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Abstract. We obtain radially symmetric solutions of some nonlinear (geo-
metric) partial differential equations via a rigorous computer-assisted method.

We introduce all main ideas through examples, accessible to non-experts. The

proofs are obtained by solving for the coefficients of the Taylor series of the
solutions in a Banach space of geometrically decaying sequences. The tool that

allows us to advance from numerical simulations to mathematical proofs is the

Banach contraction theorem.

1. Introduction. In the last decade powerful techniques for turning numerical sim-
ulations of ordinary and partial differential equations into mathematically rigorous
statements have developed rapidly (see e.g. [10, 16, 28, 31, 34, 36]). These methods
bridge the divide between scientific computing and abstract mathematical analysis.
The foundations for the field were laid in [12, 13, 17]. These methods have received
renewed attention due to contemporary computational power as well as recent al-
gorithmic advances. With a clever hybrid approach one can off-load the verification
of intricate computationally intensive estimates to the computer to prove existence
to infinite dimensional continuum problems near numerical approximations. This
permits using classical ideas (such as fixed point methods) to generate results not
accessible by any other means. Thus, going beyond simulations, we can get our
hands on solutions of nonlinear (geometric) partial differential equations (PDEs)
using the computer and still argue about them with all the rigour of a classical
pencil and paper proof.

In this paper we present examples of this technique which we believe are valu-
able because we prove existence of particular solutions of nontrivial nonlinear PDEs,
while the technicalities are minimal (and the associated coding is easily manage-
able). In particular, we consider two instances of the nonlinear elliptic problem

∆u+ f(u) = 0. (1)

In the first type we consider u = u(x) to be scalar with the independent variable x
lying in the 2-sphere. In the second type, the unknown u = u(x) is a vector in R2

and x lies in the unit disc in R2 (with Dirichlet boundary conditions). The specific
choices for the nonlinearities f will be made explicit in Sections 3 and 4.

When restricting attention to solutions which are invariant under rotation (ra-
dially symmetric solutions), these PDEs reduce to ordinary differential equations
(ODEs). The boundary value problems for these nonlinear ODEs are amenable to
an approach based on power series. Numerically one can obtain approximations for
finitely many of the Taylor coefficients. To prove that such a truncated series corre-
sponds to a solution of the differential equation, we will apply a Newton-Kantorovich
type argument, see Section 2. This not only proves the existence of a solution, but
also yields a rigorous bound on the truncation and approximation errors.

Finally, one ingredient that is needed in the analysis in order to control rounding
errors, is computation using interval arithmetic. We refer to [21, 24, 29] for an
introduction to interval arithmetic. The results in this paper make use of the
package Intlab [23] for MATLAB. All MATLAB scripts are available at [4].

This paper, and in particular the examples discussed, resulted from a three week
summer school for undergraduate students at Simon Fraser University in the sum-
mer of 2015. During that school, there were exploration sessions for students to
investigate the ideas of rigorous computing through exercises and research prob-
lems. A small fraction of the students managed to obtain novel results about open
problems, and these results constitute the content of the present paper.
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2. A Newton-Kantorovich type theorem. When trying to solve numerically a
finite dimensional nonlinear zero-finding for F : Rn → Rn, the classical approach is
to apply Newton’s algorithm, where one iterates the map

T (x) = x−DF (x)−1F (x),

until the residual is sufficiently small. Often this numerical outcome xnum is ei-
ther assumed “good enough” (roughly, in applied mathematics) or “not rigorous”
(roughly, in pure mathematics). Our goal is to merge these perspectives by provid-
ing a rigorous quantitative statement on how good this numerical outcome is, i.e.,
how close it is to a solution of F (x) = 0. The crucial observation is that Newton’s
method works so well because the map T is a contraction with a very small con-
traction constant on a neighborhood of a zero xsol of F , provided that the Jacobian
DF (xsol) is invertible, i.e., xsol is a non-degenerate zero of F (the generic situation).
This allows us to prove that the numerical approximation xnum is close to the true
solution xsol.

Rather than going into detail about how to obtain such a computer-assisted proof,
we first move to the infinite dimensional setting. We first construct the framework
in general Banach spaces in Theorem 2.1 then, in Remark 1 and Example 2.2 present
the (relatively straightforward) application to finite dimensional problems.

Consider now F : X → X ′ a smooth map between two Banach spaces. A stan-
dard approach of mathematical analysis is to turn the zero finding problem F (x) = 0
into a fixed point problem. The Newton operator itself is usually impractical be-
cause the inverse of the derivative of an infinite dimensional map is hard to work
with. Instead, one may choose an injective linear map A ∈ L(X ′, X) and study the
fixed point problem

x = T (x)
def
= x−AF (x).

The main difficulty is choosing A such that T is a contraction on some neighborhood
of the (unknown) fixed point that we are looking for. In the context of a computer-
assisted proof, the approach is the following. First, using your favorite method
from scientific computing, choose a finite dimensional ‘projection’ F num of F , solve
it numerically to find xnum, and reinterpret xnum as an element of the infinite
dimensional space, which we denote by x̄ (hence F num(xnum) ≈ 0 and F (x̄) ≈
0). We expect the solution to be close to x̄, hence we would like to choose A an
approximate inverse of DF (x̄).

How can we determine that A is an appropriately accurate approximate inverse?
And, on which neighborhood of x̄ do we have that T is a contraction? The following
theorem is one way to make this precise. It uses, as an intermediate tool, and
approximation A† ∈ L(X,X ′) of DF (x̄).

Theorem 2.1. [Radii polynomial approach in Banach spaces] Let X and
X ′ be Banach spaces. Denote the norm on X by ‖ · ‖X . Consider bounded linear
operators A† ∈ L(X,X ′) and A ∈ L(X ′, X). Assume F : X → X ′ is C1, that A is
injective and that

AF : X → X. (2)

Consider an approximate solution x̄ of F (x) = 0 (usually obtained using Newton’s
method on a finite dimensional projection). Let Y0, Z0, Z1, and Z2 be positive
constants satisfying
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‖AF (x̄)‖X ≤ Y0 (3)

‖I −AA†‖B(X) ≤ Z0 (4)

‖A[DF (x̄)−A†]‖B(X) ≤ Z1, (5)

‖A[DF (c)−DF (x̄)]‖B(X) ≤ Z2r, for all ‖c− x̄‖X ≤ r, (6)

where ‖ · ‖B(X) is the induced operator norm for bounded linear operators from X
to itself. Define the radii polynomial

p(r)
def
= Z2r

2 − (1− Z1 − Z0)r + Y0. (7)

If there exists r0 > 0 such that

p(r0) < 0,

then there exists a unique x̃ ∈ Br0(x̄)
def
= {x ∈ X | ‖x− x̄‖X ≤ r0} satisfying F (x̃) =

0.

Proof. Using the mean value theorem, it is not hard to show that T maps Br0(x̄)
into itself, and that T is a contraction on that ball with contraction constant κ ≤
Z0 + Z1 + Z2r0 < 1. The result then follows directly from the Banach contraction
theorem. We refer to [15] for additional details.

This theorem fits in a long tradition of quantitative Newton-Kantorovich type
theorems. The bounds are parametrized in terms of r, so that an appropriate r
need not be assumed in advance but rather can be determined as the final step of
the proof process. Moreover, we obtain balls for an interval of values for the radius.
Small values of r0 give us the tightest control on the distance between the solution
and the numerical approximation, while large values of r0 provide us with the best
information about the isolation of the solution.

Before we show, in Sections 3 and 4 how to apply Theorem 2.1 in practice in
infinite dimensional settings, we first consider to finite dimensional problems.

Remark 1. In finite dimensions Theorem 2.1 can be implemented very easily and
generally, if one has an interval arithmetic package, and if one has explicit formulas
for DjFi and D2

jkFi for 1 ≤ i, j, k ≤ n. We use the∞-norm |x| = max1≤i≤n |xi|. Let

x̄ = xnum be the numerical approximation of a solution (e.g. found using Newton
iterations). Let A be a numerical computed (hence approximate) inverse of the
numerically computed DF (xnum). Now compute with interval arithmetic A† =
DF (xnum), which implies we may set Z1 = 0. Then evaluate, again with interval
arithmetic, the following three computable expressions:

1. the residual

Y0 = sup
(

max
1≤i≤n

|(AF (xnum))i|
)
,

where absolute values are taken component-wise, and sup denotes the supre-
mum of the interval obtained.

2. the matrix norm

Z0 = sup

(
max

1≤i≤n

∑
1≤j≤n

|(I −AA†)ij |
)
.

By checking that Z0 < 1, one verifies the hypothesis in Theorem 2.1 requiring
A be injective.



COMPUTER-ASSISTED PROOFS FOR SOLUTIONS OF PDES 65

3. the second derivative estimate (which provides a bound (6) via the mean value
theorem)

Z2 = sup

(
max

1≤i≤n

∑
1≤k,m≤n

∣∣∣ ∑
1≤j≤n

AijD
2
kmFj

(
xnum + [−r∗, r∗]

)∣∣∣),
where xnum + [−r∗, r∗] is the vector of intervals with components [xnum

k −
r∗, x

num
k + r∗]. Here we choose a loose a priori upper bound r∗ on the value

of r, and we bound the second derivative uniformly on this ball of radius r∗.

Since Y0 and Z0 are usually near machine precision, the quadratic formula then
gives a very small r0 for which p(r0) < 0. After checking that r0 ≤ r∗ we can then
invoke Theorem 2.1 to prove that a (unique) zero xsol of F lies within distance r0

of xnum.

Example 2.2. We consider the circular restricted four body problem (CR4BP),
where three bodies (with masses (m1,m2,m3), normalized so that m1+m2+m3 = 1
and m1 ≥ m2 ≥ m3) move in circular periodic orbits around their center of mass in
a triangular configuration that is fixed in the co-rotating frame. A fourth massless
satellite moves in the effective potential (in this co-rotating frame)

Ω(x, y;m1,m2,m3)
def
=

1

2
(x2 + y2) +

3∑
i=1

mi

[(x− xi)2 + (y − yi)2]1/2
.

Here (x, y) is the position of the satellite in the plane of the triangle, and the fixed
positions (xi, yi) of the three bodies can be expressed in terms of their masses:

(x1, y1) =
(
−M2 , 0

)
, (x2, y2) =

(K2,3

M ,−
√

3m3

M

)
, (x3, y3) =

(K3,2

M ,
√

3m2

M

)
,

where Ki,j
def
= (m1 −mj)mj + (2m1 + mj)mi and M

def
= 2(m2

2 + m2m3 + m2
3)1/2,

see e.g. [5, 9].
The equilibria of the system are given by the critical points of the effective

potential Ω:

F (x, y)
def
=

(
x−

3∑
i=1

mi(x− xi)

[(x− xi)2 + (y − yi)2]3/2
, y −

3∑
i=1

mi(y − yi)

[(x− xi)2 + (y − yi)2]3/2

)
= 0 .

(8)
It is known that the number of equilibrium points varies from 8 to 10 when the
masses are varied (e.g. see [18, 6, 7] and [26]).

Using the general bounds introduced in Remark 1 for the finite dimensional case,
we applied the radii polynomial approach to prove the existence of several solutions
of (8), hence yielding rigorous bounds for relative equilibria of (CR4BP) Let us
present a sample result. In case of equal masses m1 = m2 = m3 = 1/3, the
routine script equilibria.m, available at [4], computes (using Newton’s method)
xnum = (−0.467592983336122 , 0.809894804400869), and yields the bounds Y0 =
1.775 × 10−15, Z0 = 1.23 × 10−14 and Z2 = 12.6987 with the choice of r∗ = 0.02.
In this case, we obtain p(r0) < 0 for any r0 ∈ [1.78 × 10−15, 0.02], with p the radii
polynomial defined in (7). In Figure 1 one can find several sample results, where
each point has been rigorously validated using the computer program.

We now turn our attention to the elliptic PDE problems, where we apply Theo-
rem 2.1 in an infinite dimensional setting.
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Figure 1. (Left) Ten relative equilibria of (CR4BP) with equal
masses. (Right) Eight relative equilibria of (CR4BP) with masses
m1 = 0.9987451087, m2 = 0.0010170039 and m3 = 0.0002378873.
In both plots, some level sets of the effective potential Ω are de-
picted.

3. Radially symmetric solutions of a nonlinear Laplace-Beltrami operator
on the sphere. We consider the partial differential equation

∆u+ λu+ u2 = 0 (9)

posed on the sphere S2 ⊂ R3, where ∆ is the Laplace-Beltrami operator on the man-
ifold (the natural geometric generalization of the Laplace operator). Here λ ≥ 0 is a
parameter. The PDE (9) describes a classical nonlinear elliptic problem [19], often
studied on the unit ball in arbitrary dimension and with a variety of nonlinearities.
Here we restrict attention to a quadratic nonlinearity, and we pose the problem on
a sphere, cf. [11, 33].

Letting x = r cosφ sin θ, y = r sinφ sin θ and z = r cos θ, letting u(x, y, z) =
u(r, φ, θ),

∆u =
1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
.

We look for solutions of (9) that are radially symmetric (with respect to rotations
around the z-axis) and symmetric in about equator. This reduces the PDE to an
ODE and leads to the following boundary value problem (BVP) for u = u(θ):

u′′(θ) + cot(θ)u′(θ) + λu(θ) + u(θ)2 = 0, for θ ∈ (0, π2 ],

u′(0) = 0,

u′(π2 ) = 0.

(10)

The goal is to prove existence of solutions of (10) via the radii polynomial ap-
proach (see Theorem 2.1). The first step in doing so is to introduce a zero finding
problem of the form F (x) = 0 on a Banach space.

3.1. The zero finding problem for the Laplace-Beltrami problem. Our ap-
proach is based on Taylor series, and is best posed (see Remark 2 below) on the
domain [0, 1]. Hence we rescale the independent variable θ = π

2ϑ. The algebra
simplifies if we also scale the dependent variable, as well as the parameter λ:

v(ϑ) =
π2

4
u
(π

2
ϑ
)

and λ̃ =
π2

4
λ.



COMPUTER-ASSISTED PROOFS FOR SOLUTIONS OF PDES 67

The BVP (10) in the new variables becomes
v′′(ϑ) +

π

2
ϑ cot

(π
2
ϑ
) v′(ϑ)

ϑ
+ λ̃v(ϑ) + v(ϑ)2 = 0 for ϑ ∈ (0, 1],

v′(0) = 0,

v′(1) = 0.

(11)

For the sake of presentation, here we have anticipated that it will be convenient to
split off a factor ϑ in the second term of the differential equation, as it will allow us
to deal with smooth functions that are even in ϑ only. We search for v as a power
series of ϑ around zero: v(ϑ) =

∑∞
n=0 anϑ

n. Let us assume for the moment that the
radius of convergence of our power series is larger than 1, then the coefficients are
in a Banach space of geometrically decaying coefficients. More precisely, for ν > 1,
denote

`1ν
def
=
{
a = (an)n≥0 : ‖a‖1,ν

def
=
∑
n≥0

|an|νn <∞
}
.

Given a, c ∈ `1ν , denote by a ∗ c the Cauchy product given component-wise by

(a ∗ c)n =
∑

n1+n2=n
0≤n1,n2≤n

an1
cn2

=

n∑
n1=0

an1
cn−n1

.

An important property of the space `1ν is that it is a Banach algebra under the
Cauchy product:

‖a ∗ c‖1,ν ≤ ‖a‖1,ν‖c‖1,ν . (12)

The expansion for the cotangent is

cot(θ) =
1

θ
− 2

∞∑
n=1

θ2n−1

π2n
ζ(2n),

where

ζ(2n)
def
=

∞∑
k=1

1

k2n

is the Riemann zeta function. Hence we get

π

2
ϑ cot

(π
2
ϑ
)

= 1− 2

∞∑
n=1

ζ(2n)

22n
ϑ2n =

∞∑
j=0

bjϑ
j ,

where the bj are the Taylor coefficients defined by

b0 = 1, bj = −2
ζ(j)

2j
if j ≥ 1 is even, bj = 0 if is odd.

The decay rate of these coefficients shows that we should restrict attention to 1 <
ν < 2. After expanding all terms in (11) as Taylor series, using the Cauchy product,
and equating powers, we arrive at the operator F (a) = (Fn(a))n≥0 defined as

Fn(a)
def
=


a1 for n = 0,∑∞
j=1 jaj for n = 1,

n(n− 1)an + (Ja ∗ b)n + λ̃an−2 + (a ∗ a)n−2 for n ≥ 2.

(13)

Here the multiplication operator J on sequence spaces is defined by

(Ja)j
def
= jaj for j ≥ 0.
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Remark 2. Without the rescaling of the independent variable, the formula for F1

corresponding to the boundary condition at θ = π
2 would have become

∑
j≥1 jaj(

π
2 )j .

Evaluating this sum (say up to some finite N) is numerically unstable because of
the high powers of π

2 . Hence the rescaling.

The following result demonstrates that solving F (a) = 0 provides a solution of
(11).

Lemma 3.1. Let ν ∈ (1, 2) and let a = (an)n≥0 ∈ `1ν be such that Fn(a) = 0 for all
n ≥ 0. Then v(ϑ) =

∑
n≥0 anϑ

n is a solution of (11).

Proof. Let ν ∈ (1, 2) and a ∈ `1ν . Then the power series v(ϑ) =
∑
n≥0 anϑ

n con-

verges uniformly for ϑ ∈ [0, 1], and similarly for the derivatives of v. The first two
equations F0(a) = 0 and F1(a) = 0 imply that v satisfies the boundary conditions
in (11), whereas the remaining equations Fn(a) = 0, n ≥ 2 imply that v satisfies
the differential equation in (11).

Now that we have identified the zero finding problem F (a) = 0 to be solved in
the Banach space X = `1ν with ν ∈ (1, 2) to be chosen later, we are ready to apply
the radii polynomial approach as introduced in Theorem 2.1. The first ingredient is
a numerical approximation ā of F (a) = 0. Given N ∈ N and a = (an)n≥0 ∈ X = `1ν ,

denote by a(N) = (an)Nn=0 ∈ RN+1 the finite dimensional projection of a, and by
F (N) : RN+1 → RN+1 the finite dimensional projection of F defined by

F (N)(a(N))
def
=
(
Fn(a(N), 0, 0, 0, . . . )

)
0≤n≤N .

Assume that a numerical approximation ā(N) ∈ RN+1 has been computed. We
abuse slightly the notation by identifying ā(N) ∈ RN+1 with

ā = (ā0, ā1, · · · , āN , 0, 0, 0, · · · ) ∈ X = `1ν .

Denote by DF (N)(ā) the Jacobian of F (N) at ā. The radii polynomial approach as
introduced in Theorem 2.1 requires defining the operators A† and A. Let

(A†h)n
def
=

{(
DF (N)(ā)h(N)

)
n

for 0 ≤ n ≤ N,
n2hn for n > N,

where the diagonal tail is chosen in view of the dominant term in (13) for large n.

Consider an (N + 1)× (N + 1) matrix A(N) computed so that A(N) ≈ DF (N)(ā)
−1

.
Define A as

(Ah)n
def
=

{(
A(N)h(N)

)
n

for 0 ≤ n ≤ N,
n−2hn for n > N.

(14)

It follows that A is injective whenever the matrix A(N) is injective, which we verify
(see Section 3.3) in order to check the injectivity assumption in Theorem 2.1. One
way to visualize the operator A is as

A =


A(N) 0 0 . . .

0 1
(N+1)2 0 . . .

0 0 1
(N+2)2 . . .

...
...

...
. . .

 .
The following lemma states that condition (2) of Theorem 2.1 holds.
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Lemma 3.2. Let X = `1ν with ν ∈ (1, 2), A as in (14) and F as in (13). Then
AF : X → X.

We leave the proof to the reader.
We now introduce the formulas for the bounds Y0, Z0, Z1 and Z2 satisfying

respectively (3), (4), (5) and (6). These bounds are derived in Sections 3.2–3.5. We
first introduce an auxiliary result, used for the Z0 and Z2 bounds. We again leave
the proof to the reader (see e.g. [15]).

Lemma 3.3. Consider a linear operator Q : `1ν → `1ν of the form

Q =


Q(N) 0

qN+1

qN+2

0
. . .


where Q(N) =

(
Q

(N)
m,n

)
0≤m,n≤N and qn ∈ R. Assume that |q|∞ = supn>N |qn| <∞.

Then

‖Q‖B(`1ν) = max

(
max

0≤n≤N

1

νn

N∑
m=0

|Q(N)
m,n|νm , |q|∞

)
.

3.2. The Y0 bound. We look for a bound Y0 satisfying ‖AF (ā)‖1,ν ≤ Y0. We
note that since ān = 0 for n > N , we have (ā ∗ ā)n = 0 for all n > 2N . Hence,
recalling the definition of A in (14),

‖AF (ā)‖1,ν ≤
N∑
n=0

∣∣∣(A(N)F (N)(ā))n

∣∣∣ νn +

2N+2∑
n=N+1

1

n2
|(Jā ∗ b)n + (ā ∗ ā)n−2| νn

+

∞∑
n=2N+3

1

n2
|(Jā ∗ b)n| ν

n.

When calculating the finite sums in this expression, computing any bl involves eval-
uating the zeta function, which is itself an infinite series. We approximate this series
by summing finitely many terms and control the remainder via a straightforward
integral estimate.

Concerning the final term in the expression above, since ζ(s) =
∑∞
k=1 k

−s ≤∑∞
k=1 k

−2 = π2

6 for all s ≥ 2, we have |bl| ≤ π2

3 2−l for all l ≥ 1. Hence

∞∑
n=2N+3

1

n2
|(Jā ∗ b)n| ν

n =

∞∑
n=2N+3

(
1

n2

N∑
j=0

|jājbn−j | νn
)

≤ 1

(2N + 3)2

N∑
j=0

(
|jāj | νj

∞∑
n=2N+3

|bn−j | νn−j
)

≤ 1

(2N + 3)2

N∑
j=0

|jāj | νj
∞∑

l=N+3

|bl| νl

≤ π2‖Jā‖1,ν
3(2N + 3)2

∞∑
l=N+3

(ν
2

)l
=

π2‖Jā‖1,ν
3(2N + 3)2

(ν
2

)N+3 1

1− ν
2

.
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We thus set

Ytail
def
=

π2‖Jā‖1,ν
3(2N + 3)2

(ν
2

)N+3 1

1− ν
2

and

Y0
def
=

N∑
n=0

∣∣∣(A(N)F (N)(ā))n

∣∣∣ νn +

2N+2∑
n=N+1

1

n2
|(Jā ∗ b)n + (ā ∗ ā)n−2| νn + Ytail. (15)

3.3. The Z0 bound. Let B
def
= I − AA†. We remark that the tails of A and A†

are exact inverses, hence Bm,n = 0 when m > N or n > N . Letting

Z0
def
= max

0≤n≤N

1

νn

∑
0≤m≤N

|Bm,n|νm, (16)

we get from Lemma 3.3 that ‖I − AA†‖B(`1ν) ≤ Z0. We note that, as in the finite
dimensional case in Remark 1, it suffices to check that Z0 < 1 to infer that the
matrix A(N) is injective, which in turn implies implies that the linear operator A is
injective. In particular, if one finds an r0 > 0 for which the radii polynomial p(r)
is negative, then we see from (7) that Z0 < 1, hence the injectivity assumption in
Theorem 2.1 is then “automatically” fulfilled.

3.4. The Z1 bound. We look for a bound
∥∥A [DF (ā)−A†

]∥∥
B(`1ν)

≤ Z1. Given

h ∈ `1ν with ‖h‖1,ν ≤ 1, we set z
def
= [DF (ā)−A†]h. For the finite part (0 ≤ n ≤ N)

we see that

z0 = 0, z1 =
∑
j≥N+1 jhj , and zn = 0 for n = 2, . . . N.

For the tail, i.e. n > N , we find

zn = n(n− 1)hn + (Jh ∗ b)n + λ̃hn−2 + 2(ā ∗ h)n−2 − n2hn.

Using the “chain rule” identity J(h ∗ b) = (Jh ∗ b) + (h ∗ Jb) we obtain

zn = n(b̃ ∗ h)n − (Jb ∗ h)n + λ̃hn−2 + 2(ā ∗ h)n−2,

where b̃ is the sequence defined by b̃0 = 0 and b̃n = bn for n ≥ 1. Next we estimate

‖Az‖1,ν =

N∑
n=0

∣∣∣∣ N∑
j=0

A
(N)
n,j zj

∣∣∣∣νn +
∑

n≥N+1

1

n2
|zn|νn. (17)

For any ‖h‖1,ν ≤ 1, it is a small exercise to show that |z1| ≤ N+1
νN+1 provided N+1 ≥

(ln ν)−1. Hence the first term in (17) is bounded by N+1
νN+1

∑N
k=0 |A

(N)
k,1 |. For the

infinite tail we first estimate

‖b̃‖1,ν =
∑
l≥2

|bl|νl ≤
π2

3

∞∑
n=1

(
ν2

4

)n
=

π2ν2

3(4− ν2)

def
= C1,

‖Jb‖1,ν =
∑
l≥2

l|bl|νl ≤
2π2

3

∞∑
n=1

n

(
ν2

4

)n
=

4π2ν2

3(4− ν2)2

def
= C2.

Then, using the Banach algebra property (12), we find, for any ‖h‖1,ν ≤ 1,∑
n≥N+1

1

n2
|zn|νn ≤

C1

N + 1
+

C2

(N + 1)2
+

ν2

(N + 1)2
(|λ̃|+ 2‖ā‖1,ν).
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Hence, with the requirement that N + 1 ≥ (ln ν)−1, we set

Z1
def
=

N + 1

νN+1

N∑
n=0

|A(N)
n,1 |+

C1

N + 1
+

C2

(N + 1)2
+

ν2

(N + 1)2
(|λ̃|+ 2‖ā‖1,ν). (18)

3.5. The Z2 bound. Let c ∈ Br(ā), that is ‖c− ā‖1,ν ≤ r. Given h ∈ B1(0), note
that

([DF (c)−DF (ā)]h)n =

{
0 for n = 0, 1,

2 ((c− ā) ∗ h)n−2 for n ≥ 2,

so that

‖A[DF (c)−DF (ā)]‖B(`1ν) = sup
h∈B1(0)

‖A[DF (c)−DF (ā)]h‖1,ν

≤ 2ν2 sup
h∈B1(0)

‖A[(c− ā) ∗ h]‖1,ν

≤ 2ν2 sup
h∈B1(0)

‖A‖B(`1ν)‖c− ā‖1,ν‖h‖1,ν

≤ 2ν2‖A‖B(`1ν)r.

Using Lemma 3.3, we get that

2ν2‖A‖B(`1ν) ≤ Z2
def
= 2ν2 max

(
max

0≤`≤N

1

ν`

∑
0≤k≤N

∣∣∣A(N)
k,`

∣∣∣ νk, 1

(N + 1)2

)
. (19)

3.6. Computer-assisted proofs. Combining the bounds (15), (16), (18) and (19),
we define the radii polynomial p(r) as in (7). We prove the existence of three
different types of solutions by verifying the hypothesis of Theorem 2.1 with the
routine script three proofs LB.m available at [4]. The data of each proof can be
found in the following table. We find that p(r) < 0 for r ∈ [rmin, rmax].

solution #1 #2 #3

λ = 4λ̃/π2 5.67 20 19.961
ν 1.06 1.04 1.058
N 250 410 360
Y0 4.8014 · 10−9 3.1548 · 10−7 3.9179 · 10−7

Z0 4.408 · 10−11 1.4085 · 10−11 2.6315 · 10−9

Z1 4.212 · 10−1 2.7293 · 10−2 1.1063 · 10−1

Z2 7.6773 · 103 4.897 · 103 3.90307 · 106

rmin 8.3 · 10−9 3.249 · 10−7 5.9684 · 10−7

rmax 7.538 · 10−5 1.983 · 10−4 1.6818 · 10−6

The three solutions can be seen in Figures 2, 3 and 4. One can observe the different
qualitative behaviour of these three solutions.

It is not entirely straightforward to find initial guesses for solutions, i.e., starting
points for applying Newton’s method to the finite truncation F (N). To find such
approximate solutions, note that the trivial solution v = 0 undergoes transcritical
bifurcations at λ̃ = π2n(n + 1

2 ) for n ∈ N. The solution branches that bifurcate
at these parameter values can then be followed numerically (using branch following
techniques) to other parameter values.

The main restriction on the Taylor series based approach presented here, is that
not all solutions have an analytic extension to the complex ball of radius 1. These
solutions, although real analytic on [0, 1], cannot be described by a single Taylor
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series around the origin. One way to overcome this is via domain decomposition
(i.e. matching together several power series), but we will not pursue that here, and
it is also by no means the only option.

ϕ

0 0.2 0.4 0.6 0.8 1

v

-2

-1

0

1

2

3

4

Solution #1

Figure 2. (Left) The first solution of (9) on the unit sphere
S2 ⊂ R3. (Right) The corresponding (numerical) solution of the
BVP (11). Since rmin < 10−8, the true solution lies with the line-
width by Theorem 2.1.

ϕ

0 0.2 0.4 0.6 0.8 1
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0

10

20

30
Solution #2

Figure 3. (Left) The second solution of (9) on the unit sphere
S2 ⊂ R3. (Right) The corresponding (numerical) solution of the
BVP (11).

4. Radially symmetric equilibria of the Swift-Hohenberg equation on
the 3D unit ball. We consider the Swift-Hohenberg equation [27] with Dirich-
let boundary conditions:{

ut = −(∆− 1)2u+ λu− u3, on D1,

u = ∆u = 0 on ∂D1.
(20)

Here D1 ⊂ R3 is the unit ball, and λ ∈ R is a parameter. The parabolic PDE (20)
is a popular deterministic model for pattern formation, see e.g. [20]. It has been
well studied, analytically in one spatial dimension and predominantly numerically
in two spatial dimensions. Here we consider time-independent solutions in three
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ϕ
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Solution #3

Figure 4. (Left) The third solution of (9) on the unit sphere S2 ⊂
R3. (Right) The corresponding (numerical) solution of the
BVP (11).

spatial dimensions. Indeed, we will focus on radially symmetric equilibrium solu-
tions of (20). Letting v = (∆ − 1)u, these solutions also correspond to radially
symmetric equilibria of the reaction-diffusion system{

ut = ∆u− u− v
vt = ∆v − v − λu+ u3

(21)

on the unit ball with Dirichlet boundary conditions. The method works very gen-
erally for radially symmetric equilibrium solutions in reaction-diffusion systems
(cf. [25]), which are ubiquitous in models in the life sciences. This motivates us
to work with the system (21) rather than with the equivalent (at the level of equi-
libria) scalar equation (20). As an additional benefit, the analysis below illustrates
how the method of radii polynomials extends naturally to systems of equations.
Looking for radially symmetric equilibria of (21), i.e., time independent solutions

of the form u(x, y, z) = u(s) = u(
√
x2 + y2 + z2), leads to a coupled systems of

ODEs: 
u′′(s) + 2

su
′(s)− u(s)− v(s) = 0 for s ∈ (0, 1],

v′′(s) + 2
sv
′(s)− v(s)− λu(s) + u(s)3 = 0 for s ∈ (0, 1],

u′(0) = v′(0) = 0,

u(1) = v(1) = 0.

(22)

We expand the functions u and v as power series u(s) =
∑∞
n=0 ans

n and v(s) =∑∞
n=0 bns

n. Define the coefficient sequences as a = (an)n≥0 and b = (bn)n≥0.
Consider the Banach space

X = `1ν × `1ν =
{
x = (a, b) : a, b ∈ `1ν

}
,

endowed with the norm ‖x‖X = max {‖a‖1,ν , ‖b‖1,ν}. The equations for the Taylor
coefficients are F1(x) = ((F1(x))n)n≥0 = 0 and F2(x) = ((F2(x))n)n≥0 = 0, given
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component-wise by

(F1(x))n =


a1 for n = 0,∑
k≥0 ak for n = 1,

n(n+ 1)an − an−2 − bn−2 for n ≥ 2,

(F2(x))n =


b1 for n = 0,∑
k≥0 bk for n = 1,

n(n+ 1)bn − bn−2 − λan−2 + (a3)n−2 for n ≥ 2,

where

(a3)n = (a ∗ a ∗ a)n =
∑

n1+n2+n3=n
n1,n2,n3≥0

an1
an2

an3
=

n∑
n1=0

an1

(
n−n1∑
n2=0

an2
an−n1−n2

)
.

It is not difficult to derive that all odd coefficients will vanish, but we do not exploit
that here.

Denoting F = (F1, F2), the problem is to find x = (a, b) ∈ X = `1ν × `1ν
for some ν > 1 such that F (x) = 0. To achieve this, we use the radii poly-
nomial approach as introduced in Theorem 2.1. Given N ∈ N, denote x(N) =
((an)0≤n≤N , (bn)0≤n≤N ) ∈ R2N+2 and consider the finite dimensional projection

F (N) = (F
(N)
1 , F

(N)
2 ) : R2N+2 → R2N+2 defined by

F
(N)
i (x(N))

def
=
(
(Fi(x

(N)))k
)

0≤k≤N .

Given x̄ ∈ R2N+2 a numerical approximation of F (N)(x) = 0, denote by DF (N)(x̄)
the Jacobian of F (N) at x̄, and let us write it as

DF (N)(x̄) =

(
DaF

(N)
1 (x̄) DbF

(N)
1 (x̄)

DaF
(N)
2 (x̄) DbF

(N)
2 (x̄)

)
∈ R(2N+2)×(2N+2).

The radii polynomial approach requires defining the operators A† and A. Let

A† =

(
A†1,1 A†1,2
A†2,1 A†2,2

)
, (23)

whose action on an element h = (h1, h2) ∈ X is defined by (A†h)i = A†i,1h1 +A†i,2h2,

for i = 1, 2. Here the action of A†i,j is defined as

(A†i,1h1)n =

{(
DaF

(N)
i (x̄)h

(N)
1

)
n

for 0 ≤ n ≤ N,
δi,1n(n+ 1)(h1)n for n > N,

(A†i,2h2)n =

{(
DbF

(N)
i (x̄)h

(N)
2

)
n

for 0 ≤ n ≤ N,
δi,2n(n+ 1)(h2)n for n > N,

where δi,j is the Kronecker δ. Consider now a matrix A(N) ∈ R(2N+2)×(2N+2)

computed so that A(N) ≈ DF (N)(x̄)
−1

. We decompose it into four (N+1)×(N+1)
blocks:

A(N) =

(
A

(N)
1,1 A

(N)
1,2

A
(N)
2,1 A

(N)
2,2

)
.
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Thus we define A as

A =

(
A1,1 A1,2

A2,1 A2,2

)
, (24)

whose action on an element h = (h1, h2) ∈ X is defined by (Ah)i = Ai,1h1 +Ai,2h2,
for i = 1, 2. The action of Ai,j is defined as

(Ai,jhj)n =

{(
A

(N)
i,j h

(N)
j

)
n

for 0 ≤ n ≤ N,
δi,j

1
n(n+1) (hj)n for n > N.

As in Section 3.1, to conclude that A is injective it suffices to check that A(N) is
injective. The latter is implied by Z0 < 1 (see Section 4.2), which is automatically
fulfilled when the radii polynomial is negative for some r0 > 0.

Finally, we set T (x) = x − AF (x), which indeed maps X into itself. As in Sec-
tion 3, the next step is to derive explicit, computable expressions for the bounds (3),
(4), (5) and (6).

4.1. The Y0 bound. Observe first that the nonlinear term of F2(x̄) is the Cauchy
product (ā∗ ā∗ ā)n−2, which vanishes for n ≥ 3N + 3. This implies that (F1(x̄))n =
(F2(x̄))n = 0 for all n ≥ 3N + 3. For i = 1, 2, we set

Y
(i)
0

def
=

N∑
n=0

∣∣∣∣ 2∑
j=1

(
A

(N)
i,j F

(N)
j (x̄)

)
n

∣∣∣∣νn +

3N+2∑
n=N+1

∣∣∣∣ 1

n(n+ 1)
(Fi(x̄))n

∣∣∣∣νn,
which is a collection of finite sums that can be evaluated with interval arithmetic.
We get

‖[T (x̄)− x̄]i‖1,ν = ‖[−AF (x̄)]i‖1,ν =

∥∥∥∥ n∑
j=1

Ai,jFj(x̄)

∥∥∥∥
1,ν

≤ Y (i)
0 ,

and we set

Y0
def
= max

(
Y

(1)
0 , Y

(2)
0

)
. (25)

4.2. The Z0 bound. We look for a bound of the form ‖I − AA†‖B(X) ≤ Z0.

Recalling the definitions of A and A† given in (24) and (23), let B
def
= I −AA† the

bounded linear operator represented as

B =

(
B1,1 B1,2

B2,1 B2,2

)
.

We remark that (Bi,j)n1,n2
= 0 for any i, j = 1, 2 whenever n1 > N or n2 >

N . Hence we can compute the norms ‖Bi,j‖B(`1ν) using Lemma 3.3. Given h =

(h1, h2) ⊂ X = `1ν × `1ν with ‖h‖X = max(‖h1‖1,ν , ‖h2‖1,ν) ≤ 1, we get

‖(Bh)i‖1,ν =

∥∥∥∥ 2∑
j=1

Bi,jhj

∥∥∥∥
1,ν

≤
2∑
i=1

‖Bi,j‖B(`1ν).

Hence we define

Z0
def
= max

(
‖B1,1‖B(`1ν) + ‖B1,2‖B(`1ν), ‖B2,1‖B(`1ν) + ‖B2,2‖B(`1ν)

)
. (26)
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4.3. The Z1 bound. Recall that we look for the bound ‖A[DF (x̄)− A†]‖B(X) ≤
Z1. Given h = (h1, h2) ∈ X with ‖h‖X ≤ 1, set

z
def
= [DF (x̄)−A†]h.

Note that for j = 1, 2, (zj)0 = 0, (zj)1 =
∑
k≥N+1(hj)k, (zj)n = 0 for n = 2, . . . , N ,

and

(z1)n = −(h1)n−2−(h2)n−2, and (z2)n = −(h2)n−2−λ(h1)n−2 +3(ā∗ā∗h1)n−2,

for n ≥ N + 1. It is not hard to show that |(zj)1| ≤ ν−(N+1) for all ‖h‖X ≤ 1,
j = 1, 2, hence

‖(Az)1‖1,ν ≤
2∑
j=1

‖A1,jzj‖1,ν

=

2∑
j=1

N∑
n=0

∣∣(A(N)
1,j z

(N)
j

)
n

∣∣νn +
∑

n≥N+1

1

n(n+ 1)
|(z1)n|νn

≤ 1

νN+1

2∑
j=1

N∑
n=0

∣∣(A(N)
1,j

)
n,1

∣∣νn +
1

(N + 1)(N + 2)
(‖h1‖1,ν + ‖h2‖1,ν)

≤ 1

νN+1

2∑
j=1

N∑
n=0

∣∣(A(N)
1,j

)
n,1

∣∣νn +
2

(N + 1)(N + 2)

def
= Z

(1)
1 ,

and similarly, now also using the Banach algebra property (12),

‖(Az)2‖1,ν ≤
1

νN+1

2∑
j=1

N∑
n=0

∣∣(A(N)
2,j

)
n,1

∣∣νn+
1

(N + 1)(N + 2)
(1+λ+3‖ā‖21,ν)

def
= Z

(2)
1 .

We thus define

Z1
def
= max

(
Z

(1)
1 , Z

(2)
1

)
. (27)

4.4. The Z2 bound. Let c = (c1, c2) ∈ Br(x̄), that is ‖c − x̄‖X = max(‖c1 −
ā‖1,ν , ‖c2 − b̄‖1,ν) ≤ r. Given ‖h‖X ≤ 1, note that ([DF1(c)−DF1(x̄)]h)n = 0 and
that

([DF2(c)−DF2(x̄)]h)n =

{
0 for n = 0, 1,

3 ((c1 ∗ c1 − ā ∗ ā) ∗ h1)n−2 for n ≥ 2,

so that

‖A[DF (c)−DF (x̄)]‖B(X) = sup
‖h‖X≤1

‖A[DF (c)−DF (x̄)]h‖X

≤ ‖A‖B(X) sup
‖h‖X≤1

‖[DF (c)−DF (x̄)]h‖X

= 3ν2‖A‖B(X) sup
‖h‖X≤1

‖(c1 − ā) ∗ (c1 + ā) ∗ h1‖1,ν

≤ 3ν2‖A‖B(X) sup
‖h‖X≤1

‖c1 − ā‖1,ν‖c1 + ā‖1,ν‖h1‖1,ν

≤ 3ν2‖A‖B(X)r(‖c1‖1,ν + ‖ā‖1,ν)

≤ 3ν2‖A‖B(X)r(r + 2‖ā‖1,ν).



COMPUTER-ASSISTED PROOFS FOR SOLUTIONS OF PDES 77

Then, assuming a loose a priori bound r ≤ 1 on the radius, we set

Z2
def
= 3ν2‖A‖B(X)(1 + 2‖ā‖1,ν), (28)

where ‖A‖B(X) is computed using Lemma 3.3, see also (26).

4.5. Computer-assisted proofs. With a numerical continuation algorithm, we
continued a branch of solutions of (22) that bifurcates from the zero solution at
λ = (π2 + 1)2. Combining the bounds Y0, Z0, Z1 and Z2 given in (25), (26), (27)
and (28), respectively, we define the radii polynomial p(r) as in (7). We prove
the existence of six solutions of (22) by verifying the hypotheses of Theorem 2.1
with the routine script proofs SH.m available at [4]. The following table contains
values of the bounds, as well as intervals [rmin, rmax] on which p(r) < 0, for sample
values of λ ranging from 118.2 to 500.

λ ν N Y0 Z1 Z2 rmin rmax

118.2 1.15 39 8.4414 · 10−11 0.44499 1.9642 · 106 1.5218 · 10−10 2.8242 · 10−7

120 1.1 54 1.3132 · 10−9 0.15775 2.002 · 105 1.5598 · 10−9 4.2056 · 10−6

250 1.04 114 4.3386 · 10−8 0.27014 4.89752 · 105 6.2026 · 10−8 1.4282 · 10−6

350 1.03 136 4.8408 · 10−8 0.15617 1.536768 · 106 6.508 · 10−8 4.8401 · 10−7

450 1.02 164 4.7337 · 10−8 0.033858 3.274572 · 106 6.2042 · 10−8 2.33 · 10−7

500 1.009 169 5.6167 · 10−8 0.06321 3.73724 · 106 9.9273 · 10−8 1.5139 · 10−7

We observe from these data that as we increase the parameter λ, the dimension
of the projection N needs to increase while the decay parameter ν needs to decrease.
This is due to the fact that the Taylor coefficients of the solutions decay slower as
λ increases. Moreover, notice that the values of rmin and rmax are approaching
each other, meaning that the proofs are getting harder and harder to obtain. This
suggests that for larger parameter values a single Taylor expansion is not enough.
The corresponding solutions can be seen in Figure 5. We plot in Figure 6 the
solution (u, v) of (20) at λ = 500.
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Figure 5. Six solutions of (22) for λ ∈ {118.2, 120, 250, 350, 450, 500}.

5. Conclusion. We have seen that some nontrivial boundary value problems orig-
inating from nonlinear (geometric) PDEs can be solved in a Taylor series setting,
one that requires relatively little technical machinery. Cutting off the Taylor series
at some finite order and solving the associated finite dimensional algebraic system
numerically, leads to an approximate solution, and we have proven that the true
solution lies nearby. Indeed, based on Theorem 2.1 and computable bounds (using
interval arithmetic), we can estimate the distance between approximate and true
solution rigorously and explicitly. This turns the numerical computation into a
mathematical statement about the PDE.
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Figure 6. (Left) A stationary solution of the Swift-Hohenberg
equation (20) on the unit ball in R3 at λ = 500. (Right) The

corresponding graph of u(s) = u(
√
x2 + y2 + z2).

There are limitations to the particular choice of Taylor series as our means of
describing a solution, i.e., using monomials as our basis functions. In particular, we
have seen that this puts limits on the parameter range where we can apply this ap-
proach. More generally, there is a large variety of functional analytic forumulations
and numerical algorithms, adapted to the particular problem under study, which
fit into the general framework of Theorem 2.1. Successful examples include domain
decomposition, Fourier series, Chebyshev series, splines, finite elements, as well as
combinations of these. With these tools one is able, using the paradigm illustrated
by the two examples in Sections 3 and 4, to solve eigenvalue problems, find periodic
and connecting orbits, continue solutions in parameters, and analyze bifurcations.
Due to the nonlinear nature of these problems, you usually simply cannot get your
hands on such solutions without the help of a computer. For further reading we
refer to [1, 2, 8, 14, 22, 30, 32, 35] and the references therein. Of particular note
is [3], where the authors apply a related method to find asymmetric solutions of a
variant of (1) with u = u(x) scalar and x in the unit disc in R2.
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