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Abstract 

Valve regulated lead acid (VRLA) batteries are traditionally classified on the basis of gel and 

absorptive glass mat (AGM) separators. To fulfill the desired functions of AGM batteries, a key 

design feature of the separator relies on the uptake of the electrolyte in shortest transport time. 

Herein, we present a three-dimensional (3D) analytical model to predict the fastest electrolyte 

uptake in AGM separators based upon the optimal set of fiber and structural parameters. The 

predictive model has utilized 3D data of fiber orientation in AGM separators, obtained via X-ray 
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micro-computed tomography analysis. Such realistic structural information of AGM has assisted 

in simulating the separators made up of cheaper coarser glass fibers, which was subsequently 

benchmarked with the experimental samples consisting of finer fibers for attaining the fastest 

electrolyte uptake. Through theoretical modeling, a design criterion has successfully evolved for 

the fastest electrolyte uptake by mapping the key effects of the fiber diameter, 3D fiber orientation 

distribution and porosity of AGM separators. In general, high-density AGM separators comprising 

of preferentially aligned coarser fibers tend to attain the fastest electrolyte uptake. 
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1. Introduction 

Absorptive glass mat (AGM) batteries are amongst the widely used lead-based batteries that have 

gained popularity with an ever-increasing list of applications. The separator, a key component of 

the AGM battery, has played a pivotal role in enhancing the life cycle of the battery [1–3]. These 

separators are prepared using glass fibers via paper-making process and host a multitude of 

characteristics including separation of electrodes, maintaining good contact with the electrodes 

and retain electrolyte reliably [2,4–8]. The movement of the electrolyte within an AGM separator 

can be instigated via filling processes namely, gravity top fill, gravity bottom-up fill, push fill, 

soft-vacuum fill, and hard-vacuum fill [9]. Amongst these filling processes, gravity bottom-up fill 

is the most reproducible method in terms of fill weight, uniform distribution and saturation level 

[9]. This method involves imbibing the AGM separator into a bath of electrolyte solution and the 

movement of the electrolyte is primarily dictated by wicking. One of the major demerits of the 

gravity bottom-up fill method is profoundly related to the slow process of wicking [9]. Inevitably, 

the slow wicking of electrolyte restricts a practical limit on the battery dimensions, which 
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effectively limits the applications of this method to the large batteries [10]. To enhance the 

electrolyte uptake, a key set of fiber and structural parameters needs to be optimized in an AGM 

separator.   

In general, the wicking characteristics of AGM separators are governed by fiber properties 

(diameter, length, wetting characteristics), structural parameters (porosity, pore geometry, bulk 

density), and compression hysteresis developed as a result of charge and discharge modes of the 

battery [4,11–15]. In the seminal work of Culpin [16], an attempt was made to predict the wicking 

characteristics of AGM separators using well-known Lucas-Washburn [17,18] equation 

specifically for a short time duration (~8 mins). Notably, Lucas-Washburn [17,18] equation did 

not account for the effect of gravity. Through semi-analytical approach, Kamenev et al. [19] 

proposed the model of wicking characteristics by considering the effect of gravity but the realistic 

structural characteristics of AGM separators did not feature into the modeling scheme.  Recently, 

the analytical models of wicking characteristics of AGM separators have been proposed by 

considering key set of fiber and structural parameters based upon Fries and Dreyer approach that 

included the effect of gravity component [13,15,20]. Defying gravity is a major challenge to design 

an AGM separator for the fastest uptake of electrolyte. In the open literature, a theoretical 

framework to compute minimum time taken by the electrolyte solution to reach a predefined 

wicking height in an AGM separator has not been developed. Therefore, the central aim of the 

research work was to propose an analytical model to predict the optimal set of fiber and structural 

parameters of AGM separators for the fastest electrolyte uptake.  The synergistic effect of key 

fiber properties and structural parameters along with the interplay of gravity, capillary pressure 

and viscous effects has formed the basis of the predictive model for computing the fastest 

electrolyte uptake in AGM separators. A parametric analysis has allowed us to redesign the AGM 
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separators and subsequently, a comparison was made between the hypothesized and 

experimentally obtained samples. In this research work, X-ray micro-computed tomography 

(microCT) analysis has been utilized in obtaining the 3D fiber orientation distribution of AGM 

separators, a key structural parameter which has been used as an input parameter in modeling the 

fastest electrolyte uptake. 

2. Theoretical Analysis 

Gravity bottom-up filling method involves the battery consisting of AGM separators to be imbibed 

in a bath of electrolyte to ingress the separator and electrodes with acid by means of wicking [9], 

as illustrated in Fig. 1. In general, AGM separators are highly porous materials that consist of a 

three-dimensional (3D) anisotropic network of glass fibers. The pores of AGM separators not only 

enable the distribution of electrolyte but also hinder the acid stratification [12,16,21,22]. To attain 

the fastest electrolyte uptake in the pore channels of an AGM separator, it is pertinent to understand 

the interplay of gravity, capillary pressure, viscous and inertia effects through momentum balance 

equation of a liquid inside a capillary tube, as shown below [20].  

    (1) 

where  is the liquid surface tension,  is the liquid contact angle,  is the capillary diameter, 

 is the liquid density, is the acceleration due to gravity,  is the distance covered by the liquid, 

 is the dynamic viscosity, is the porosity, t is the time taken by the liquid, is the inclination 

angle of the porous medium,  and  is the permeability of porous medium.  

( )4 cos sin p
d hhh

gh h
D K dt

j µs z r y r= + +
!

!

s z D

r g h

µ pj y

K



5 
 

 

Fig.1. A schematic display of AGM separators and electrodes imbibed in an electrolyte solution. 
Here, the magnified view of an AGM separator illustrates the electrolyte uptake whilst the 
stopwatch depicts the transport time taken by the electrolyte solution.  

 

Fries and Dreyer [20] successfully solved the above equation by neglecting the effect of inertia to 

formulate a relationship between the time (t) required for a liquid to travel a defined height (h) 

through a particle-based porous medium. Thus,  

       (2) 

where, .               (3) 

For non-circular pore channels in an AGM separator, we earlier introduced the concept of 

hydraulic diameter ( ) to replace the capillary diameter (D) in Eq. (3) [13]. Owing to the fact 

that AGM separators possess 3D anisotropy which eventually gives rise to the directional 
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anisotropy both in hydraulic diameter and permeability, as illustrated by Mao and Russell [23]. 

Thus, 

      (4) 

where,  

, , 

 

,   (5) 

where  is the fiber diameter, is the angle formed between the alignment of AGM sample 

and the direction of liquid flow ,  is the fiber orientation distribution function,  

and  are the polar and azimuthal orientation angles, respectively.  

It should be noted that the flow of the electrolyte takes place primarily in the machine (in-plane) 

direction resulting in ,   and , using Eq. (5). Nevertheless, 

based upon the above considerations, the parameters a and b given in Eq. (3) can be rewritten as 

[13],  
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        (6)  

Combining Eqs. (2)-(4) and (6) yields the following expression, 

    (7) 

where, , ,  

In order to find the hydraulic diameter,  that can lead to the fastest electrolyte uptake, Eq. 

(7) needs to be differentiated with respect to  and also satisfying the following condition. 

     (8) 

The solution of the Eq. (8) yields the magnitude of hydraulic diameter,  or capillary 

dimensions, which takes minimum time by the electrolyte to reach the defined height (h) in an 

AGM separator. However, the condition, i.e.  is required to be satisfied, or, 

    (9) 

It should be noted that Eq. (8) cannot have real roots if , and for porous materials such 

as AGM separators , or in other words, , hence   in Eq. 
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  (10) 

Satisfying the Eq. (10) would inevitably result in the magnitude of , which would yield the 

minimum wicking time taken by the electrolyte to reach the defined height. Moreover,  is 

dependent upon the fiber and structural parameters of AGM namely, porosity, fiber diameter and 

alignment of fibers within an AGM separator, as shown in Eq. (4). Accordingly, various 

combinations of the magnitudes of these input parameters have been used to obtain the values of

 that matches with those obtained from Eq. (8). 

3. Experimental Work 

The proposed model of fastest electrolyte uptake was evaluated using two AGM samples namely 

‘A’ and ‘B’. Here, the sample ‘B’ is identified as the same sample that was used in our previous 

publications [14,15]. A key set of fiber and AGM properties was determined, as highlighted in 

Table 1. Specifically, the images obtained from the scanning electron microscope (ZEISSEVO 50) 

were used concomitantly with IMAGEJ® software for computing the fiber diameter in AGM 

samples. Moreover, the wicking tests for both AGM samples were specifically performed in a 

confined state, using the approach given in references [13,15]. Here, the wicking height was 

measured by placing the AGM specimen of dimensions, i.e., 32 mm x 1200 mm in the machine 

(production) direction. The movement of the battery grade electrolyte solution (density = 1.28 g 

cm-3, 4.93 M) tinted with methyl orange color was detected in intervals of 5 mm. The confined 

state of AGM separator was attained by sandwiching the specimen between the acrylic plates, 

which was subsequently compressed up to 20% of the initial thickness. Further details of the 

( ) ( ) ( )2 26 1 12 1 ln 1 (6 7 ) 0H H H H H HD FD E B FD FD BFD FD- - - - - - - >
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wicking tests are given in references [13,15]. An average of three repeated readings was considered 

for determining the wicking height of AGM separators. 

Table 1 Characteristics of AGM separators and constituent fibers 

Parameter Units Sample ID 

A B 

Mass per unit area  gm-2 297±5.4 303±4.6 [13] 

Initial thickness mm 2.12±0.07 2.59±0.07 [13] 

Fiber volume fraction - 0.10 0.08 

MD$/CD# ratio of tensile strength - 1.56 1.52 

Fiber diameter  μm 1.31±0.87 1.46±0.1.27 [13] 

Fiber density  gcm-3 2.45 [13] 

$MD: Machine direction 
#CD: Cross-machine direction 

 

3D fiber orientation distribution of sample A was obtained via X-ray micro-computed tomography 

analysis, which was conducted using the X-ray Microtomography equipment (SkyScan 2211). The 

sample dimensions of 2.25 x 2.2 x 2 mm3 were scanned using 11Mp cooled CCD camera by 

applying the source voltage of 50 kV and source current of 600 μA with an exposure time of 600 

ms. 1292 projection images were obtained for 180o in a scan time of 72 min by employing a 

rotation step of 0.15o. NRecon Reconstruction Software, and CtVox software (Skyscan, Bruker, 

Belgium) were then used to reconstruct the projected images with a pixel size of 4032 x 2688. 

Subsequently, 240554 readings of 3D fiber orientation angles were obtained using CTAn (CT 

Analyser) software. A typical representative volume rendered 3D image of sample A is depicted 
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in Fig. 2. For sample B, 3D fiber orientation distribution was obtained via X-ray micro-computed 

tomography analysis, which was previously determined in the reference [14]. 

 

Fig. 2. (a) 3D rendered image and (b) 3D fiber orientation distribution of sample A obtained via 
X-ray microCT analysis. Here,  is the fiber orientation distribution function whereas,  
and  are the polar (out-of-plane) and azimuthal (in-plane) orientation angles, respectively. Here, 
0o and 90o represent the machine and planar directions in the in-plane and out-of-plane fiber 
orientation distributions, respectively.  

 

 

 

4. Results and discussion 
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AGM consists of an interconnected 3D network of fibers, which forms intricate pore geometry in 

terms of varying shapes and sizes [12]. Such a complex 3D porous structure forms a tortuous path 

for the movement of the electrolyte within an AGM separator. The synergy between the porous 

structure of AGM separator, constituent fiber dimensions and level of compression forces within 

the battery play a vital role in mediating the electrolyte uptake [11–13,19,24]. Given the fact that 

the fiber alignment within an AGM separator dictates the 3D pore geometry [15], it is imperative 

to determine the 3D fiber orientation distribution [21]. With the aid of the microCT analysis, the 

3D fiber orientation distribution of AGM separators has been successfully obtained and analyzed. 

Fig. 2b shows the 3D fiber orientation distribution of sample A. As expected, it can be clearly seen 

that the in-plane fibers are preferentially aligned in the machine (production) direction. This 

observation corroborates well with the ratio of tensile strength in the machine direction (MD) to 

the cross-machine direction (CD) of both samples, which reveals the anisotropic characteristics 

(see Table 1). On the other hand, a majority of the out-of-plane fibers are aligned in the in-plane 

direction ( ) but there is a certain proportion of fibers, which are aligned in various out-of-

plane directions that affect the flow of the electrolyte, and therefore, were accounted in the 

modeling scheme. Nevertheless, the preferential alignment of the in-plane fibers assists in 

transporting the electrolyte at a higher wicking rate corresponding to randomly aligned fibers in 

AGM separators [13,25]. Accordingly, the predictive ability of the proposed analytical model was 

assessed by computing the wicking time to attain the desired height in the machine (preferential) 

direction. Fig. 3 shows a comparison of wicking time to attain a height of 20 cm by hypothesized 

AGM separators and experimental samples. Here, the hypothesized AGM separators consist of the 

same structural characteristics (porosity, 3D fiber orientation distribution) as that of the 

90oq =



12 
 

experimental samples. However, the constituent fiber diameter is significantly different in 

hypothesized and experimental AGM samples. 

 

Fig.3. Comparison of time taken by the electrolyte solution in hypothesized and experimental 
AGM samples to reach a predefined wicking height (~20 cm).  

 

Ideally, the hypothesized samples A and B consist of fibers having diameters of 5.1 and 3.7 µm, 

respectively; whereas the experimental samples possessed a large variation in fiber diameter (see 

Table 1 and Fig.  S1). This clearly shows that the coarser fibers could easily replace finer fibers 

for attaining the wicking height of 20 cm in the same time duration. For batteries with low height 

to plate spacing ratio (<50), the replacement of finer fibers with coarser entities would not only 

save the cost but the latter can act as a ‘pump’ leading to higher wicking rates [26,27]. Although, 

the merits of finer fibers cannot be ignored as these fibers promote the electrolyte solution to 
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greater wicking heights at a fast rate without allowing electrolyte drainage and inhibit acid 

stratification in addition to the improvement in the mechanical stability [26,27]. Nevertheless, the 

design of an AGM separator can be tailored for a defined application by considering the plate 

height to plate spacing ratio.  

 

From the structural point of view, the porosity of AGM separator is a well-known parameter that 

modulates the wicking characteristics [7,12]. For instance, an AGM separator with a higher 

porosity is anticipated to yield a higher saturation level than a lower porosity separator [12]. 

However, the time taken by the electrolyte movement in an AGM separator depends upon the local 

pore shapes and dimensions [7], which is further dependent upon the overall porosity, fiber 

dimensions and alignment of fibers within the separator [13].  To look at this issue profoundly, a 

virtual experiment was conducted to map the effects of the fiber diameter, fiber orientation 

distribution and the porosity of AGM separators to attain predefined wicking height in shortest 

transport time, as shown in Fig.  4. Here, the effect of three distinct fiber orientation distributions 

was analyzed on the fastest wicking time and is depicted in Fig. S2 (see supplementary 

information). Intriguingly, preferentially aligned coarser fibers in high-density AGM separators 

have attained the fastest wicking time. Ostensibly, greater in-plane fiber alignment and AGM 

density promote fibers to act as capillaries for the transportation of the electrolyte because the glass 

fibers exhibit zero contact angle with the electrolyte solution [5].  Further, the coarser fibers allow 

the formation of larger channels or pores with smaller frictional resistance that enables easier 

access by the electrolyte [28]. It is worth mentioning that the condition, i.e.,  has 

always been satisfied in all the proposed cases (see Table S1).  
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Fig. 4. Fastest wicking time as a function of fiber diameter, fiber orientation distribution and 
porosity of AGM separator, which is vertically aligned ( ) to attain a wicking height of (a) 
40 cm (b) 60 cm (c) 80 cm and (d) 100 cm. Here, the in-plane fiber orientation distribution is 
represented by random (R) distribution, and G1 and G2 are represented by Gaussian distributions 
having mean of 90o and standard deviations of 50o and 30o, respectively, whereas out-of-plane 
fiber orientation distribution is considered to be random in nature.     

 

In general, the presented results support the rationale of using AGM separator of higher density 

for the improvement in the life cycle of the battery. Since, the magnitude of the compressive 

stresses experienced by the electrodes both in the dry and wet states is also anticipated to be the 

same along with minimum compression hysteresis [6,7,14].  
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5. Conclusions 

In this research work, a 3D analytical model to predict the fastest electrolyte uptake in AGM 

separators has been proposed on the basis of the optimal set of key fiber and structural parameters 

along with the interplay of gravity, capillary pressure and viscous effects. The X-ray microCT 

analysis has been applied to obtain the 3D fiber orientation distribution, which was used as a key 

input parameter in the predictive model. Based upon the realistic structural information of 

experimental samples, the proposed model has successfully benchmarked hypothesized AGM 

separators made up of cheaper coarser fibers with those of experimental samples consisting of 

finer fibers to attain the fastest electrolyte uptake for a predefined wicking height (~20 cm). The 

key effects of the fiber diameter, 3D fiber orientation distribution and porosity of AGM separators 

were mapped to attain predefined wicking height in shortest transport time.  Theoretically, the 

high-density AGM separators with preferentially aligned coarser fibers have attained the fastest 

electrolyte uptake. Future studies should focus on the development of a predictive model of fastest 

electrolyte uptake in the multi-component AGM separator comprising of a defined proportion of 

constituent glass fibers or a blend of glass and other types of fibers. 
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