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Abstract 
 

Communication and material transfer between membranes and organelles take place at 

membrane contact sites (MCSs). MCSs between the ER and PM, the ER/PM junctions, are the 

site where the ER Ca2+ sensor STIM1 and the PM Ca2+ influx channel Orai1 cluster. MCSs are 

formed by tether proteins that bridge the opposing membranes, but the identity and role of these 

tethers in receptor-evoked Ca2+ signaling is not well understood. Here we identified ANO8 as a 

key tether in the formation of the ER/PM junctions that is essential for STIM1-STIM1 and 

STIM1-Orai1 interaction and channel activation at a PI(4,5)P2-rich domain. Moreover, ANO8 

assembles all core Ca2+ signaling proteins: Orai1, PMCA, STIM1, IP3 receptors and SERCA2 at 

the ER/PM junctions. This controls the efficiency of receptor-stimulated Ca2+ signaling and 

duration of Orai1 activity to prevent Ca2+ toxicity. These findings reveal the central role of MCSs 

in determining efficiency and fidelity of cell signaling.  
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Introduction   

 

The receptor-evoked Ca2+ signal controls virtually all cell functions in all cellular 

compartments and organelles (Berridge, 2016). The core proteins that form the Ca2+ signaling 

complex include G protein effectors that activate phospholipase C to hydrolyze PI(4,5)P2 and 

generate IP3 and diacylglycerol. IP3 activates the IP3 receptors (IP3Rs) in the endoplasmic 

reticulum (ER) to release Ca2+ stored in the ER. Ca2+ release from the ER is sensed by the ER 

Ca2+ sensor STIM1, which then clusters at the ER/PM junctions and interacts with and activates 

the plasma membrane (PM) Ca2+ influx channel Orai1 (Berridge, 2016). After the increase in 

cytoplasmic Ca2+ due to ER Ca2+ release and PM Ca2+ influx, the Ca2+ is removed from the 

cytosol in part by the PM Ca2+ ATPase (PMCA) pump and in part by the ER/SR Ca2+ ATPase 

(SERCA) pump. Periodic repeat of this cycle results in physiological Ca2+ oscillations (Kiselyov, 

Wang et al., 2006). Disruption of the cycle by excessive Ca2+ influx and sustained increase in 

cytoplasmic Ca2+ is highly toxic (Petersen, 2014). Cells guard against such toxic effects by 

inhibition of Ca2+ influx channels shortly after their activation via fast (FCDI) and slow Ca2+-

dependent inhibition (SCDI) (Prakriya & Lewis, 2015), which is mediated by the interaction of 

Store-operated calcium entry-associated regulatory factor (SARAF) (Jha, Ahuja et al., 2013, 

Palty, Raveh et al., 2012) and calmodulin (Li, Wu et al., 2017) with STIM1. In addition to these 

core proteins, the receptor-evoked Ca2+ signal is regulated by cytoskeletal proteins (Szasz & 

Webb, 2017), protein kinases (Jha, Ahuja et al., 2014, Lang, Eylenstein et al., 2012) and lipids 

(Muallem, Chung et al., 2017).  

 

The many functions mediated by Ca2+ require placing the core Ca2+ signaling proteins in 

specific cellular compartments and compartmentalization of the Ca2+ signal. Examples of spatial 

segregation of Ca2+ signaling proteins can be seen in spines and synapses (Higley, 2014) and 

polarized epithelial cells, where all Ca2+ signaling proteins are clustered at the apical pole 

(Hong, Li et al., 2011). Such an arrangement is essential to generate spatially and temporally 

precise Ca2+ signals to modulate specific cellular activity at the site where the Ca2+ signal is 

evoked (Ahuja, Jha et al., 2014, Park, Lomax et al., 2001). It is now clear that 

compartmentalization of cell signaling is achieved by targeting signaling proteins to membrane 

contact sites (MCSs) (Chung, Jha et al., 2017, Lahiri, Toulmay et al., 2015, Marchi, Patergnani 

et al., 2017, Muallem et al., 2017, Nunes-Hasler & Demaurex, 2017). MCSs are formed 

between the ER and all cellular organelles, including the mitochondria (Marchi et al., 2017) and 

the PM (Chung et al., 2017, Henne, Liou et al., 2015), by tether proteins. Tether proteins are 

defined by an ER and target membrane binding motifs that span and bridge the gap between 

the two membranes.  



 

The best-defined tethers that form the ER/PM MCSs are in yeast, in which the three 

tricalbins (Toulmay & Prinz, 2012), Ist2 (Maass, Fischer et al., 2009), VAPs (Murphy & Levine, 

2016), and a lipid transfer protein are required for formation of ER/PM MCSs (Henne et al., 

2015). However ER/PM MCSs in mammalian cells and their role in Ca2+ signaling are not well 

understood. The mammalian homologues of yeast tricalbins are the three Extended 

Synaptotagmins (E-Syts), which participate in formation of ER/PM MCSs (Giordano, Saheki et 

al., 2013), but appear to have specific functions. E-Syt1 affects Ca2+ signaling (Chang, Hsieh et 

al., 2013, Maleth, Choi et al., 2014) by regulating translocation of the Orai1-STIM1 to a 

PI(4,5)P2-rich domain, a function not shared by E-Syt2 and E-Syt3 (Maleth et al., 2014). E-Syt2, 

but not E-Syt1 or E-Syt3, appears to regulate PI4P and PI(4,5)P2 at the ER/PM junctions 

(Dickson, Jensen et al., 2016). Recently, GRAMD2a was reported as a junction localized protein 

that impacts STIM1 clustering, but with no role in Ca2+ influx (Besprozvannaya, Dickson et al., 

2018). The molecular identity of the mammalian homologue of yeast Ist2 and its role in STIM1-

Orai1 function and Ca2+ signaling are not known.   

 

Sequence analysis suggests a similarity between Ist2 and members of the Anoctamins 

family of proteins (Whitlock & Hartzell, 2017). The first two members of the Anoctamin family, 

ANO1 and ANO2, function as Ca2+-activated Cl- channels (Stohr, Heisig et al., 2009). ANO6 

functions as a lipid scramblase and other Anoctamins have also been found to have some 

scramblase activity (Whitlock & Hartzell, 2017). The family consists of 10 members, with very 

limited information on their properties and cellular functions, except for ANO1 (Dang, Feng et 

al., 2017, Paulino, Kalienkova et al., 2017), ANO2 (Huang, Xiao et al., 2012) and ANO6 

(Brunner, Lim et al., 2014, Suzuki, Umeda et al., 2010).  

 

We used knockdown and overexpression strategy to search for an anoctamin that functions 

as an ER/PM tether controlling STIM1-mediated activation of Orai1 and the subsequent Ca2+-

dependent inactivation of Orai1. Of all the anoctamins tested, only Anoctamin 8 (ANO8) fulfills 

these properties. Silencing of ANO8 reduced STIM1-STIM1 and STIM1-Orai1 interaction in 

response to store depletion, formation of STIM1 puncta, SOCs-mediated Ca2+ influx, activation 

of Orai1 current and SCDI, while overexpression of ANO8 increased all these parameters. 

ANO8 mediates a novel mechanism of Orai1 channel inactivation by markedly facilitating 

SERCA2-mediated Ca2+ influx into the ER, an activity antagonized by activation of the IP3 

receptors and chelation of ER Ca2+, even at a Ca2+ concentration of 0.2 nM. Furthermore, 

FRET, Co-IP, and functional analysis revealed that upon cell stimulation ANO8 assembles all 

the core Ca2+ signaling proteins into complexes at the ER/PM junctions, including the ER 



STIM1, IP3Rs and SERCA pumps, and the PM Orai1 and PMCA, thereby regulating all aspects 

of receptor-evoked Ca2+ oscillations. These findings suggest that ANO8 is a key tether that 

forms ER/PM MCSs to control the fundamental properties of Ca2+ signaling.  

                             

Results  

 

ANO8 controls STIM1-STIM1 and STIM1-Orai1 interaction at the ER/PM junctions: 

MCSs are formed by proteins that tether the ER to other cellular membranes and are the sites 

for the exchange of materials such as lipids and Ca2+ ions between membranes and 

organelles.(Chung et al., 2017, Lahiri et al., 2015, Marchi et al., 2017, Muallem et al., 2017, 

Nunes-Hasler & Demaurex, 2017). However, the identity of these tethers and their role in cell 

signaling is poorly understood, particularly in mammalian cells. All forms of cell signaling are 

initiated at the PM where ligands interact with their receptors, including G protein-coupled 

receptors that evoke a change in cytoplasmic Ca2+. MCSs at the PM are ER/PM junctions, 

where STIM1 interacts with and activates Orai1 (Chung et al., 2017, Henne et al., 2015).  The 

only established tethers at the ER/PM junctions to date with a role in Ca2+ signaling are the E-

Syts (Giordano et al., 2013). Homology analysis suggests that mammalian anoctamins share 

similarities with the yeast ER/PM tether Ist2. To identify a potential anoctamin that functions as 

an ER/PM tether we tested the effect of knockdown of ANO1, 2, 3, 5, 8, 9 and overexpression of 

ANO4, 6, 7, 8 and 10 on STIM1-Orai1 current and slow Ca2+-dependent inactivation (SCDI) of 

Orai1 current used as a readout of the microdomain localization of STIM1-Orai1 complex 

(Extended View Fig EV1). Our previous work showed that knockdown of E-Syt1 reduces SCDI 

(Maleth et al., 2014). Only modification of ANO8 expression affected the current and channel 

inactivation. Fig 1a shows that expression of ANO8 together with Orai1 and STIM1 increased 

the rate of SCDI when measured with pipette solution containing the slow Ca2+ buffer 3 mM 

EGTA. Moreover, unlike E-Syt1 which had no effect on current density (Maleth et al., 2014) or 

Ca2+ influx (Giordano et al., 2013), ANO8 also increased current density by 1.39±0.05 fold 

(p=0.013). Furthermore, expression of the yeast Ist2 increased the rate of SCDI and current 

density, similar to ANO8 (Fig EV2). The increased current, and thus Ca2+ at the junctions, can 

account for the increase in SCDI observed with ANO8. However, Fig 1b shows that the 

increased SCDI by ANO8 was reduced by knockdown of SARAF, suggesting that ANO8 affects 

the function of SARAF at the ER/PM junction (Maleth et al., 2014). Expression of ANO8 

increased the native SOCs activated by passive ER Ca2+ store depletion due to inhibition of the 

SERCA pumps (Fig 1c).  

 



Fig 1b shows that SARAF mediated part of the SCDI measured in the presence of ANO8 in 

pipette solution buffered with the weak Ca2+ buffer EGTA. FRET was then used to directly 

examine association of ANO8 with STIM1, Orai1 and SARAF. Figs. 1d and 1f show basal FRET 

between STIM1 and ANO8 and an increase in FRET upon store depletion. However, there was 

minimal FRET between Orai1 and ANO8, and no increase in FRET even when YFP-ANO8 and 

mCherry-Orai1 are co-expressed with myc-STIM1 (Fig EV3a). Moreover, ANO8 had no effect 

on the current of constitutively active Orai1(V102C) mutant (Fig EV3b). SARAF interacts with 

STIM1 only in the presence of Orai1 (Maleth et al., 2014). Accordingly, STIM1 and SARAF 

showed no increased interaction in response to store depletion in the absence of Orai1 (black 

trace in Fig 1e). However, co-expression of ANO8 was sufficient to increase interaction of 

STIM1 and SARAF upon store depletion, even in the absence of Orai1 (red trace in Fig 1e). 

These findings indicate that ANO8 enhances access of SARAF to STIM1 likely in the ER/PM 

junctions, since SARAF interacts with STIM1 only when STIM1 is in the ER/PM junctions 

(Maleth et al., 2014).  

 

To further examine the relationship between STIM1 and ANO8, we first determined their 

localization by confocal microscopy. Fig EV4a shows that in resting cells ANO8 showed mostly 

ER expression pattern and co-localized with STIM1. Store depletion resulted in translocation of 

significant portion of ANO8 to the PM (Fig EV4b). To determine whether ANO8 interacts and 

affects STIM1 while still in the ER, we measured by FRET the effect of ANO8 on STIM1-STIM1 

interaction. In resting cell overexpression of ANO8 had minimal effect on STIM1-STIM1 

interaction (Fig 1g). Notably, ANO8 significantly increases STIM1-STIM1 interaction, while 

knockdown of ANO8 reduced STIM1-STIM1 interaction in response to store depletion (Fig 1g). 

These somewhat unexpected results were confirmed by an independent Co-IP assay in Fig 1h, 

which shows that ANO8 increased STIM1-STIM1 Co-IP while knockdown of ANO8 markedly 

reduced STIM1-STIM1 interaction in resting cells (R) and in response to cell stimulation (S). The 

impact of ANO8 on STIM1-Orai1 interaction was examined by several assays. Fig 1i shows that 

ANO8 increased FRET between STIM1-Orai1. Analysis by TIRF microscopy showed co-

clustering of STIM1, Orai1, and ANO8 at the junctions in response to store depletion (Fig 1j). 

ANO8 increased both the rate and the number of STIM1 puncta (Fig 1k-m) and Orai1 puncta 

(Fig 1n) at the ER/PM junctions by about 50%. Additional evidence for the role of native and 

expressed ANO8 in STIM1-Orai1 interaction was obtained by Co-IP. Immunoprecipitation (IP) of 

native ANO8 (A8) Co-IPed STIM1 in resting cells, which tended to increase by cell stimulation 

(Fig 2a), although the effect of cell stimulation did not reach statistical significance, probably due 

to the quality of the antibodies. A clear effect of knockdown of ANO8 is shown in Fig 2b, in 

which siANO8 eliminated the native STIM1-Orai1 interaction in response to store depletion. 



Effect of ANO8 of STIM1-Orai1 Co-IP was readily observed with the overexpressed proteins 

(Fig 2c).  

ANO8 functions as a tether at the ER/PM junctions: The effect of ANO8 on native and 

expressed STIM1-Orai1 interaction raised the question if all effects of ANO8 are due to its 

impact on STIM1-STIM1 interaction. To address this question, we tested the effect of ANO8 on 

the PM level of STIM1-Orai1 complexes. Since only 40% of Orai1 is at the PM at steady-state 

and store depletion traps part of Orai1 at the ER/PM junctions (Hodeify, Selvaraj et al., 2015), 

we reasoned that increased STIM1-STIM1 interaction at the ER by ANO8 should not affect 

surface membrane Orai1 and STIM1. On the other hand, increased level of STIM1 and Orai1 at 

the PM would suggest effect of ANO8 on the junctions. The results in Figs. 2d-g indicate that 

ANO8 increased the PM level of Orai1 (Fig 2e) and its interaction with STIM1 (Fig 2f) in the 

resting state, with additional increase in response to store-depletion. ANO8 was found in the 

STIM1-Orai1 complex in the resting state and additional ANO8 was recruited to the complex by 

store depletion (Fig 2g). Constitutively active STIM1 mutants are maximally clustered 

independent of store depletion and should not be affected by the effect of ANO8 on STIM1-

STIM1 interaction. Any effect of ANO8 on their clustering should be due to effect of ANO8 on 

the ER/PM junctions. We used three constitutively active STIM1 mutants, STIM1(D76A) (Liou, 

Kim et al., 2005), STIM1-Kras (Maleth et al., 2014) and STIM1(ΔCTID) (Jha et al., 2013), all of 

which are in the junction independent of store depletion. Figs. S5 shows that knockdown of 

ANO8 reduced the clustering of STIM1(D76A) (Figs. S5a-c) and the Orai1 current density and 

SCDI by STIM1-Kras (Fig EV5d,e). Knockdown of ANO8 reduced current by STIM1(ΔCTID), 

even when measured at 10 mM BAPTA that minimized Ca2+-dependent channel inactivation 

(Fig EV5f,g). Finally, to obtain independent and direct evidence that ANO8 controls the ER/PM 

junctions, we analyzed the junctions by electron microscopy (EM). Fig 2h shows example EM 

images and Fig 2i shows analysis of the size and number of junctions in cells transfected with 

empty vector (Con) and with ANO8. It is clear that ANO8 increased the size of the ER/PM 

junctions.                          

 

Because ANO8 knockdown prominently reduced STIM1-STIM1 and STIM1-Orai1 interaction 

and Orai1-STIM1 complexes at the plasma membrane, we measured the effect of knockdown of 

ANO8 on Orai1 current, native Ca2+ influx, and STIM1 clustering. Figs 3a and 3b show that 

knockdown of ANO8 prominently reduced Orai1 current by about 70% without changing channel 

inward rectification. Similarly, knockdown of ANO8 reduced the native store-operated Ca2+ influx 

by about 50% (Fig 3c). This inhibition appears to be due to reduced STIM1 puncta at the TIRF 

plane by about 50% (Figs 3d, e). Together, the findings in Figs 1-3 and and S5 indicate that 

ANO8 modulates clustering of STIM1 and the assembly and interaction of STIM1 and Orai1 at 



the ER/PM junctions, which in turn regulate the activation of Orai1 by STIM1 and the duration of 

Ca2+ influx, as expected from a bona fide ER/PM tether. 

 

Novel ANO8-mediated, slow SARAF-independent Orai1 inactivation (SSII) at very low 

cytoplasmic Ca2+: The current measurement in Figs 1a and 3a was performed with pipette 

solution containing the slow Ca2+ buffer 3 mM EGTA, a concentration at which both fast and 

slow Ca2+-dependent current inactivation are maximal. To evaluate the effect of ANO8 on the 

current while minimizing inactivation we measured the current using pipette solution containing 

10 mM of the fast Ca2+ buffer BAPTA and no added Ca2+, with a calculated global free Ca2+ 

concentration of about 0.2 nM (assuming at most 10 µM total Ca2+ in pipette solution mainly due 

to contaminant in the Cs+-methanosulfonate salt). In this condition, fast and slow Ca2+-

dependent current inactivation is minimal, if it occurs at all (Prakriya & Lewis, 2015). 

Interestingly, Fig 3f shows that with 10 mM BAPTA in the pipette ANO8 still increased STIM1-

activated Orai1 current by about 60%. Moreover, unexpectedly, the current in the presence of 

ANO8 slowly inactivated despite the high concentration of BAPTA that prevented the SCDI in 

the absence of ANO8 (compare black traces in Figs. 3a and 3f). This form of slow inactivation 

was independent of SARAF action. Fig 3h shows no SCDI in the presence of 10 mM BAPTA 

and in the presence and absence of SARAF, while Fig 3i shows that ANO8-dependent slow 

inactivation is not reduced by knockdown of SARAF.    

 

The Anoctamin family proteins have a highly conserved Ca2+ binding site (Brunner et al., 

2014, Dang et al., 2017, Paulino et al., 2017) which is also present in ANO8 (Fig EV6a). 

Mutations of the residues that form the Ca2+ binding site shift the Ca2+-dependent activation of 

ANO1 Cl- current from 0.36 µM to as high as 2 mM (Brunner et al., 2014, Dang et al., 2017, 

Paulino et al., 2017). On the other hand, ANO8 increased the current with 3 mM EGTA or 10 

mM BAPTA in pipette solution and Ca2+ influx at cytoplasmic Ca2+ concentration of 100 nM in 

native cells, suggesting that the ANO8 Ca2+ binding site does not affect the tethering function of 

ANO8. Accordingly, Figs S6b,c show that mutating two key residues in the Ca2+ binding site of 

ANO8 had no effect on ANO8-mediated increase in Orai1 current density and ANO8-dependent 

slow SSII. 

 

    ANO8 function depends on PM PI(4,5)P2: Tethers require ER and PM anchors. ANO8 

is anchored at the ER (Fig EV4) and should have a PM interacting site. A typical PM anchor is 

PI(4,5)P2 and the ANO8 yeast homologue Ist2 has a C terminus PI(4,5)P2 binding site (Maass 

et al., 2009). In addition, the activity of ANO1 (De Jesus-Perez, Cruz-Rangel et al., 2018) and 

ANO6 (Aoun, Hayashi et al., 2016, Ye, Han et al., 2018) is regulated by PI(4,5)P2, which 



prevents channel rundown (De Jesus-Perez et al., 2018, Ye et al., 2018). Therefore, we first 

determined if the function of ANO8 requires PM PI(4,5)P2 by depleting PI(4,5)P2 with PM 

targeted 5’-phosphatase (Korzeniowski, Popovic et al., 2009). Figs 4a-c show that PI(4,5)P2 

depletion eliminated the ANO8-dependent increase in Orai1 current and SSII and reduced 

accumulation of ANO8 at the junctions in response to store depletion. Further evidence for the 

role of PI(4,5)P2 in the function of ANO8 was obtained by testing the effect of ANO8 on 

STIM1(ΔK). Interaction of the STIM1 polybasic domain with PI(4,5)P2 is required for clustering 

at the ER/PM junctions (Liou, Fivaz et al., 2007, Maleth et al., 2014). STIM1(ΔK) can activate 

Orai1, but only when expressed at high levels and in a PI(4,5)P2-poor domain (Maleth et al., 

2014). Fig EV7a shows that expression of STIM1(ΔK) at low levels poorly activated Orai1. 

ANO8 markedly increased Orai1 current activated by STIM1(ΔK) and revealed the SSII. This 

was due to recruitment of STIM1(ΔK) to PI(4,5)P2 at the ER/PM junctions, since ANO8 

increased clustering of STIM1(ΔK) (Fig EV7b,c) and deletion of PI(4,5)P2 eliminated activation 

of STIM1(ΔK) by ANO8 (Fig EV7d).  

 

Regulation of ANO6 by PI(4,5)P2 (Aoun et al., 2016, Ye et al., 2018) was suggested to be by 

positively charged sequence (Ye et al., 2018), which is not conserved in other anoctamins, 

including ANO8. We searched for potential PM phospholipid binding sites at the ANO8 N and C 

termini using the BHsearch program (http://helixweb.nih.gov/bhsearch) (Brzeska, Guag et al., 

2010). The sites identified with the highest scores are shown in red in Fig EV8. Although 

deletion of the first 20 and 50 residues of ANO8, which includes the RGKR and 

KLFGKRLLQAGR sites, eliminated the effect of ANO8 on the current and on SSII, mutation of R 

and K in RGKR and first K and KR individually or together had no effect on the increased 

current and SSII. The first predicted C terminus PI(4,5)P2 interacting sites (RREAFKR) is close 

to the last TMD that ends at D861 and cannot access the PM. The mouse 1011PRPGKL1016 motif 

is not conserved in human ANO8. Mutation of the RRR underlined in 948RPRRP952 eliminated 

activation of Orai1 and the SSII by ANO8 (Fig 4d) and accumulation of ANO8R948,950,951Q at the 

ER/PM junctions in response to store depletion (Fig 5e). Together, the findings in Figs 4, and S7 

suggest that ANO8 interacts with PI(4,5)P2 at the PM.  

 

SSII is mediated by SERCA2: Plotting the inactivation slope as a function of the size of the 

current provided a clue about the mechanism mediating the prominent ANO8-dependent SSII 

observed in the presence of 10 mM BAPTA. The current was measured at similar STIM1/Orai1 

transfection with and without ANO8 by varying external Ca2+ between 2-50 mM. Fig 5a shows 

that ANO8 increased this relationship by almost 4-fold. The size of the current is expected to 

determine the Ca2+ concentration at the ER/PM junctions with ANO8 increasing the local Ca2+ at 

http://helixweb.nih.gov/bhsearch


the junction. This prediction was tested by measuring the effect of ANO8 on fast Ca2+-

dependent inactivation (FCDI) of Orai1 that is primarily determined by Ca2+ concentration at the 

mouth of Orai1 (Parekh, 2017, Prakriya & Lewis, 2015). Figs. S9a, and S9b show that ANO8 

increased FCDI when compared at the same Orai1 current in cells with and without ANO8. 

Fitting the inactivation to two exponentials shows that this is primarily by increasing the first time 

constant (Fig EV9b).       

 

The increase in junctional Ca2+ by ANO8 suggested that ANO8 increased the activity of a 

Ca2+-dependent process that can inactivate the Orai1 current. Such a process can be mediated 

by SERCA2, which by reloading the ER with Ca2+ can reduce the current. We used two 

independent assays to test this possibility. Figs 5b,c show that inhibition of SERCA2 with CPA 

in cells that do not express ANO8 and buffered with 3 mM EGTA or 10 mM BAPTA had a small 

effect on the rate and extent of current inactivation. By contrast, Figs 5d,e show that inhibition of 

SERCA2 with CPA markedly inhibited the ANO8-dependent SSII in cells buffered with EGTA or 

BAPTA. If SSII is due to reuptake and accumulation of Ca2+ in the ER, then reducing ER Ca2+ 

accumulation should also reduce SSII. To this end, we included 100 µM IP3 and 10 mM TPEN 

in the pipette solution. High concentration of IP3 was used to allow some activation of the IP3 

receptors (IP3Rs) in the presence of such low Ca2+ of 0.2 nM (Mak & Foskett, 2015). Figs 5f,g 

show that SSII was considerably reduced by IP3, particularly during the first 2 min of current 

measurement. SSII resumed after about 2 min, likely due to inactivation of the IP3Rs at the low 

cytoplasmic Ca2+, allowing ER Ca2+ accumulation by SERCA2. TPEN chelates and prevents 

accumulation of Ca2+ in the ER (Hofer, Fasolato et al., 1998). Figs 5f,g show that SSII was 

strongly reduced by including 10 mM TPEN in the pipette solution.    

 

A second protocol used to examine the role of SERCA2 in SSII was measuring the effect of 

ANO8 on the rate of Ca2+ uptake into the ER by measuring Ca2+ content in the ER with ER-

GECO1 (Figs 6a-6d). ER Ca2+ was first depleted by stimulating cells in Ca2+-free solution 

expressing M3 receptors in the presence of high concentrations of carbachol. The stimulated 

state was then inhibited with atropine, and then the ER was reloaded by exposing the cells to a 

solution containing 5 mM Ca2+. ER Ca2+ uptake was analyzed in the cells’ periphery (panel a) 

and the cells’ center (panel b). The traces in expanded time scale and the summary in Fig 6c 

show that ANO8 increased the rate of Ca2+ uptake primarily by the peripheral ER. These 

findings together with the findings in Fig 5, suggest that ANO8 may recruit the SERCA2 pumps 

to the ER/PM junctions. This is supported by multiple findings in Figs 6e-6g. Fig 6e shows that 

ANO8 increases the Co-IP of the native STIM1 and SERCA2 and Fig 6f shows similar findings 

with the expressed proteins. The FRET measurements in Fig 6g show that store depletion 



increased the interaction between STIM1-CFP and SERCA2-YFP, and ANO8 prominently 

increased this interaction. 

 

ANO8 assembles Ca2+ signaling complexes at the ER/PM junctions to control Ca2+ 

signaling: While measuring ER Ca2+ depletion in response to receptor stimulation in Fig 6a,b 

we found that ANO8 markedly increased this rate. The averages in Fig 6d show that ANO8 

primarily increased the rate of ER Ca2+ depletion in the cell periphery. ER Ca2+ release is 

mediated by receptor-stimulated IP3 production and activation of the IP3Rs. To determine 

whether ANO8 affects IP3 production, we used the GFP-tagged PLCδ PH domain (PHPLCδ-GFP) 

to measure PM PI(4,5)P2 and mCherry-ER-GECO1 to simultaneously measure ER Ca2+ 

content. Figs 6h,i show that ANO8 similarly increased the rates of IP3 production and ER Ca2+ 

release. In addition, Fig 6j shows that ANO8 enhanced the Co-IP of the native STIM1 and IP3Rs 

and Fig 6k shows that ANO8 increased the FRET between STIM1-YFP and IP3R3-mCherry, 

suggesting that ANO8 enhances recruitment of IP3 receptors to the ER/PM junctions at which 

STIM1-Orai1 cluster. Another core component of the Ca2+ signaling complex is PMCA. The Co-

IP experiments in Fig 6f and the FRET experiments with STIM1-YFP and PMCA-mCherry in Fig 

6l show that PMCA is also recruited to the ER/PM junctions.  

 

The results in Figs 1-3, and 6 indicate that all core Ca2+ signaling proteins are assembled 

into complexes at the ER/PM junctions upon cell stimulation with the aid of tether proteins, with 

ANO8 playing a primary role in the assembly. To test the physiological significance of ANO8-

mediated clustering of Ca2+ signaling proteins we measured receptor-stimulated physiological 

Ca2+ oscillations. Figs 7a-d show that overexpression of ANO8 alone with native level of all 

other Ca2+ signaling proteins was sufficient to increase the number of responding cells and the 

frequency and amplitude of the oscillations. Conversely, Figs 7e-h show that knockdown of 

ANO8 reduced all parameters of the receptor-evoked Ca2+ signaling.      

 

Discussion 

 

Information and material flow between cellular compartments and organelles must occur 

with high fidelity to ensure coordination among all cellular processes. For faithful information 

flow, cells use membrane contact sites (MCSs) between the ER that spans the entire cell 

interior and all other cellular membranes (Chung et al., 2017, Lahiri et al., 2015, Marchi et al., 

2017, Muallem et al., 2017, Nunes-Hasler & Demaurex, 2017). MCSs are formed by tether 

proteins that are anchored in the ER, either directly or through VAP proteins (Murphy & Levine, 

2016), with cytoplasmic domains that span the distance between the ER and the target 



membranes they interact with (Muallem et al., 2017). These features are present in the ER/PM 

junction tethers E-Syts (Giordano et al., 2013), GRAM domain proteins (Besprozvannaya et al., 

2018) and the yeast Ist2 (Maass et al., 2009). The present studies show that ANO8 fulfills all the 

criteria for a tether and functions as a tether at the ER/PM junctions. Similar to other ANO family 

members and its yeast homologue Ist2, ANO8 is predicted to have 10 TMD, is located in the 

ER, and has a long cytoplasmic C terminus rich in basic residues that has putative PI(4,5)P2 

interacting motifs (Figs. 4, S4 and S7).  

 

ANO8 tether the ER/PM junctions and translocates to the junctions in response to store 

depletion. Moreover, importantly, ANO8 increases the number of puncta and rate of puncta 

formation, indicating that ANO8 actively participates in the assembly of STIM1-Orai1 complexes 

(and other Ca2+ signaling proteins) at the ER/PM junctions. ANO8 accomplish this by promoting 

both STIM1-STIM1 interaction in response to store depletion (Fig 1g, h) and ER/PM junctions 

size (Fig 2h, i). Interaction and clustering of STIM1-STIM1 is believed to require the open 

conformation of STIM1 in which the CC1 and CTID domain are not in contact with the SOAR 

domain (Jha et al., 2013, Muik, Fahrner et al., 2011, Stathopulos, Schindl et al., 2013). ANO8 

can facilitate STIM1-STIM1 interaction by binding to STIM1 in the ER to initiate the STIM1 open 

conformation. However, it is also possible that by expanding the ER/PM junctions ANO8 

facilitates translocation of STIM1 to the junctions, which is sufficient for STIM1-STIM1 

interaction. However, this STIM1-STIM1 interaction is not sufficient for stabilization of STIM1 at 

the junctions since ANO8 only minimally increases STIM1 puncta in the TIRF plane before Ca2+ 

store depletion. Irrespective of the exact mechanism by which ANO8 facilitates STIM1-STIM1 

interaction, ANO8 appears to play a critical role in Ca2+ signaling than that played by the other 

ER/PM junction tethers: E-Syts and GRAM domain proteins. Analysis of Ca2+ signaling and 

CRAC current by the showed that E-Syt1 has a minimal role in Ca2+ signaling (Chang et al., 

2013, Giordano et al., 2013, Maleth et al., 2014) and mainly affects translocation of STIM1-

Orai1 complexes to a high PI(4,5)P2 domain without affecting current density (Maleth et al., 

2014). By contrast, ANO8 function is essential for CRAC current, Ca2+ influx, and the receptor-

evoked Ca2+ signal.              

 

Intracellular Ca2+ is essential for life and death, with physiological Ca2+ concentrations 

mediating numerous essential cellular functions, while high sustained cytoplasmic Ca2+ increase 

causes cell toxicity and death (Berridge, 2016, Petersen, 2014, Prakriya & Lewis, 2015). The 

cause of high sustained cytoplasmic Ca2+ is excessive Ca2+ influx, mainly through SOC 

channels (Prakriya & Lewis, 2015). Inactivation of the Ca2+ influx channels shortly after their 

activation is an important protective mechanism against excessive Ca2+ influx and cell toxicity 



(Parekh, 2017, Prakriya & Lewis, 2015). Two well-established protective mechanisms are the 

fast and slow Ca2+-dependent inactivation of the Orai1-STIM1 current that are mediated by a 

STIM1 negatively charge sequence (Derler, Fahrner et al., 2009, Lee, Yuan et al., 2009, 

Mullins, Park et al., 2009) within the STIM1 CTID domain (Jha et al., 2013). Two proteins 

appear to mediate the inactivation: SARAF (Maleth et al., 2014, Palty et al., 2012), which 

mediates both the fast and slow inactivation (Maleth et al., 2014), and calmodulin (CaM), 

recently shown to affect SCDI by causing dissociation of STIM1 oligomers (Li et al., 2017). 

Notably, deletion of SARAF (Maleth et al., 2014) and inhibition of [Ca2+]m (Li et al., 2017) inhibit 

SCDI by only about 50%, indicating the involvement of another prominent inactivation 

mechanism. The present study reveals a novel mechanism in which recruitment of SERCA2 

pumps to the ER/PM junction initiates Ca2+ uptake specifically into the junctional ER. Ca2+ 

uptake into the junctional ER mediates a substantial part of the slow Ca2+-dependent 

inactivation.  

 

SERCA2-mediated Ca2+ uptake into the ER outside the junctional (peripheral) ER was not 

affected appreciably by ANO8 even in fully store-depleted cells, suggesting that the junctional 

ER behaves differently than the ER in other part of the cells. This implies that the junctional ER 

is functionally segregated from the bulk ER to allow regulation of the Ca2+ influx channels 

activity. Compartmentalization of the ER is also suggested by the quantal properties of IP3-

mediated Ca2+ release (Muallem, Pandol et al., 1989, Shin, Luo et al., 2001). Ca2+ uptake by 

peripheral SERCA2b was observed when cytoplasmic Ca2+ was buffered to or below 0.2 nM. 

However, SERCA2b apparent affinity for Ca2+ is about 0.44 µM with no uptake observed at Ca2+ 

concentrations below 10 nM (Lytton, Westlin et al., 1992). Therefore, it is likely that the 

junctional SERCA2b pumps experience Ca2+ concentration higher than 0.2 nM due to their 

localization in close proximity to Orai1 at the ER/PM junctions. This is supported by the findings 

that ANO8 increases that FCDI (Fig EV9) that depends on local Ca2+ at the mouth of Orai1 

(Parekh, 2017). Thus, ANO8 recruits SERCA2 pumps to the junctions to facilitate Ca2+ uptake 

by the junctional ER, restricting Ca2+ influx and guarding against Ca2+ toxicity.    

 

ANO8 promotes assembly of all core Ca2+ signaling proteins at the ER/PM junctions to 

control the receptor-evoked Ca2+ signal and Ca2+ oscillations. The FRET and Co-IP 

measurements suggest that ANO8 increases spatial proximity of the Ca2+ signaling proteins to 

tighten the complexes. TIRF and surface expression measurements suggest that ANO8 also 

increases the number of Ca2+ signaling complexes at the junctions by increasing the steady-

state level of Orai1 in the PM and the junctions. The result is an increase in all parameters of 

receptor-evoked Ca2+ oscillations, indicating an increase signaling responsiveness and fidelity. 



Therefore, the present work reveals that an important function of tether proteins is to increase 

efficiency and precession of cell signaling and communication between cellular compartments. 

Disruption of the localization of signaling complexes within MCSs does not prevent cell 

stimulation but does require more intense stimulation to activate the complexes, which leads to 

less controlled stimulation and thus pathology. 

 
Methods 
 

Cells, constructs, antibodies and chemicals: The present studies used HEK (ATCC® CRL-
1573™) and HeLa cells (ATCC® Number: CRM-CCL-2) obtained from ATCC. STIM1, Orai1 
and SARAF clones have been previously described (Maleth et al., 2014). Ist2 was a kind gift 
from Dr. James Rothman (Yale University), mCherry-PMCA4 was a kind gift from Dr. Agnes 
Enyedi (Semmelweis University, Budapest, Hungary) and mCherry-IP3R3 was a kind gift from 
Dr. David Yule (Rochester University). The ANO8 clone was obtained from Open Biosystems, 
cat# 3711771 and ANO8-YFP was obtained from Origene, cat# MG21901. The primers were 
obtained from Integrated DNA Technologies, Inc (IDT). All point mutations were generated 
using the QuikChange Lightning site-directed mutagenesis kit from Agilent Technologies. The 
FKBP12 and FRB constructs are described in (Korzeniowski et al., 2009) and were a kind gift 
from Dr. Tamas Balla (NIH). PLCδ1 PH-EGFP (Cat #21179) and ER-GECO 1 (Cat # 61244) 
were purchased from Addgene. In all experiments total cDNA in all transfections was kept the 
same by supplementing the control condition with appropriate empty vector. 
Antibodies used in the present work are: polyclonal anti-GFP (Life Technologies, Cat # A11122) 
1:1000 dilution, monoclonal anti-FLAG (Sigma Cat #F3165) 1:1000 dilution; monoclonal anti-
MYC (Cell Signaling Inc., Cat # 2276) 1:1000 dilution; anti-HA (Cell Signaling Inc., Cat # 2367S) 
1:1000 dilution; anti STIM1 (BD biosciences Cat # 610954) 1:1000 dilution; anti IP3R (BD 
transduction Laboratories, Cat #610312) 1:1000 dilution; anti-PMCA4a (Santa Cruz, Cat # sc-
20028); anti- SERCA (Novus Laboratories, Cat # NB300-581) 1:1000 dilution; Anti-ANO8 
(Protein tech Cat # 19485-i-AP) 1:1000 dilution. Carbachol (Sigma, Y0000113), Adenosine 5′-
triphosphate magnesium salt (A9187) and Atropine (A0132) were obtained from Sigma-Aldrich. 
Cyclopiazonic acid (CPA) was from Alomone lab (Cat # C0750).  
 
siRNA probes and qPCR: HEK293 cells were plated at 70–80% confluence and transfected 
with duplexes after 12 h (100 nM/well) in a 6-well plate. The cells were harvested after 48 h; 
RNA was extracted using the TRIZOL reagent and the mRNA levels were determined by 
quantitative PCR. In brief, isolated mRNA was reverse-transcribed into cDNA by the iScript 
cDNA synthesis kit from Bio-Rad Laboratories. The primers for qPCR for ANO8 and GAPDH 
were purchased from Applied Biosystems. The fold change in the transcript levels of ANO8 was 
calculated by normalizing the Ct values from control and siRNA-transfected cells (threshold 
values) to GAPDH. The plasmids for STIM1 and the mutants were transfected after 48 h of 
siRNA transfection and the cells were imaged for Ca2+ or used for current measurement 24 h 
after transfection. 
 
PI(4,5)P2  depletion: Depletion of plasma membrane PI(4,5)P2 was accomplished with the 
FRB/FKBP system as described in (Toth, Toth et al., 2012, Varnai, Thyagarajan et al., 2006). 
Lyn- FRB localized to the plasma membrane and 5’-phosphatase fused to FKBP12 tagged with 
mRFP is in the cytosol. The two constructs were co-expressed in the cells. Upon exposure of 
the cells to 0.2 µM rapamycin for 2 mins, the FRB and the FKBP12 heterodimerize to recruit the 
phosphatase to the plasma membrane, which hydrolyzes the plasma membrane PI(4,5)P2 .     
 
Electrophysiology: HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% Pen/Strep. Cells were 



transiently transfected using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) with Orai1, 
STIM1 with or without ANO8 or the ANO8 mutants in a 1:2:2 ratio for 24 h at 37°C. Treatment 
with siSARAF was with 20-40 nM and with siANO8 was with 100 nM. On the day of 
experiments, transfected cells were released and plated on square coverslips in 35-mm cell 
culture dishes and incubated with culture media for at least 2 h to allow attachment to the 
coverslip. Patch clamp pipettes were pulled from glass capillaries (Warner Instruments) using a 
vertical puller (PC-10; Narishige) and had a resistance of 5–7 MΩ when filled with the pipette 
solution. The pipette solution contained (mM) 135 Cs-methanesulfonate, 6 MgCl2, 2 MgATP, 10 
HEPES and either 3 EGTA or 10 BAPTA, pH 7.4 (with CsOH). After establishing the whole cell 
configuration, the cells were kept in Ca2+ free solution for 3 min to allow store depletion before 
exposing the cells to bath solution containing 10 mM Ca2+. The standard bath solution contained 
(mM) 130 NaCl, 5 KCl, 1 MgCl2, and 10 HEPES with or without 10 CaCl2 (pH 7.4 with NaOH). 
Whole cell currents were recorded using an Axopatch 200B amplifier (Molecular Devices) with 
low-pass filtering at 1 kHz. The currents were digitized at a sampling frequency of 5 kHz using 
Digidata 1440A (Axon Instruments) and stored directly to a hard drive. Current recording was 
done with PClamp 10 software, and analysis was done with the help of Clampfit software. The 
current was recorded by 400-ms rapid alterations of membrane potential (RAMP) from -100 to 
+100 mV from a holding potential of 0 mV. RAMPs were spaced at 4-s intervals. The current 
recorded at -100 mV was used to calculate current density as pA/pF. For calculating the 
inactivation slope, the inactivation was fitted with straight line equation y = a + b*x, where b is 
the slope, a is the value where the line intersects the y-axis. The means of multiple experiments 
are given as mean ± SEM of the number of experiments performed. 
 
Electron Microscopy: Cells grown on thermonax coverslips were fixed in a mixture of 2.5% 
paraformaldehyde and 2.0% glutaraldehyde in 0.1 M sodium cacodylate buffer (SCB; pH= 7.4) 
for 1 hr, followed by extensive wash in SCB. Then samples were postfixed in 2.0% osmium 
tetroxide plus 1.6% potassium ferricyanide in the above buffer for 60 min. After several rinses in 
the SCB, the samples were dehydrated in a series of ethanol (30%, 50%, 75%, 95% for 5 min 
and 100% for 20 min with 3 changes) and infiltrated with Epon-Aradite (Ted Pella, Redding, CA) 
(50% for 1h and 100% for 1 day with 2 changes). Samples were polymerized at 60 ºC for 30h. 
Ultrathin sections (about 80 nm) were cut on Leica EM UC6 Ultramicrotome (Leica, Buffalo 
Grove, IL) and collected on copper slot grids. Sections were counter-stained with uranyl acetate 
and lead citrate and examined under a FEI Tecnai12 transmission electron microscope (FEI, 
Hillsboro, Oregon) operating at beam acceleration voltage of 120keV. Images were acquired by 
using a Gatan 2k x 2k cooled CCD camera (Gatan, Warrendale, PA). 
 
Co-immunoprecipitation and biotinylation: For co-immunoprecipitation, the cells were 
harvested in 500 µl of binding buffer ( 10 mM NaVO3, 10 mM Na4P2O7, 50 mM NaF, pH 7.4, and 
1% Triton X-100 in PBS), sonicated, and spun down at 13,000 rpm for 5 min. Cell extracts were 
incubated with the indicated antibodies overnight at 4°C and then incubated with Protein G 
Sepharose 4 Fast Flow beads (GE Healthcare, Cat #17-0618-01) for 2 h at 4°C. Beads were 
collected and washed three times with lysis buffer, and proteins were released by heating in 40 
µl sample buffer at 56°C for 20 min. Ten µl of each sample was subjected to SDS-PAGE and 
subsequently transferred to methanol-soaked Nitrocellulose membranes for Western blot 
analysis.   
For biotinylation, cells were incubated with 0.5 mg ml−1 EZ-Sulfo-NHS-LC-biotin (Thermo 
Scientific, Waltham, MA, USA, Cat #21335) for 30 min on ice, then incubated with 100 mM 
glycine for 10 min to quench the free biotin and washed with PBS. Lysates were prepared in 
lysis buffer (contained (mM) 20 Tris, 150 NaCl, 2 EDTA, with 1% Triton X-100, and a protease 
inhibitor mixture). After sonication, the lysates were centrifuged at 13,000 rpm for 20 min at 4°C, 
and protein concentration in the supernatants was determined. Biotinylated proteins were 
isolated with High Capacity NeutrAvidin Agarose beads (Thermo Scientific, Cat #29204) by 
incubation for 4 h on ice. The beads were washed with lysis buffer and proteins were recovered 



by heating with sample buffer at 56°C for 20 min. After separation by SDS-PASE the blots were 
analyzed for Orai1, STIM1 and ANO8. 
 
Measurement of free cytoplasmic Ca2+: HEK293 cells were plated on 18 mm coverslips. After 
24 h of transfection the cells were loaded with Fura-2 by incubation with 5 µM Fura-2/AM (and 
0.02% Pluronic acid (Teff labs) for 30-40 min at 37oC in culture media. Coverslips were 
assembled into a perfusion chamber and the cells continually perfused with warm (37 oC) 
media. Fura-2 fluorescence was measured with a TILL photonics Ca2+ imaging system at 
excitation wavelengths of 340 and 380 nm and light emitted at above 500 nm was collected. 
Collected images were analyzed using MetaFluor and the results are given as the 340/380 ratio. 
The standard bath solution contained (mM) 140 NaCl, 10 HEPES, 10 Glucose, 5 KCl, 1 MgCl2, 
and either 1 mM CaCl2 or 0.2 mM EGTA (Ca2+-free). Results are presented as the mean ± SEM 
from at least three experiments and 30–60 cells/experiment. 
 
Measurement of ER Ca2+: Cells were plated on glass bottom dishes (MatTek Corporation) and 
transiently transfected with ER-GECO1 and the indicated plasmids. Cells were imaged after 24 
h of transfection using 60×, 1.45 NA CFI Apo objective (Nikon) mounted on a Ti-Eclipse inverted 
microscope with Perfect Focus System (PFS; Nikon). Cells were illuminated with a 559-nm light-
emitting diode laser for visualizing ER-LAR-GECO1. Images were collected using a iXon 
EMCCD Camera (Andor) and NIS elements AR software and analyzed using NIS elements and 
plotted using Origin 9.4 software (OriginLab). The ER-GECO1 fluorescence was normalization 
to the initial fluorescence in the presence of ANO8. Since GECO1 is not ratiometric dye, the 
fluoresce was determined as F/Fo and the initial ratio with ANO8 is taken as 1. All other ratios 
were determined with respect to the initial ratio in the various experiments and then averaged.  
 
Confocal imaging: HeLa cells were plated on glass bottom dishes and transfected with the 
indicated construct for 24 h. Cells were washed and incubated with media containing 1 mM Ca2+ 
(control) or media containing 0.2 mM EGTA (Ca2+ free) and 25 µM CPA for 7-10 min (store 
depleted) before imaging. The images were captured at room temperature with a confocal 
system (FV1000; Olympus) equipped with a UplanSApo 60× oil immersion objective (NA 1.35; 
Olympus) at 3× zoom. CFP was recorded with 440 nm laser line, YFP was recorded with a 488 
nm laser line and mCherry with 568 nm laser line. When more than one color was used, CFP 
was recorded with 440 nm laser line and YFP with 515 nm laser line and images were recorded 
sequentially to prevent bleed-through between channels.   
 
TIRF measurements: For TIRF microscopy, HeLa cells were plated on glass bottom dishes 
and transfected with the indicated constructs. Cells were treated with 25µM CPA in Ca2+ free 
media to initiate STIM1-Orai1 clustering. TIRF microscopy was with a 60×, 1.45 NA CFI Apo 
objective (Nikon) mounted on a Ti-Eclipse inverted microscope with Perfect Focus System 
(PFS; Nikon). Images at the TIRF plane were collected using a iXon EMCCD Camera and NIS 
element AR software. For analysis we defined a punctum as a standalone bright spot formed by 
a cluster of fluorescently tagged proteins at the TIRF plane. The size and intensity of the puncta 
were variable. The images from each channel were imported into ImageJ as an image 
sequence. The brightness threshold was adjusted in ImageJ so that the few puncta present at 
the beginning of the time course would be included in the data without including the cell 
background. The threshold was set in the first frame and kept constant for each cell. The area of 
the cell, which was determined using the NIS-elements software, was accounted for by dividing 
the number of puncta counted by the area of the cell. The results are shown as mean±s.e.m 
and are plotted using Origin 9.4 software (Origin Lab). 
 
FRET measurements: HEK293 cells were plated at low confluence on glass bottom dishes 
(MatTek Corporation) and transfected with ECFP (donor) and EYFP (acceptor) tagged 
constructs, for 12-16 h using Lipofectamine 2000 (Invitriogen) at 37°C. FRET imaging was 
performed at 37°C using a confocal system (FV1000; Olympus) equipped with UplanSApo 60X 



oil immersion objective (NA 1.35; Olympus) at 1X zoom. Images were acquired at 10s intervals 
using the simplified two-cube method for sensitized emission (Navarro-Borelly, Somasundaram 
et al., 2008),(Wlodarczyk, Woehler et al., 2008). To minimize photobleaching low laser power 
(1-3%) was used. 
Image analysis was performed with NIH ImageJ software. Images were corrected for 
background fluorescence as necessary. FRET was determined on a pixel-by-pixel basis using a 
two-step FRET efficiency calculation protocol (Zal & Gascoigne, 2004). Briefly, bleed-through 
components were removed by generating a corrected FRET image (Fc) according to the 
equation Fc=IDA − dIDD where IDA and IDD are the background-subtracted FRET and ECFP 
images, respectively. The microscope-specific bleed-through constants a and d were 
determined by measuring the bleed-through from cells expressing ECFP or EYFP alone. The 
derived values were d=IDA/IDD= 0.061±0.0064 (n=52 cells) and a=IDA/IAA=0.02±0.0015 (n=46 
cells). In the second step the apparent FRET efficiency (Eapp) was calculated using the 
algorithm Eapp=Fc/(Fc + GIDD) where Eapp is the fraction of ECFP exhibiting FRET and G is a 
microscope specific constant derived by measuring the increase in ECFP fluorescence following 
EYFP acceptor photobleaching with the intramolecular CFP–YFP construct YFP-OASF-CFP 
(Muik et al., 2011), which was estimated to be 0.69±0.12 (n=18 cells). 
 
Statistics: All averages are shown as mean±s.e.m of the number of experiments listed in the 
Figs. Differences between the groups were analyzed by unpaired t-test or one or two ways 
ANOVA using Prism. In all cases, p<0.05 or better was considered statistically significant. 
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Fig legends 

 

Fig 1: ANO8 increases interaction of STIM1-Orai1-SARAF and STIM1-STIM1 at the ER/PM 

junctions  

 

Here and in other experiments, the first number in parenthesis indicates the number of 

experiments and the second number the number of total cells analyzed. All results are given as 

mean±s.e.m of the indicated number of experiments or cells analyzed. Panel (a): HEK cells 

transfected with STIM1, Orai1, and with (red) or without ANO8 (black) were used to measure 

CRAC current with pipette solution (cytoplasmic buffer) containing 3 mM EGTA. Panel (b): 

Same conditions as in (a), except that the cells were treated with scrambled (black) or ANO8 

siRNA (red). Panel (c): Fura2-loaded HEK cells transfected with YFP (control, black) or ANO8 

(red) were used to measure store-mediated Ca2+ influx. Stores were depleted by treatment with 



the SERCA inhibitor CPA and Ca2+ influx was measured by Ca2+ add-back. Panel (d): FRET 

efficiency was measured with HEK cells transfected with STIM1-CFP, ANO8-YFP, and with 

(red) and without (black) Orai1-HA before and after store depletion. Here and all other FRET 

measurements, representative images of the FRET signal under each condition are shown next 

to the traces. Panel (e): FRET efficiency was measured with HEK cells transfected with STIM1-

CFP, SARAF-YFP, and with (red) and without (black) untagged ANO8 before and after store 

depletion. Panel (f): Summary of FRET efficiency measurements in panels d-e. Panel (g): FRET 

efficiency was measured with HEK cells transfected with STIM1-CFP, STIM1-YFP (blue), and 

co-transfected with untagged ANO8 (green) or treated with siANO8 (red) before and after store 

depletion. Panel (h): Resting (R=resting) or store-depleted cells (S=stimulated) HEK cells 

transfected with STIM1-YFP and myc-STIM1 and with or without ANO8 or treated with siANO8, 

were used to immunoprecipitate (IP) STIM1-YFP and blot (B) for myc-STIM1. The inputs (In) 

are with anti-myc, anti-YFP or anti-ANO8. (i): FRET ratio was measured with HEK cells 

transfected with STIM1-CFP, Orai1-YFP (black), and co-transfected with untagged ANO8 (red) 

before and after store depletion. Panel (j): TIRF microscopy was used to measure puncta 

formation at the TIRF field in cells transfected with STIM1-CFP, ANO8-YFP and Orai1-mCherry 

before and after store depletion. Panel (k): Time course of STIM1 puncta formation in cells 

transfected with STIM1 and Orai1 alone (black) or together with ANO8. Panel (l): Effect of 

ANO8 on the rate of STIM1-STIM1 clustering. Panel (m): Effect of ANO8 on the number of 

STIM1 puncta. Panel (n): Effect of ANO8 on the number of Orai1 puncta.  

 

 

Fig 2: ANO8 increases native and expressed STIM1-Orai1 complexes and the number and 

size of ER/PM junctions.  

 

Panel (a): HEK cells were used to immunoprecipitate (IP) the native ANO8 (A8) or Orai1 (O1) 

and blotted (B) for STIM1. Panel (b): HEK cells treated with scrambled (siScr) or siANO8 were 

used to IP the native Orai1 (O1) or STIM1 (S1) and blotted (B) for STIM1, Orai1 or ANO8, as 

indicated. The columns show the mean±s.e.m of 4 independent experiments. R=resting, 

S=stimulated. Panel (c): Co-IP of mycSTIM1-Orai1-HA, mycSTIM1-ANO8-YFP, and Orai1-HA-

ANO8-YFP was measured in transfected HEK cells before (R, resting) and in response to store 

depletion (S, stimulated). Panel (d): shows effect of ANO8-YFP on mycSTIM1 and Orai1-HA 

surface expression (at the ER/PM junction). Panels (e-g): show the mean±s.e.m of surface 

STIM1 (e), Orai1 (f) and ANO8 (g) in resting (R) and store-depleted cells (S). Panel (h): 

Example EM images recorded from HEK cells transfected with empty vector (left) or ANO8 



(right). Red arrows mark ER/PM junctions. Panel (i): The size and number of ER/PM junctions 

in 10 vector-transfected (control) and ANO8-transfected cells.   

 

Fig 3: ANO8 is required for maximal STIM1-Orai1 interaction and increases SARAF-

independent current inactivation under potent Ca2+ buffering 

 

Panel (a, b): knockdown of ANO8 (siA8) reduced CRAC current in cells transfected with Orai1 

(Orai1 and STIM1 (S1) and buffered with 3 mM EGTA. Panel (c): knockdown of ANO8 reduces 

the native store-dependent Ca2+ influx measured in store depleted cells by Ca2+ add-back. 

Panels (d, e): knockdown of ANO8 reduced the number of store-dependent STIM1 puncta at 

the TIRF plane in cells expressing STIM1 and Orai1. (d) shows representative images and (e) is 

the summary of 7 experiments. Panels (f, g): current was measured with pipette solution 

contacting the fast and strong Ca2+ buffer 10 mM BAPTA in HEK cells transfected with STIM1, 

Orai1, and with (red) or without ANO8 (black). (g) shows the increase in current density at peak 

current. Note the prominent current inactivation in the presence of ANO8. Panel (h): knockdown 

of SARAF (red) in wild-type cells had no effect on current inactivation in the presence of 10 mM 

BAPTA. Panel (i): knockdown of SARAF did not prevent the ANO8-dependent inactivation in the 

presence of 10 mM BAPTA.  

 

Fig 4: Plasma membrane PI(4,5)P2 is required for ANO8 function 

 

Panel (a, b): Depletion of plasma membrane PI(4,5)P2 with the FRB/FKBP system prevented 

the ANO8-mediated increase in STIM1-Orai1 current measured in pipette solutions containing 3 

mM EGTA (a) or 10 mM BAPTA (b). Panels (c): HEK cells transfected with ANO8-YFP, STIM1-

CFP Orai1-HA and FRB and mCherry-FKBP PI(4,5)P2 depleting construct were treated with 0.2 

µM rapamycin (rapa) for 5 min and then with 25 µM CPA for 10 min before fixation and imaging 

by confocal microscopy. Panels (d): Mutating ANO8 R948, R950, R951 in RPRRP, a region that 

is predicted to include an ANO8 PI(4,5)P2 binding site, prevented increased STIM1-Orai1 

current and inactivation. Panel (e): Mutating ANO8 R949,950,951 to Q reduced translocation of 

ANO8.   

 

Fig 5: Inhibiting the SERCA pumps, activation of the IP3Rs and chelation of ER Ca2+ 

reduced ANO8-dependent current inactivation 

 

Panel (a): plot of the slope of inactivation as a function of current density in the presence (red) 

and absence of ANO8 (black). Increasing current density was obtained by varying external Ca2+ 



between 2-50 mM. Panels (b, c): CRAC current was measured in HEK cells expressing STIM1 

and Orai1 and in pipette solution containing 3 mM EGTA (b) or 10 mM BAPTA (c). SERCA 

pump was inhibited with 25 µM CPA in the red traces, where indicated and 100 µM IP3 was 

included in the pipette solution (green in c). Panels (d, e): experimental protocol and conditions 

as in (b, c) except that cells were also transfected with ANO8.  Panels (f, g): HEK cells 

expressing STIM1, Orai1, and ANO8 were used to measure current in pipette solution 

containing 10 mM BAPTA and with (red) or without (black) 100 µM IP3 or 10 mM ER Ca2+ 

chelator TPEN (green). The current density (f) and the normalized current (g) are shown, 

illustrating the delay in current inactivation by IP3 and TPEN.  

 

 

Fig 6: ANO8 assembles Ca2+ signaling complexes at the ER/PM junctions 

 

Panels (a-d): ER Ca2+ content was measured with ER-GECO1 in the periphery (a) and the 

center (b) or cells transfected with M3 receptors and with (red, green) or without (black, blue) 

ANO8. Receptor mediated store depletion was initiated by stimulating the cells with 0.5 mM 

carbachol in Ca2+-free solution. Cell stimulation was terminated with 10 µM atropine and ER 

Ca2+ uptake was initiated by perfusing the cells with a solution containing 5 mM Ca2+. The 

fluorescence was measured as F/F0 and normalized to the initial fluorescence in the presence of 

ANO8. Panel (c) shows traces of ER Ca2+ uptake at expanded time scale and the averaged 

slopes of ER Ca2+ influx and (d) shows the averaged slope of Ca2+ release at the cell periphery 

(Peri) and cell center (Center). In (c) the traces were aligned along the Y axis to better show the 

difference in uptake rate. Panel (e): shows the effect of ANO8 expression of the Co-IP of the 

native SERCA2 and STIM1 in resting and store depleted cells. The columns are the 

mean±s.e.m of 3 experiments. Panel (f): shows the enhancement by ANO8 of the Co-IP of 

expressed STIM1 with PMCA4a and SERCA2 and of Orai1 with SERCA2 in resting and store 

depleted cells. Panel (g): shows the FRET ratio between STIM1 and SERCA2 in response to 

store depletion and its enhancement by ANO8. Panels (h, i): Simultaneous measurements of 

ER Ca2+ with ER-GECO1 and PI(4,5)P2 hydrolysis with PHPLCδ-GFP in response to cell 

stimulation of M3 receptors. Traces are shown in (h) and the average slopes are in (i). Panel (j): 

shows the effect of ANO8 on the Co-IP of the native STIM1 and IP3Rs. The columns are the 

mean±s.e.m of 3 experiments. Panel (k): shows the FRET ratio between expressed STIM1 and 

IP3R3 in response to store depletion and its enhancement by ANO8. Panel (l): shows the FRET 

ratio between expressed STIM1 and PMCA4 in response to store depletion and its 

enhancement by ANO8.  

 



 

Fig 7: ANO8 tunes receptor-evoked Ca2+ signaling  

 

Panels (a-d): HeLa cells transfected with GFP (black) or ANO8 (red) were stimulated with 0.5 

and then 1 µM ATP to activate the native P2Y2 receptors. The oscillations were analyzed in 

terms of the % of responding cells (b), oscillation frequency (c), and the amplitude of the Ca2+ 

signal (d). Panels (e-h): HeLa cells were treated with scrambled siRNA (black) or siANO8 (red) 

and were stimulated with 1 and then 5 µM ATP. The oscillations were analyzed in terms of the 

% of responding cells (f), oscillations frequency (g), and the amplitude of the Ca2+ signal (h).  
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Extended View Information 

 

Methods 

Constructs, antibodies and chemicals: STIM1, Orai1 and SARAF clones have been previously 
described(Maleth, Choi et al., 2014). Ist2 was a kind gift from Dr. James Rothman (Yale 
university), mCherry-PMCA4 was a kind gift from Dr. Agnes Enyedi (Semmelweis University, 
Budapest, Hungary) and mCherry-IP3R3 was a kind gift from Dr. David Yule (Rochester 
University). The ANO8 clone was obtained from Open Biosystems, cat# 3711771 and ANO8-YFP 
was obtained from Origene, cat# MG21901. The primers were obtained from Integrated DNA 
Technologies, Inc (IDT). All point mutations were generated using the QuikChange Lightning site-
directed mutagenesis kit from Agilent Technologies. The FKBP12 and FRB constructs are 
described in(Korzeniowski, Popovic et al., 2009) and were a kind gift from Dr. Tamas Balla (NIH). 
PLCδ1 PH-EGFP (Cat #21179) and ER-GECO 1 (Cat # 61244) were purchased from Addgene. 
In all experiments total cDNA in all transfections was kept the same by supplementing the control 
condition with appropriate empty vector. 

Antibodies used in the present work are: polyclonal anti-GFP (Life Technologies, Cat # A11122) 
1:1000 dilution, monoclonal anti-FLAG (Sigma Cat #F3165) 1:1000 dilution; monoclonal anti-MYC 
(Cell Signaling Inc., Cat # 2276) 1:1000 dilution; anti-HA (Cell Signaling Inc., Cat # 2367S) 1:1000 
dilution; anti STIM1 (BD biosciences Cat # 610954) 1:1000 dilution; anti-Orai1 (Thermofisher 
scientific, Cat # PA1-74181) 1:1000 dilution; anti IP3R (BD transduction Laboratories, Cat 
#610312) 1:1000 dilution; anti-PMCA4a (Santa Cruz, Cat # sc-20028); anti- SERCA (Novus 
Laboratories, Cat # NB300-581) 1:1000 dilution; Anti-ANO8 (Protein tech Cat # 19485-i-AP) 
1:1000 dilution. Carbachol (Sigma, Y0000113), Adenosine 5′-triphosphate magnesium salt 
(A9187) and Atropine (A0132) were obtained from Sigma-Aldrich. Cyclopiazonic acid (CPA) was 
from Alomone lab (Cat # C0750).  

siRNA probes and qPCR: HEK293 cells were plated at 70–80% confluence and transfected with 
duplexes after 12 h (100 nM/well) in a 6-well plate. The cells were harvested after 48 h; RNA was 
extracted using the TRIZOL reagent and the mRNA levels were determined by quantitative PCR. 
In brief, isolated mRNA was reverse-transcribed into cDNA by the iscript cDNA synthesis kit from 
Bio-Rad Laboratories. The primers for qPCR for ANO8 and GAPDH were purchased from Applied 
Biosystems. The fold change in the transcript levels of ANO8 was calculated by normalizing the 
Ct values from control and siRNA-transfected cells (threshold values) to GAPDH. The plasmids 



for STIM1 and the mutants were transfected after 48 h of siRNA transfection and the cells were 
imaged for Ca2+ or used for current measurement 24 h after transfection. 

Co-immunoprecipitation and biotinylation: For co-immunoprecipitation, the cells were 
harvested in 500 µl of binding buffer ( 10 mM NaVO3, 10 mM Na4P2O7, 50 mM NaF, pH 7.4, and 
1% Triton X-100 in PBS), sonicated, and spun down at 13,000 rpm for 5 min. Cell extracts were 
incubated with the indicated antibodies overnight at 4°C and then incubated with Protein G 
Sepharose 4 Fast Flow beads (GE Healthcare, Cat #17-0618-01) for 2 h at 4°C. Beads were 
collected and washed three times with lysis buffer, and proteins were released by heating in 40 
µl sample buffer at 56°C for 20 min. Ten µl of each sample was subjected to SDS-PAGE and 
subsequently transferred to methanol-soaked Nitrocellulose membranes for Western blot 
analysis.   

For biotinylation, cells were incubated with 0.5 mg ml−1 EZ-Sulfo-NHS-LC-biotin (Thermo 
Scientific, Waltham, MA, USA, Cat #21335) for 30 min on ice, then incubated with 100 mM glycine 
for 10 min to quench the free biotin and washed with PBS. Lysates were prepared in lysis buffer 
(contained (mM) 20 Tris, 150 NaCl, 2 EDTA, with 1% Triton X-100, and a protease inhibitor 
mixture). After sonication, the lysates were centrifuged at 13,000 rpm for 20 min at 4°C, and 
protein concentration in the supernatants was determined. Biotinylated proteins were isolated 
with High Capacity NeutrAvidin Agarose beads (Thermo Scientific, Cat #29204) by incubation for 
4 h on ice. The beads were washed with lysis buffer and proteins were recovered by heating with 
sample buffer at 56°C for 20 min. After separation by SDS-PASE the blots were analyzed for 
Orai1, STIM1 and ANO8. 

Confocal imaging: HeLa cells were plated on glass bottom dishes and transfected with the 
indicated construct for 24 h. Cells were washed and incubated with media containing 1 mM Ca2+ 
(control) or media containing 0.2 mM EGTA (Ca2+ free) and 25 µM CPA for 7-10 min (store 
depleted) before imaging. The images were captured at room temperature with a confocal system 
(FV1000; Olympus) equipped with a UplanSApo 60× oil immersion objective (NA 1.35; Olympus) 
at 3× zoom. CFP was recorded with 440 nm laser line, YFP was recorded with a 488 nm laser 
line and mCherry with 568 nm laser line. When more than one color was used, CFP was recorded 
with 440 nm laser line and YFP with 515 nm laser line and images were recorded sequentially to 
prevent bleed-through between channels.   

 

Extended View Figure legends 

Figure EV1: Effect of knockdown of ANO proteins or ANO proteins on STIM1-Orai1 current   

Panels (a-e): CRAC current was measured in HEK cells transfected with STIM1-CFP and Orai1-
mCherry and treated with scrambled (all black traces) or siRNA to knockout ANO1 (a), ANO2 (b), 
ANO3 (c), ANO5 (d) or ANO9 (e). Panels (f-i): CRAC current was measured in HEK cells 
transfected with STIM1-CFP and Orai1-mCherry and empty vector (EV, all black traces) or ANO4 
(f), ANO6 (g), ANO7 (h) or ANO10 (i).   

 

Figure EV2: Ist2 increases Orai1 current density and SCDI  



CRAC current was measured in HEK cells transfected with STIM1-CFP, Orai1-mCherry, and with 
(red) or without (black) Ist2 and with pipette solution containing 3 mM EGTA.  

 

Figure EV3: ANO8 does not interact with or activate Orai1    

Panel (a): FRET efficiency was measured with HEK cells transfected with Orai1-mCherry, ANO8-
YFP, and with (red) and without (black) myc-STIM1 before and after store depletion. Panel (b): 
Effect of ANO8 on Orai1 current was measured using the STIM1-independent constitutively active 
mutant Orai1(V102C) transfected alone in control cells (black), together with ANO8 (blue) or in 
cells treated with siANO8 (red). 

 

Figure EV4: Localization of ANO8 in store replete and depleted cells 

Panel (a): ANO8 is localized mostly in the ER together with STIM1 in store replete cells. Panel 
(b): ANO8 accumulates in the ER/PM junctions in response to store depletion.  

 

Figure EV5: Knockdown of ANO8 reduces clustering of constitutively active STIM1 
mutants at the ER/PM junctions and activation of Orai1.    

Panels (a-c): HEK cells treated with scrambled (a) or ANO8 (b) siRNA were transfected with the 
constitutively active STIM1(D76A). The average number of puncta at the TIRF plane was 
analyzed in 3 separate experiments with the total number of cells indicated (c).  Panels (d, e): 
Orai1 current was measured in cells transfected with Orai1 and the constitutively active STIM1-
Kras with pipette solution containing 3 mM EGTA and treated with scrambled (black, green) or 
ANO8 (red) siRNA; (d) shows current density and (e) is the normalized current, which better 
demonstrates the effect of ANO8 knockdown on the rate of SCDI. Current started by addition of 
10 mM Ca2+ to the media. Panel (f, g): Orai1 current was measured in cells transfected with Orai1 
and the constitutively active STIM1(∆CTID) with pipette solution containing 10 mM BAPTA. The 
cells were treated with scrambled (black) or ANO8 (red) siRNA. Current measurement started on 
establishing the whole cell configuration in media already containing 10 mM Ca2+.  

 

Figure EV6: SARAF modulates Orai1 SCDI and ANO8 increases STIM1-SARAF interaction 

Panel (a): HEK cells transfected with STIM1-CFP, Orai1-mCherry and treated with scrambled 
(black) or SARAF siRNA (red) were used to measure CRAC current with pipette solution 
containing 3 mM EGTA. Panel (b): FRET efficiency was measured with HEK cells transfected 
with STIM1-CFP, SARAF-YFP, and with (red) and without (black) untagged ANO8 before and 
after store depletion. 

   

Figure EV7: The effects of ANO8 are independent of its Ca2+ binding site   

Panel (a): shows the Ca2+ binding sites of the TMEM16 family member from the fungus Nectria 
haematococca(Brunner, Lim et al., 2014) and the corresponding residues of ANO8 (red). Panel 



(b, c): The ANO1(E734Q) and ANO1(E654Q) mutations shifted the ANO1 Km for Ca2+ from 0.36 
to 4 µM (b) and to more than 2 mM (c), respectively (green). The equivalent ANO8(E774Q) (b) 
and ANO8(E485Q) (c) mutations had no effect on increased STIM1-Orai1 current density and 
inactivation measured with pipette solution containing 10 mM BAPTA.   

 

Figure EV8: ANO8 markedly increases current activated by STIM1(∆K) that is PI(4,5)P2-
dependent   

Panel (a): Current density recorded with pipette solution containing 10 mM BAPTA in cells 
transfected with STIM1(∆K), Orai1 and with (red) or without (black) ANO8. Panel (b, c): 
STIM1(∆K) puncta were recorded with TIRF microscopy of cells expressing STIM1(∆K), Orai1, 
and with or without ANO8. Example images are shown in (b) and the average of the indicated 
number of cells in (c). Panel (d): HEK cells expressing STIM1(∆K), Orai1, ANO8, FRB, and FKB 
were used to measure CRAC current without (black) and with treatment with 0.2 µM rapamycin 
to deplete PI(4,5)P2 (red).  

 

Figure EV9: Predicted potential lipid binding site on ANO8  

The sites predicted to bind phospholipids with the highest score are shown in red and the other 
potential sites are shown in green. The first transmembrane domain (starting with I245) and last 
residue of the last transmembrane domain (D861) are shown in blue. 

 

Figure EV10: Effect of ANO8 on fast Ca2+-dependent inactivation 

Panel (a): Shown are current traces from HEK cells transfected with STIM1, Orai1 and with (red) 
and without (black) ANO8 with pipette solution containing 10 mM BAPTA. Panel (b) shows the 
reduction in current at 400 msec. Panel (c): The current traces were fit to two exponentials and 
the left and right columns show the effect of ANO8 on the first and second exponentials, 
respectively.    

    

Table EV1: The siRNA primers used and % knockdown of the indicated mRNA 

 

Table EV2: The primers used to generate the indicated mutants in ANO8  
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Figure EV9, Jha et al.
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62rGrCrUrGrArArGrArArGrGrCrArArCrUrCrUrArCrUGT
rArCrArGrUrArGrArGrUrUrGrCrCrUrUrCrUrUrUrCrArGrGrCrArU

siANO9

0rCrGrUrArArUrCrGrCrGrUrArArUrArCrGrCrGrUrArT-
rArUrArCrGrCrGrUrArUrUrArCrGrCrGrArUrUrArArCrGrArC

Scrambled

65rUrArGrArGrUrUrUrArGrCrArGrUrCrUrUrUrCrArArUrCrCrCrArA
rGrGrGrArUrUrGrArArArGrArCrUrGrCrUrArArArCrUrCTA

siANO5

67rGrArCrArGrArUrArArGrGrUrUrArGrArUrUrCrGrUrArUrGrCrUrU
rGrCrArUrArCrGrArArUrCrUrArArCrCrUrUrArUrCrUrGTC

siANO6

91rGrUrGrGrArGrArGrCrGrArGrCrUrArCrGrCrUrUrCrUrUCA
rUrGrArArGrArArGrCrGrUrArGrCrUrCrGrCrUrCrUrCrCrArCrArU

siANO8

70rCrUrArGrUrArArCrArUrUrCrUrArArUrCrUrUrGrGrArGrGrCrArC
rGrCrCrUrCrCrArArGrArUrUrArGrArArUrGrUrUrArCrUAG

siANO10

91rCrCrArGrGrArGrArCrGrArUrArArArGrUrArGrArArArGrTrT
rCrCrArGrGrArGrArCrGrArUrArArArGrUrArGrArArArGrTrT

siSARAF

93rUrArGrCrArGrCrUrUrCrCrUrGrUrCrArUrUrCrArUrArUrCrGrUrC
rCrGrArUrArUrGrArArUrGrArCrArGrGrArArGrCrUrGrCTA

siANO2

60rUrCrUrArCrCrArUrArCrArUrUrUrArCrUrUrCrArGrCrUrCrUrUrC
rArGrArGrCrUrGrArArGrUrArArArUrGrUrArUrGrGrUrAGA

siANO3

72rArArCrCrUrGrCrUrUrArUrUrUrGrUrUrUrArUrCrGrArUrCrCrUrG
rGrGrArUrCrGrArUrArArArCrArArArUrArArGrCrArGrGTT

siANO4

% knockdownPrimersConstruct

85rCrGrGrGrUrCrUrCrArUrUrArArUrGrUrGrGrUrArCrArUrCrUrUrC
rArGrArUrGrUrArCrCrArCrArUrUrArArUrGrArGrArCrCCG

siANO1 

Table EV1: List of siRNAs used in the present study.



F: 5’ GCCCTCGTCAACAACCTGATTCAGATCCGAAGTGATGCCTTCAAG 3’
R: 5’ CTTGAAGGCATCACTTCGGATCTGAATCAGGTTGTTGACGAGGGC 3’

ANO8 E774Q

F: 5’ CAGCTGCTGCAGAACGTGCGCGCGGTGCTGCAGCCGCACCTGTAC 3’
R: 5’ GTACAGGTGCGGCTGCAGCACCGCGCGCACGTTCTGCAGCAGCTG 3’

ANO8 E485Q

F: 5’ GCCAAGGCCAAGGGCAGCGAGCAGCCCCAACAGCCCGGAGCGCTGCTG CCACCC 3’
R: 5’ GGGTGGCAGCAGCGCTCCGGGCTGTTGGGGCTGCTCGCTGCCCTTGGCCTTGGC 3’

R948,950,951Q

Table EV2: List of primers used in the present study.


