of Dental Education and 

Practice. J. Dent. Educ. 2017, 81, eS97–eS107. 

3. Gutmann, J.L. The maturation of science within dentistry: The impact of critical milestones and visionary 

leaders on contemporary achievements. J. Hist. Dent. 2009, 57, 109–122. 

4. Issa, M.C.A.; Manela-Azulay, M. Photodynamic therapy: A review of the literature and image 

documentation. An. Bras. Dermatol. 2010, 85, 501–511. 

5. Wan, M.T.; Lin, J.Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. 

Cosmet. Investig. Dermatol. 2014, 7, 145–163. 



Dent. J. 2020, 8, 43 17 of 21 

 

6. Abdel-kader, M.H. Chapter 1 The Journey of PDT Throughout History: PDT from Pharos to Present. In 

Photodynamic Medicine: From Bench to Clinic; Royal Society of Chemistry: London, UK, 2016; pp. 1–21. 

7. Kessel, D. Photodynamic Therapy: A Brief History. J. Clin. Med. 2019, 8, E1581. 

8. Abd El-Kaream, S.A.; Abd Elsamie, G.H.; Abd-Alkareem, A.S. Sono-photodynamic modality for cancer 

treatment using bio-degradable bio-conjugated sonnelux nanocomposite in tumor-bearing mice: Activated 

cancer therapy using light and ultrasound. Biochem. Biophys. Res. Commun. 2018, 503, 1075–1086. 

9. Abdel-Kader, M.H. (Ed.) Photodynamic Therapy: From Theory to Application; Springer-Verlag: 

Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-39628-1. 

10. Kato, H. History of photodynamic therapy--past, present and future. Cancer Chemother. 1996, 23, 8–15. 

11. Sotiriou, E.; Evangelou, G.; Papadavid, E.; Apalla, Z.; Vrani, F.; Vakirlis, E.; Panagiotou, M.; Stefanidou, M.; 

Pombou, T.; Krasagakis, K.; et al. Conventional vs. daylight photodynamic therapy for patients with actinic 

keratosis on face and scalp: 12-month follow-up results of a randomized, intra-individual comparative 

analysis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 595–600. 

12. Saleeby, C.W. The Advance of Heliotherapy. Available online: https://www.nature.com/articles/109663a0 

(accessed on 26 March 2020). 

13. Møller, K.I.; Kongshoj, B.; Philipsen, P.A.; Thomsen, V.O.; Wulf, H.C. How Finsen’s light cured lupus 

vulgaris. Photodermatol. Photoimmunol. Photomed. 2005, 21, 118–124. 

14. Grzybowski, A.; Pietrzak, K. From patient to discoverer--Niels Ryberg Finsen (1860–1904)—The founder 

of phototherapy in dermatology. Clin. Dermatol. 2012, 30, 451–455. 

15. Gøtzsche, P. Niels Finsen’s treatment for lupus vulgaris. J. R. Soc. Med. 2011, 104, 41–42. 

16. Sharma, S.K.; Mroz, P.; Dai, T.; Huang, Y.-Y.; Denis, T.G.S.; Hamblin, M.R. Photodynamic Therapy for 

Cancer and for Infections: What Is the Difference? Israel J. Chem. 2012, 52, 691–705. 

17. Patrice, T.; Moan, J.; Peng, Q. An outline of the history of PDT. In Photodynamic Therapy; Royal Society of 

Chemistry: London, UK, 2003; pp. 1–18. 

18. Die Sensibilisierende Wirkung Fluoreszierender Substanzen—Hermann von Tappeiner (Buch)—jpc. 

Available online: https://www.jpc.de/jpcng/books/detail/-/art/hermann-von-tappeiner-die-

sensibilisierende-wirkung-fluoreszierender-substanzen/hnum/6911897 (accessed on 26 March 2020). 

19. Szeimies, R.-M.; Dräger, J.; Abels, C.; Landthaler, M. Chapter 1 History of photodynamic therapy in 

dermatology. In Comprehensive Series in Photosciences; Calzavara-Pinton, P., Szeimies, R.-M., Ortel, B., Eds.; 

Photodynamic Therapy and Fluorescence Diagnosis in Dermatology; Elsevier: Amsterdam, The 

Netherlands, 2001; Volume 2, pp. 3–15. 

20. Sternberg, E.D.; Dolphin, D.; Brückner, C. Porphyrin-based photosensitizers for use in photodynamic 

therapy. Tetrahedron 1998, 54, 4151–4202. 

21. Lipson, R.L.; Baldes, E.J. The photodynamic properties of a particular hematoporphyrin derivative. Arch. 

Dermatol. 1960, 82, 508–516. 

22. Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. 

Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. 

23. Huang, Z. A Review of Progress in Clinical Photodynamic Therapy. Technol. Cancer Res. Treat 2005, 4, 283–

293. 

24. Toshima, K.; Tanimoto, S.; Tsumura, K.; Umezawa, K.; Takahashi, D. Target-selective degradation of 

cancer-related proteins by novel photosensitizers for molecular-targeted photodynamic therapy. Cancer 

Sci. 2009, 100, 1581–1584. 

25. Chilakamarthi, U.; Giribabu, L. Photodynamic Therapy: Past, Present and Future. Chem. Rec. 2017, 17, 775–

802. 

26. Stokowski, L.A. Fundamentals of phototherapy for neonatal jaundice. Adv. Neonatal. Care 2011, 11, S10–

S21. 

27. Gursoy, H.; Ozcakir-Tomruk, C.; Tanalp, J.; Yilmaz, S. Photodynamic therapy in dentistry: A literature 

review. Clin. Oral Investig. 2013, 17, 1113–1125. 

28. Malik, R.; Manocha, A.; Suresh, D.K. Photodynamic therapy--a strategic review. Indian J. Dent. Res. 2010, 

21, 285–291. 

29. Kou, J.; Dou, D.; Yang, L. Porphyrin photosensitizers in photodynamic therapy and its applications. 

Oncotarget 2017, 8, 81591–81603. 



Dent. J. 2020, 8, 43 18 of 21 

 

30. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, 

O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy – mechanisms, photosensitizers and combinations. 

Biomed. Pharmacother. 2018, 106, 1098–1107. 

31. Allison, R.R.; Downie, G.H.; Cuenca, R.; Hu, X.-H.; Childs, C.J.; Sibata, C.H. Photosensitizers in clinical 

PDT. Photodiagnosis Photodyn. Ther. 2004, 1, 27–42. 

32. Detty, M.R.; Gibson, S.L.; Wagner, S.J. Current clinical and preclinical photosensitizers for use in 

photodynamic therapy. J. Med. Chem. 2004, 47, 3897–3915. 

33. Lam, S. Photodynamic therapy of lung cancer. Semin. Oncol. 1994, 21, 15–19. 

34. Kessel, D. More Adventures in Photodynamic Therapy. Int. J. Mol. Sci. 2015, 16, 15188–15193. 

35. Rkein, A.M.; Ozog, D.M. Photodynamic therapy. Dermatol. Clin. 2014, 32, 415–425. 

36. Josefsen, L.B.; Boyle, R.W. Photodynamic Therapy and the Development of Metal-Based Photosensitisers. 

Met. Based Drugs 2008, 2008, doi:10.1155/2008/276109. 

37. Salva, K.A. Photodynamic therapy: Unapproved uses, dosages, or indications. Clin. Dermatol. 2002, 20, 571–

581. 

38. Huang, Y.-Y.; Sharma, S.K.; Yin, R.; Agrawal, T.; Chiang, L.Y.; Hamblin, M.R. Functionalized fullerenes in 

photodynamic therapy. J. Biomed. Nanotechnol. 2014, 10, 1918–1936. 

39. Wachowska, M.; Muchowicz, A.; Firczuk, M.; Gabrysiak, M.; Winiarska, M.; Wańczyk, M.; Bojarczuk, K.; 

Golab, J. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules 2011, 16, 

4140–4164. 

40. Yang, X.; Palasuberniam, P.; Kraus, D.; Chen, B. Aminolevulinic Acid-Based Tumor Detection and Therapy: 

Molecular Mechanisms and Strategies for Enhancement. Int. J. Mol. Sci. 2015, 16, 25865–25880. 

41. Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–

364. 

42. Borgia, F.; Giuffrida, R.; Caradonna, E.; Vaccaro, M.; Guarneri, F.; Cannavò, S.P. Early and Late Onset Side 

Effects of Photodynamic Therapy. Biomedicines 2018, 6, 12. 

43. Evans, H.H.; Horng, M.F.; Ricanati, M.; Deahl, J.T.; Oleinick, N.L. Mutagenicity of photodynamic therapy 

as compared to UVC and ionizing radiation in human and murine lymphoblast cell lines. Photochem. 

Photobiol. 1997, 66, 690–696. 

44. Iwamoto, Y.; Mifuchi, I.; Yielding, L.W. Photodynamic mutagenic action of acridine compounds on yeast 

Saccharomyces cerevisiae. Mutat. Res. 1985, 158, 169–175. 

45. Neugebauer, J.; Jozsa, M.; Kübler, A. Antimicrobial photodynamic therapy for prevention of alveolar ostitis 

and post-extraction pain. Mund. Kiefer Gesichtschir. 2004, 8, 350–355. 

46. Biel, M.A. Photodynamic therapy in head and neck cancer. Curr. Oncol. Rep. 2002, 4, 87–96. 

47. Grant, W.E.; Speight, P.M.; Hopper, C.; Bown, S.G. Photodynamic therapy: An effective, but non-selective 

treatment for superficial cancers of the oral cavity. Int. J. Cancer 1997, 71, 937–942. 

48. Meisel, P.; Kocher, T. Photodynamic therapy for periodontal diseases: State of the art. J. Photochem. Photobiol. 

B, Biol. 2005, 79, 159–170. 

49. Yilmaz, A.; Ozkiraz, S.; Akcan, A.B.; Canpolat, M. Low-cost Home-use Light-emitting-diode Phototherapy 

as an alternative to Conventional Methods. J. Trop. Pediatr. 2015, 61, 113–118. 

50. Clarkson, D.M. Hazards of non coherent light sources as determined by the framework of IEC TR-60825-9. 

J. Med. Eng. Technol. 2004, 28, 125–131. 

51. Reeds, K.B.; Ridgway, T.D.; Higbee, R.G.; Lucroy, M.D. Non-coherent light for photodynamic therapy of 

superficial tumours in animals. Vet. Comp. Oncol. 2004, 2, 157–163. 

52. Epstein, J.H. UV-A: Biological Effects of Ultraviolet Radiation with Emphasis on Human Responses to 

Longwave Ultraviolet. Arch. Dermatol. 1979, 115, 648–648. 

53. Ohshiro, T. New classification for single-system light treatment. Laser Ther. 2011, 20, 11–15. 

54. Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial 

photodynamic therapy - what we know and what we don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. 

55. Foster, T.H.; Murant, R.S.; Bryant, R.G.; Knox, R.S.; Gibson, S.L.; Hilf, R. Oxygen Consumption and 

Diffusion Effects in Photodynamic Therapy. Radiat. Res. 1991, 126, 296–303. 

56. Konopka, K.; Goslinski, T. Photodynamic therapy in dentistry. J. Dent. Res. 2007, 86, 694–707. 

57. Sitnik, T.M.; Hampton, J.A.; Henderson, B.W. Reduction of tumour oxygenation during and after 

photodynamic therapy in vivo: Effects of fluence rate. Br. J. Cancer 1998, 77, 1386–1394. 

https://doi.org/10.1155/2008/276109


Dent. J. 2020, 8, 43 19 of 21 

 

58. Daicoviciu, D.; Filip, A.; Ion, R.M.; Clichici, S.; Decea, N.; Muresan, A. Oxidative photodamage induced by 

photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats. Folia Biol. 

(Praha) 2011, 57, 12–19. 

59. Romiszewska, A.; Nowak-Stępniowska, A. Photodynamic reaction and oxidative stress - influence of the 

photodynamic effect on the activity antioxidant enzymes. Postepy Biochem. 2014, 60, 355–364. 

60. Foote, C.S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 1991, 54, 659. 

61. Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; 

Ribeiro, M.S.; Thomas, A.H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and 

Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. 

62. Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part two-cellular 

signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn. Ther. 2005, 2, 1–23. 

63. Mallidi, S.; Anbil, S.; Lee, S.; Manstein, D.; Elrington, S.; Kositratna, G.; Schoenfeld, D.; Pogue, B.; Davis, 

S.J.; Hasan, T. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of 

topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema. J. Biomed. Opt. 2014, 19, 

028001. 

64. Asgary, S.; Roghanizadeh, L. Partial Necrosis Consequence of the Infection Spreading from an Adjacent 

Apical Periodontitis: A Case Report. Iran Endod. J. 2018, 13, 420–423. 

65. Mroz, P.; Yaroslavsky, A.; Kharkwal, G.B.; Hamblin, M.R. Cell Death Pathways in Photodynamic Therapy 

of Cancer. Cancers (Basel) 2011, 3, 2516–2539. 

66. Kessel, D.; Reiners, J.J. Apoptosis and autophagy after mitochondrial or endoplasmic reticulum 

photodamage. Photochem. Photobiol. 2007, 83, 1024–1028. 

67. Nishikawa, S.; Sasaki, F. Apoptosis of Dental Pulp Cells and Their Elimination by Macrophages and MHC 

Class II-expressing Dendritic Cells. J. Histochem. Cytochem. 1999, 47, 303–311. 

68. Misra, A.; Rai, S.; Misra, D. Functional role of apoptosis in oral diseases: An update. J. Oral Maxillofac. Pathol. 

2016, 20, 491–496. 

69. de Bruijn, H.S.; Meijers, C.; van der Ploeg-van den Heuvel, A.; Sterenborg, H.J.C.M.; Robinson, D.J. 

Microscopic localisation of protoporphyrin IX in normal mouse skin after topical application of 5-

aminolevulinic acid or methyl 5-aminolevulinate. J. Photochem. Photobiol. B Biol. 2008, 92, 91–97. 

70. Sharwani, A.; Jerjes, W.; Salih, V.; MacRobert, A.J.; El-Maaytah, M.; Khalil, H.S.M.; Hopper, C. Fluorescence 

spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in detecting 

oral premalignancy. J. Photochem. Photobiol. B Biol. 2006, 83, 27–33. 

71. Bekelis, K.; Valdés, P.A.; Erkmen, K.; Leblond, F.; Kim, A.; Wilson, B.C.; Harris, B.T.; Paulsen, K.D.; Roberts, 

D.W. Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull 

base meningiomas. Neurosurg. Focus 2011, 30, E8. 

72. Sharma, P.; Wadhwan, V.; Aggarwal, P.; Sharma, A. Oral verrucous hyperplasia versus oral verrucous 

carcinoma: A clinicopathologic dilemma revisited using p53 as immunohistochemical marker. J. Oral 

Maxillofac. Pathol. 2016, 20, 362–368. 

73. Chang, Y.-C.; Yu, C.-H. Successful treatment of a large oral verrucous hyperplasia with photodynamic 

therapy combined with cryotherapy. J. Dent. Sci. 2013, 8, 87–90. 

74. Philipp-Dormston, W.G. Photodynamic therapy for aesthetic-cosmetic indications. Soc. Ital. Dermatol. 

Venereol 2018, 153, 817–826. 

75. Tampa, M.; Sarbu, M.-I.; Matei, C.; Mitran, C.-I.; Mitran, M.-I.; Caruntu, C.; Constantin, C.; Neagu, M.; 

Georgescu, S.-R. Photodynamic therapy: A hot topic in dermato-oncology (Review). Oncol. Lett. 2019, 17, 

4085–4093. 

76. Dilkes, M.G.; DeJode, M.L.; Rowntree-Taylor, A.; McGilligan, J.A.; Kenyon, G.S.; McKelvie, P. m-THPC 

photodynamic therapy for head and neck cancer. Laser Med. Sci. 1996, 11, 23–29. 

77. Dilkes, M.G.; DeJode, M.L.; Gardiner, Q.; Kenyon, G.S.; McKelvie, P. Treatment of head and neck cancer 

with photodynamic therapy: Results after one year. J. Laryngol. Otol. 1995, 109, 1072–1076. 

78. Kübler, A.C.; de Carpentier, J.; Hopper, C.; Leonard, A.G.; Putnam, G. Treatment of squamous cell carcinoma 

of the lip using Foscan-mediated photodynamic therapy. Int. J. Oral Maxillofac. Surg. 2001, 30, 504–509. 

79. Rautemaa, R.; Lauhio, A.; Cullinan, M.P.; Seymour, G.J. Oral infections and systemic disease—An 

emerging problem in medicine. Clinical Microbiology and Infection 2007, 13, 1041–1047. 

80. Stájer, A.; Ibrahim, B.; Gajdács, M.; Urbán, E.; Baráth, Z. Diagnosis and Management of Cervicofacial 

Actinomycosis: Lessons from Two Distinct Clinical Cases. Antibiotics 2020, 9, 139. 



Dent. J. 2020, 8, 43 20 of 21 

 

81. Gajdács, M.; Urbán, E.; Terhes, G. Microbiological and Clinical Aspects of Cervicofacial Actinomyces 

Infections: An Overview. Dent. J. (Basel) 2019, 7, 85. 

82. Komerik, N.; MacRobert, A.J. Photodynamic therapy as an alternative antimicrobial modality for oral 

infections. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 487–504. 

83. Singh, A.; Verma, R.; Murari, A.; Agrawal, A. Oral candidiasis: An overview. J. Oral Maxillofac. Pathol. 2014, 

18, S81–S85. 

84. Akpan, A.; Morgan, R. Oral candidiasis. Postgrad. Med. J. 2002, 78, 455–459. 

85. Bliss, J.M.; Bigelow, C.E.; Foster, T.H.; Haidaris, C.G. Susceptibility of Candida species to photodynamic 

effects of photofrin. Antimicrob. Agents Chemother. 2004, 48, 2000–2006. 

86. Freire, F.; Ferraresi, C.; Jorge, A.O.C.; Hamblin, M.R. Photodynamic therapy of oral Candida infection in a 

mouse model. J. Photochem. Photobiol. B Biol. 2016, 159, 161–168. 

87. Lotufo, M.A.; Tempestini Horliana, A.C.R.; Santana, T.; de Queiroz, A.C.; Gomes, A.O.; Motta, L.J.; Ferrari, 

R.A.M.; dos Santos Fernandes, K.P.; Bussadori, S.K. “Efficacy of photodynamic therapy on the treatment 

of herpes labialis: A systematic review.” Photodiagnosis Photodyn. Therapy 2020, 29, 101536. 

88. Marotti, J.; Aranha, A.C.C.; Eduardo, C.D.P.; Ribeiro, M.S. Photodynamic Therapy Can Be Effective as a 

Treatment for Herpes Simplex Labialis. Photomed. Laser Surg. 2009, 27, 357–363. 

89. Saini, R.; Lee, N.V.; Liu, K.Y.P.; Poh, C.F. Prospects in the Application of Photodynamic Therapy in Oral 

Cancer and Premalignant Lesions. Cancers (Basel) 2016, 8, 83. 

90. Persoon, I.F.; Özok, A.R. Definitions and Epidemiology of Endodontic Infections. Curr. Oral Health Rep. 2017, 

4, 278–285. 

91. Li, C.; Cui, Y.; Zhou, C.; Sun, J.; Zhou, X. Epigenetics in Odontogenesis and its Influences. Curr. Stem. Cell 

Res. Ther. 2018, 13, 110–117. 

92. Trindade, A.C.; De Figueiredo, J.A.P.; Steier, L.; Weber, J.B.B. Photodynamic therapy in endodontics: A 

literature review. Photomed. Laser Surg. 2015, 33, 175–182. 

93. Okamoto, C.B.; Motta, L.J.; Prates, R.A.; da Mota, A.C.C.; Gonçalves, M.L.L.; Horliana, A.C.R.T.; Mesquita 

Ferrari, R.A.; Fernandes, K.P.S.; Bussadori, S.K. Antimicrobial Photodynamic Therapy as a Co-adjuvant in 

Endodontic Treatment of Deciduous Teeth: Case Series. Photochem. Photobiol. 2018, 94, 760–764. 

94. Demidova, T.N.; Hamblin, M.R. Effect of Cell-Photosensitizer Binding and Cell Density on Microbial 

Photoinactivation. Antimicrob. Agents Chemother. 2005, 49, 2329–2335. 

95. Gajdács, M.; Albericio, F. Antibiotic Resistance: From the Bench to Patients. Antibiotics 2019, 8, 129. 

96. Fimple, J.L.; Fontana, C.R.; Foschi, F.; Ruggiero, K.; Song, X.; Pagonis, T.C.; Tanner, A.C.R.; Kent, R.; 

Doukas, A.G.; Stashenko, P.P.; et al. Photodynamic treatment of endodontic polymicrobial infection in 

vitro. J Endod 2008, 34, 728–734. 

97. Gajdács, M.; Spengler, G.; Urbán, E. Identification and Antimicrobial Susceptibility Testing of Anaerobic 

Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics (Basel) 2017, 6, 25. 

98. Petersen, J.; Glaßl, E.-M.; Nasseri, P.; Crismani, A.; Luger, A.K.; Schoenherr, E.; Bertl, K.; Glodny, B. The 

association of chronic apical periodontitis and endodontic therapy with atherosclerosis. Clin. Oral Investig. 

2014, 18, 1813–1823. 

99. Meimandi, M.; Talebi Ardakani, M.R.; Esmaeil Nejad, A.; Yousefnejad, P.; Saebi, K.; Tayeed, M.H. The 

Effect of Photodynamic Therapy in the Treatment of Chronic Periodontitis: A Review of Literature. J. Lasers 

Med. Sci. 2017, 8, S7–S11. 

100. Garcez, A.S.; Nuñez, S.C.; Hamblin, M.R.; Ribeiro, M.S. Antimicrobial effects of photodynamic therapy on 

patients with necrotic pulps and periapical lesion. J. Endod. 2008, 34, 138–142. 

101. Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of Dental 

Caries in Primary and Permanent Teeth in Children and Young Adults. J. Clin. Microbiol. 2008, 46, 1407–1417. 

102. Faragó, I.; Nagy, G.; Márton, S.; Túry, F.; Szabó, E.; Hopcraft, M.; Madléna, M. Dental caries experience in 

a Hungarian police student population. Caries Res. 2012, 46, 95–101. 

103. Stájer, A.; Urban, E.; Mihalik, E.; Rakonczay, Z.; Nagy, E.; Fazekas, A.; Turzó, K.; Radnai, M.; Nagy, K. 

Streptococcus mutans colonization on titanium surfaces treated with various fluoride-containing 

preventive solutions. Fogorv. Szle. 2009, 102, 117–122. 

104. Barrak, I.; Urbán, E.; Turzó, K.; Nagy, K.; Braunitzer, G.; Stájer, A. Short- and Long-Term Influence of 

Fluoride-Containing Prophylactics on the Growth of Streptococcus mutans on Titanium Surface. Implant 

Dent. 2015, 24, 675–679. 



Dent. J. 2020, 8, 43 21 of 21 

 

105. Stájer, A.; Urbán, E.; Pelsõczi, I.K.; Mihalik, E.; Rakonczay, Z.; Nagy, K.; Turzó, K.; Radnai, M. Effect of 

caries preventive products on the growth of bacterial biofilm on titanium surface. Acta Microbiol. Immunol. 

Hung. 2012, 59, 51–61. 

106. Ricatto, L.G.O.; Conrado, L.A.L.; Turssi, C.P.; França, F.M.G.; Basting, R.T.; Amaral, F.L.B. Comparative 

evaluation of photodynamic therapy using LASER or light emitting diode on cariogenic bacteria: An in 

vitro study. Eur. J. Dent. 2014, 8, 509–514. 

107. Almeida, A. Photodynamic Therapy in the Inactivation of Microorganisms. Antibiotics 2020, 9, 138. 

108. Bevilacqua, I.M.; Nicolau, R.A.; Khouri, S.; Brugnera, A.; Teodoro, G.R.; Zângaro, R.A.; Pacheco, M.T.T. 

The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. 

Photomed. Laser Surg. 2007, 25, 513–518. 

109. Wilson, M. Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases. 

Int. Dent. J. 1994, 44, 181–189. 

110. Wilson, M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic 

therapy of oral infections. Photochem. Photobiol. Sci. 2004, 3, 412–418. 

111. Gaynes, R. The Discovery of Penicillin—New Insights after More Than 75 Years of Clinical Use. Emerg. 

Infect. Dis. 2017, 23, 849–853. 

112. Gajdács, M. The Concept of an Ideal Antibiotic: Implications for Drug Design. Molecules 2019, 24, 892. 

113. How, K.Y.; Song, K.P.; Chan, K.G. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen 

below the Gum Line. Front. Microbiol. 2016, 7, 53. 

114. Huang, L.; Xuan, Y.; Koide, Y.; Zhiyentayev, T.; Tanaka, M.; Hamblin, M.R. Type I and Type II mechanisms 

of antimicrobial photodynamic therapy: An in vitro study on Gram-negative and Gram-positive bacteria. 

Lasers Surg. Med. 2012, 44, 490–499. 

115. Memar, M.Y.; Ghotaslou, R.; Samiei, M.; Adibkia, K. Antimicrobial use of reactive oxygen therapy: Current 

insights. Infect. Drug Resist. 2018, 11, 567–576. 

116. Di Stasio, D.; Romano, A.; Gentile, C.; Maio, C.; Lucchese, A.; Serpico, R.; Paparella, R.; Minervini, G.; 

Candotto, V.; Laino, L. Systemic and topical photodynamic therapy (PDT) on oral mucosa lesions: An 

overview. J. Biol. Regul. Homeost. Agents 2018, 32, 123–126. 

117. Kumar, V.; Sinha, J.; Verma, N.; Nayan, K.; Saimbi, C.S.; Tripathi, A.K. Scope of photodynamic therapy in 

periodontics. Indian J. Dent. Res. 2015, 26, 439–442. 

118. Andersen, R.; Loebel, N.; Hammond, D.; Wilson, M. Treatment of periodontal disease by photodisinfection 

compared to scaling and root planing. J. Clin. Dent. 2007, 18, 34–38. 

119. Braun, A.; Dehn, C.; Krause, F.; Jepsen, S. Short-term clinical effects of adjunctive antimicrobial photodynamic 

therapy in periodontal treatment: A randomized clinical trial. J. Clin. Periodontol. 2008, 35, 877–884. 

120. Raghavendra, M.; Koregol, A.; Bhola, S. Photodynamic therapy: A targeted therapy in periodontics. Aust. 

Dent. J. 2009, 54 (Suppl. 1), S102–S109. 

121. De Oliveira, R.R.; Schwartz-Filho, H.O.; Novaes, A.B.; Taba, M. Antimicrobial photodynamic therapy in 

the non-surgical treatment of aggressive periodontitis: A preliminary randomized controlled clinical study. 

J. Periodontol. 2007, 78, 965–973. 

122. Khammissa, R. a. G.; Feller, L.; Meyerov, R.; Lemmer, J. Peri-implant mucositis and peri-implantitis: 

Bacterial infection. SADJ 2012, 67, 70, 72–74. 

123. Prathapachandran, J.; Suresh, N. Management of peri-implantitis. Dent. Res. J. (Isfahan) 2012, 9, 516–521. 

124. Dörtbudak, O.; Haas, R.; Bernhart, T.; Mailath-Pokorny, G. Lethal photosensitization for decontamination 

of implant surfaces in the treatment of peri-implantitis. Clin. Oral Implants Res. 2001, 12, 104–108. 

125. Sivaramakrishnan, G.; Sridharan, K. Photodynamic therapy for the treatment of peri-implant diseases: A 

network meta-analysis of randomized controlled trials. Photodiagnosis Photodyn. Ther. 2018, 21, 1–9. 

126. Esposito, M.; Grusovin, M.G.; De Angelis, N.; Camurati, A.; Campailla, M.; Felice, P. The adjunctive use of 

light-activated disinfection (LAD) with FotoSan is ineffective in the treatment of peri-implantitis: 1-year 

results from a multicentre pragmatic randomised controlled trial. Eur. J. Oral. Implantol. 2013, 6, 109–119. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


