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Abstract There is correlative evidence that impaired
cerebral blood flow (CBF) regulation, in addition to pro-
moting cognitive impairment, is also associated with al-
terations in gait and development of falls in elderly people.
CBF is adjusted to neuronal activity via neurovascular
coupling (NVC) and this mechanism becomes progres-
sively impaired with age. To establish a direct cause-and-
effect relationship between impaired NVC and gait ab-
normalities, we induced neurovascular uncoupling phar-
macologically in young C57BL/6 mice by inhibiting the
synthesis of vasodilator mediators involved in NVC.
Treatment of mice with the epoxygenase inhibitor
MSPPOH, the NO synthase inhibitor L-NAME, and the
COX inhibitor indomethacin significantly decreased
NVCmimicking the aging phenotype. Pharmacologically
induced neurovascular uncoupling significantly decreased

the dynamic gait parameter duty cycle, altered footfall
patterns, and significantly increased phase dispersion,
indicating impaired interlimb coordination. Impaired
NVC also tended to increase gait variability. Thus, selec-
tive experimental disruption of NVC causes subclinical
gait abnormalities, supporting the importance of CBF in
both cognitive function and gait regulation.

Keywords Neurovascular coupling . Gait . Catwalk .

Neurovascular uncoupling

Introduction

Vascular contributions to cognitive impairment and de-
mentia (VCID) in aging have garnered much interest in
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the past decade (Corriveau et al. 2016; Csiszar et al.
2017; Gorelick et al. 2011; Snyder et al. 2015; Toth et al.
2017; Tucsek et al. 2017). There are numerous age-
related vascular pathologies underlying VCID. It has
become evident that in addition to pathologies affecting
the larger cerebral arteries (e.g., atherosclerosis promot-
ing cerebral ischemia) and cerebral microvessels (in-
cluding arteriosclerosis, blood-brain barrier disruption,
microvascular rarefaction, microvascular amyloid depo-
sition, microhemorrhages) (Tucsek et al. 2014a, b, 2017;
Ungvari et al. 2017b), functional impairment of cerebral
microvessels resulting in dysregulation of cerebral
blood flow (CBF) also has a critical role in the age-
related decline of brain function (Csiszar et al. 2017;
Tarantini et al. 2016; Toth et al. 2017; Zlokovic 2011).

There is growing evidence that functional impairment
of the neurovascular unit develops early during aging
before manifestation of other pathologies (Balbi et al.
2015), and that it importantly contributes to age-related
impairment of brain function (Tarantini et al. 2016; Toth
et al. 2017). The energetic demand of active neurons is
high and their proper function depends on constant, tightly
controlled delivery of oxygen and nutrients via the micro-
circulatory network.With increased neuronal activity there
is a requirement for rapid compensatory increases in oxy-
gen and glucose delivery to the active brain regions. This
Bfunctional hyperemia^ is elicited through the process of
neurovascular coupling, a feed-forward control mecha-
nism orchestrated by cells of the neurovascular unit, which
adjusts CBF, via regulating microvascular resistance, to
the energy requirements of activated neurons (Attwell
et al. 2010; Tarantini et al. 2016; Toth et al. 2017). Func-
tional hyperemia is not only responsible for increased
delivery of oxygen and nutrients, it also enables effective
washout of noxious substances, ensuring an optimal hu-
moral microenvironment in the cerebral tissue. The cellu-
lar mechanisms underlying neurovascular coupling in-
clude synthesis of nitric oxide (NO) by activated neurons
and/or endothelial of nitric oxide (NO) and astrocytic
production of vasodilator eicosanoid metabolites, includ-
ing epoxygenase-derived epoxyeicosatrienoic acids
(EETs) and cyclooxygenase-derived prostaglandins(Chen
et al. 2014; Ma et al. 1996; Peng et al. 2002; Stobart et al.
2013; Takano et al. 2006; Tarantini et al. 2015, 2016,
2017; Toth et al. 2014, 2015a, b, 2017; Tucsek et al.
2014b; Ungvari et al. 2017a; Zonta et al. 2003). There is
strong evidence that aging is associated with impairment
of functional hyperemia (termed Bneurovascular
uncoupling^) due to dysregulated release and/or increased

degradation of NO, EETs, and prostaglandins (Stefanova
et al. 2013; Tarantini et al. 2016; Topcuoglu et al. 2009;
Toth et al. 2014). Neurovascular uncoupling is also man-
ifested in pathophysiological conditions associated with
accelerated cerebromicrovascular aging and cognitive im-
pairment, including hypertension (Kazama et al. 2004),
post-irradiation cognitive decline (Ungvari et al. 2017a),
and obesity (Tucsek et al. 2014) both in human and
laboratory models. Neurovascular dysfunction is also an
early alteration in animal models of Alzheimer’s disease
(Girouard and Iadecola 2006; Lourenco et al. 2017;
Tarantini et al. 2017).

Impaired delivery of nutrients and oxygen due to
neurovascular dysfunction is expected to adversely af-
fect neuronal function. Indeed, impaired neurovascular
coupling responses in the elderly were shown to associ-
ate with impaired higher cognitive function (Sorond
et al. 2013). Experimental studies in mouse models with
pharmacological inhibition of the synthesis of NO,
EETs, and prostaglandins confirm that a causal link
exists between neurovascular dysfunction and cognitive
impairment. In particular, pharmacologically induced
neurovascular coupling was shown to result in impair-
ment of spatial and recognition memory, mimicking the
aging phenotype (Tarantini et al. 2015).

Human studies suggested that age-related
neurovascular uncoupling also associates with gait abnor-
malities (Sorond et al. 2011). The significance of this
observation is threefold. First, gait is no longer considered
merely an automated motor activity (Atkinson et al.
2007). There is strong evidence that gait coordination
requires normal executive function. Importantly, cognitive
impairment and gait abnormalities frequently coexist in
the elderly and in patients with neurodegenerative disease.
In fact, gait disorders couldmanifest long before cognitive
impairment is clinically evident (Mielke et al. 2013;
Verghese et al. 2002). It is predicted that shared mecha-
nisms, including microvascular pathologies that similarly
affect brain regions involved in cognition and motor
coordination, contribute to both cognitive impairment
and gait dysfunction. Based on the complex interaction
between brain regions involved in cognition and gait
coordination in recent years, the concept has emerged that
gait abnormalities may predict cognitive decline (Belghali
et al. 2017; Callisaya et al. 2017; Fitzpatrick et al. 2007;
Holtzer et al. 2006; Mielke et al. 2013; Verghese et al.
2007). Although there is growing evidence that
neurovascular uncoupling contributes to cognitive de-
cline, the role of neurovascular health in gait abnormalities
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remains elusive. Second, gait dysfunction in older adults
is a major cause of functional impairment, contributes to
falls, and predicts increased risk of institutionalization and
mortality (Mignardot et al. 2014; Nakamura et al. 1996;
Sorond et al. 2010; Verghese et al. 2009). Third, gait
abnormalities were shown to be associated with survival
in older adults (Studenski et al. 2011). Identification of
potentially preventable causes of gait dysfunction has
great relevance for maintaining functional independence
in late life, preventing falls and possibly preserving cog-
nition before impairment ensues. However, because senile
gait disorders are likely multifactorial, in previous
studies, it has been challenging to establish the
mechanistic link between neurovascular dysfunction
and gait abnormalities.

The present study was designed to test the hypothesis
that neurovascular dysfunction per se results in alterations
of gait coordination. To achieve this goal, neurovascular
dysfunction was induced experimentally in healthy young
control mice by treatment with specific pharmacological
inhibitors of synthesis of nitric oxide, epoxyeicosatrienoic
acids, and prostaglandins followed by assessment of gait
coordination. To verify treatment efficiency, whisker
stimulation-induced neurovascular coupling responses
were measured by assessing CBF in the somatosensory
whisker barrel cortex using a laser Doppler flow probe. To
assess the effects of experimentally induced neurovascular
uncoupling in laboratory mice, we analyzed gait parame-
ters that have direct translational relevance (e.g., gait
speed, swing speed, cadence, stride length, stride time,
base of support) and also developed the methods to ana-
lyze stride time and stride length variability, which are
considered sensitive indices of human gait abnormalities.

Methods

All the performed procedures were approved by the
Institutional Animal Care and Use Committee of the
University of Oklahoma Health Sciences Center.

Animals and pharmacological treatments

To study the effects of neurovascular uncoupling, young
male C57BL/6J mice (5 months old, n = 10 per group)
were obtained from the Jackson Laboratories (Bar Har-
bor, ME). Mice were kept under specific pathogen-free
barrier conditions in the Rodent Barrier Facility at Uni-
versity of Oklahoma Health Sciences Center under a

controlled photoperiod (12 h light; 12 h dark). The
animals were divided into two groups: (1) mice with
experimentally induced neurovascular dysfunction were
administered pharmacological inhibitors to disrupt pro-
duction of mediators involved in functional hyperemia
(nitric oxide, epoxyeicosatrienoic acids, and prostaglan-
dins) (Tarantini et al. 2015); and (2) sham controls
receiving vehicle treatment. To inhibit the production
of EETs, mice were treated with N-(methylsulfonyl)-
2-(2-propynyloxy)-benzenehexanamide (MS-PPOH), a
specific inhibitor of EET-producing epoxidases (Brand-
Schieber et al. 2000), as described (Tarantini et al.
2015). Alzet osmotic minipumps (7 days, 1 μl/h, ~
200 μl total volume, Cat No.: 2001; Durect Corp.,
Cupertino, CA) were filled with MS-PPOH (20 mg/kg/
day, dissolved in DMSO and diluted to final concentra-
tion with 45% cyclodextrin (Brand-Schieber et al.
2000)) and implanted subcutaneously. Sham operated
control animals received vehicle. To inhibit synthesis of
vasodilator NO, mice were treated with the NO synthase
inhibitor N(G)-Nitro-L-arginine methyl ester (L-
NAME, 100 mg/kg/day; in drinking water) (Wakisaka
et al. 2010). Indomethacin (INDO; 7.5 mg/kg/day, p.o.),
a non-selective inhibitor of cyclooxygenases, was used
to disrupt NVC responses by cyxlooxygenase-derived
vasodilator arachidonic acid metabolites. Indomethacin
was dissolved in ethanol and diluted in 5% (w/v) sodium
bicarbonate solution. The maximum administered daily
volume of ethanol was 3 μl per animal. The treatments
were continued throughout the entire experimental pe-
riod (7 days). Blood pressure of the animals was record-
ed before the treatment, and on day 3 of the treatment
period, by the tail cuff method, as previously described
(Toth et al. 2013).

Analysis of gait function

To determine the impact of impaired NVC responses on
gait coordination, we tested the experimental groups of
mice using an automated computer-assisted method
(CatWalk; Noldus Information Technology Inc.) before
and 3 days after the initiation of the pharmacological
treatment, when the animals completely recovered from
surgery. Using the CatWalk system, the detection of paw
print size and paw placement patterns during volunteer
running on an illuminated glass walkway by a camera
placed under the glass surface provides an automated
analysis of gait function and the spatial and temporal
aspects of interlimb coordination (Tarantini et al. 2015;
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Ungvari et al. 2017a). Briefly, animals were trained to
cross the walkway and then, in a dark and silent room
(< 20 lx of illumination), animals were tested in 20
consecutive runs (to obtain > 200 steps per animal).
Data were averaged across ~ 20 runs in which the ani-
mal maintained a constant speed across the walkway.
After manual identification and labeling of each foot-
print, the variability of the data has been assessed using
quartile dispersion. We adopted a common outlier def-
inition, labeling points more than 1.5 interquartile
ranges away from the sample median as extreme values.
After variability analyses, spatial and temporal gait pa-
rameters were calculated.

Base of support is the average width between either
the front paws or the hind paws. Swing speed is the
speed (cm/s) of the paw during swing. Stride length is
the distance (in cm) between successive placements of
the same paw. The regularity index (%) is a fractional
measure of interpaw coordination, which expresses the
number of normal step sequence patterns relative to the
total number of paw placements. The formula of regu-
larity index is as follows: (normal step sequence pat-
terns) × 4/(total number of paw placements) × 100 (%).
In healthy, fully coordinated animals, its value is close to
100%. Phase dispersion provides a quantitative metric
of interpaw coordination. Phase dispersion characterizes
the placement of two paws (Btarget^ and Banchor^)
during the cycle of consecutive initial contacts with an
anchor paw. In a step cycle, base of support gives the
distance between the mass-midpoints of the fore prints
at maximal contact. The results are averaged and
expressed in centimeter. Duty cycle (%) is expressed
as stand time as a percentage of step cycle (Duty Cycle =
Stand time / (Stand time + Swing time × 100%)).

Terminal dual stance (in seconds) is a measure of
simultaneous contralateral support, calculated as the
duration of ground contact for both hind paws simulta-
neously; it is the second step in a step cycle of a hind
paw that the contralateral hind paw also makes contact
with the glass plate. Cadence is the rate at which a
mouse walks, expressed in steps per second.

Investigating gait variability (Beauchet et al. 2017;
Decker et al. 2016), the stride-to-stride fluctuations in
gait parameters offers a sensitive, novel method of quan-
tifying subtle changes in locomotion in mice. Step time
and step length variability were analyzed by computing
the median absolute deviation (MAD) for datasets that
contained > 200 steps for each animal, obtained in con-
secutive runs at similar speeds. MAD is a robust measure

of statistical dispersion, which is more resilient to outliers
in a data set than the standard deviation.

Measurement of neurovascular coupling responses
and somatosensory-evoked field potentials

After behavioral testing, mice in each group were
anesthetized (α-chloralose (50 mg/kg, i.p.)/urethane
(750 mg/kg, i.p.), endotracheally intubated, and ven-
tilated (MousVent G500; Kent Scientific Co, Torring-
ton, CT). A thermostatic heating pad (Kent Scientific
Co, Torrington, CT) was used to maintain rectal
temperature at 37 °C (Toth et al. 2014). End-tidal
CO2 (including dead space) was controlled between
3.2 and 3.7% to keep blood gas values within the
physiological range as described (Tarantini et al.
2015; Toth et al. 2014; Ungvari et al. 2017a). The
right femoral artery was cannulated for arterial blood
pressure measurement (Living Systems Instrumenta-
tions, Burlington, VT) (Toth et al. 2014). The blood
pressure was within the physiological range through-
out the experiments (90–110 mmHg). Mice were
immobilized and placed on a stereotaxic frame (Leica
Microsystems Inc., Buffalo Grove, IL) as the scalp
and periosteum were pulled aside. The animals were
equipped with an open cranial window as described
(Tarantini et al. 2015; Toth et al. 2014) and a glass-
insulated tungsten microelectrode (impedance, 2–
3 MΩ, Kation Scientific, LLC, Minneapolis, MN)
was inserted stereotaxically into the left barrel cortex
(3 mm lateral and 1.5 mm caudal to bregma; depth of
0.6 mm) through the ACSF-perfused open cranial
window for recording local field potentials. An Ag/
AgCl electrode inserted into the neck muscles served
as reference electrode. Changes in cerebral blood
flow (CBF) were assessed above the left barrel cortex
using a laser Doppler probe (Transonic Systems Inc.,
Ithaca, NY) as described (Tarantini et al. 2015; Toth
et al. 2014; Ungvari et al. 2017a).

After basal activity was recorded, the right whisker
pad was stimulated by a bipolar stimulating electrode
placed to the ramus infraorbitalis of the trigeminal nerve
and into the masticatory muscles. The stimulation proto-
col used to investigate neurovascular coupling and
somatosensory-evoked field potentials consisted of 10
stimulation presentation trials with an intertrial interval
of 70 s, each delivering a 30-s train of electrical pulses (2
Hz, 0.2 mA, intensity, and 0.3 ms pulse width) to the
mystacial pad after a 10-s prestimulation baseline period.
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Changes in CBFwere averaged and expressed as percent
(%) increase from the baseline value (Kazama et al.
2004). The electrical signal was amplified with an AC/
DC differential amplifier (high pass at 1 Hz, low pass at
1 kHz) (Model 3000, A-M Systems, Inc. Carlsborg,WA)
and digitalized by the PowerLab/Labchart data acquisi-
tion system (ADInstruments, Colorado Springs, CO)
with the sampling rate of 40 kHz. Analyses were per-
formed on the average of 10 stimulation trials. The
negative amplitude in the somatosensory-evoked field
potential response was considered as the excitatory post-
synaptic potential (fEPSP) (Lind et al. 2013). Experi-
ments lasted ~ 20–30 min per mouse, which permitted
stable physiological parameters to be obtained. The ex-
perimenter was blinded to the treatment of the animals.

Statistical analysis

Statistical analysis was carried out by unpaired or paired
t test, as appropriate, using Prism 5.0 for Windows
(Graphpad Software, La Jolla, CA). A p value less than
0.05 was considered statistically significant. Data are
expressed as mean ± S.E.M.

Results

Pharmacologically induced neurovascular uncoupling

Changes in CBF in the whisker barrel cortex in response
to contralateral whisker stimulation were significantly

decreased by in vivo treatment with MSPPOH+
NAME+INDO (Fig. 1a) (Park et al. 2007). Pharmaco-
logical treatments could potentially attenuate CBF re-
sponses by impairing neural activity evoked by whisker
pad stimulation. To examine this possibility, we
assessed the effects of treatment with MSPPOH+
NAME+INDO by recording spontaneous and evoked
neural activity. We found that the somatosensory
field potentials produced by activation of the whis-
ker pad do not differ between control and
MSPPOH+NAME+INDO-treated mice (Fig. 1b).
Therefore, treatment with MSPPOH+NAME+INDO is
unlikely to contribute to impaired functional hyperemia
by modulating the neural activity evoked by whisker
stimulation (Tarantini et al. 2015). The blood pressure of
the two groups of animals did not differ significantly
(data not shown).

Effects of neurovascular uncoupling on gait
coordination

Gait coordination is a higher integrative process of the
sensorimotor system. Clinical studies suggest that
neurovascular coupling may be involved in preservation
of gait function in elderly people (Sorond et al. 2011).
With advanced age, balance and gait speed are reduced
(Abellan van Kan et al. 2009; Atkinson et al. 2007;
Callisaya et al. 2015; Fitzpatrick et al. 2007; Liu et al.
2017; Nadkarni et al. 2014; Sorond et al. 2010, 2011;
Verlinden et al. 2013; Watson et al. 2010), while many
other mobility parameters remain unchanged in humans.

Fig. 1 Pharmacologically induced neurovascular uncoupling in
mice. a Time course of cerebral blood flow (CBF) responses
measured with a laser Doppler probe above the whisker barrel
cortex during electrical stimulation of the contralateral whisker
pad (current 0.2 mA, pulse duration 0.3 ms, at 2 Hz for a 30-s
period) obtained in control mice and mice treated chronically with
MSPPOH, L-NAME, plus indomethacin (INDO). Shaded areas

denote 95% confidence intervals. b Bar graphs showing the effect
of treatment with MSPPOH+NAME+INDO on somatosensory-
evoked potential (SEP) responses in the primary somatosensory
cortex in response to electrical stimulation of the contralateral
whisker pad in control and treated groups. The amplitudes of the
negative waves were unaffected by chronic treatment of the mice
with MSPPOH+NAME+INDO. Data are mean ± SEM
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In the present study, we did not observe differences
between control mice and mice treated with MSPPOH+
NAME+INDO in the following parameters indicative of
gait: speed (Fig. 2a), swing speed (Fig. 2b), cadence
(Fig. 2c), stride length (Fig. 2d), stride time (Fig. 2e),
base of support (front paws; Fig. 2g), base of support
(hind paws; Fig. 2h), and terminal dual stance (Fig. 2i).
Pharmacologically induced neurovascular uncoupling
significantly decreased the dynamic gait parameter duty
cycle, which represents stance duration as a percentage
of step cycle duration (Fig. 2f).

The regularity index tended to decrease in mice treat-
ed with MSPPOH+NAME+INDO (Fig. 3a). Mice in
both groups predominantly used the four most common
footfall patterns (Fig. 3b). The primary differences in
patterns used by control mice and mice with

pharmacologically induced neurovascular uncoupling
were in the frequency of the radial Bgiraffe walk^ AA
pattern. Mice with neurovascular uncoupling used more
frequently the AA pattern than control mice, and com-
pensated with a decreased use of the alternating AB
pattern and CB pattern.

Interlimb coordination was also analyzed by
phase dispersion analysis. Mean homologous, ipsi-
lateral, and diagonal phase dispersion values, obtain-
ed in animals studied at comparable walking speeds,
were calculated for the respective limb pairs and
their deviations from the expected phase dispersion
values were computed. As shown in Fig. 3c, signif-
icantly higher phase dispersion was evident in mice
treated with MSPPOH+NAME+INDO as compared
to controls.

Fig. 2 Effects of neurovascular uncoupling on gait parameters. a
Body speed, b swing speed, c cadence, d stride length, e stride
time, f duty cycle, g and h base of support (g front paws; h hind
paws), and i terminal dual stance in control mice and mice treated

chronically with MSPPOH, L-NAME, plus indomethacin
(INDO). Data are mean ± SEM (n = 10 in each group). *P < 0.05
vs. control
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The study of gait variability, the stride-to-stride
fluctuations in walking first observed by von
Vierordt (1881), offers a sensitive method of quanti-
fying locomotion. Previous studies demonstrated that
measures of gait variability may be more closely
related to cognitive decline or falls than other mea-
sures based on the mean values of other gait param-
eters. Stride length variability is in fact a strong
predictor of falls and cognitive impairment in elderly
patients (Montero-Odasso et al. 2014; Nakamura
et al. 1996; Rosso et al. 2014; Studenski et al. 2011;
Verghese et al. 2007, 2008, 2009; Verlinden et al.
2013; Visser, 1983; Wittwer et al. 2013). We found
that in mice treated with MSPPOH+NAME+INDO
there was a discernable trend for increased stride
length variability (Fig. 4a) and stride time variability
(Fig. 4b).

Discussion

The present study provides evidence that neurovascular
uncoupling is associated with changes in mouse
gait coordination. This is complementary to previ-
ous data demonstrating that pharmacologically in-
duced neurovascular uncoupling in mice also pro-
motes detectable cognitive impairment (Tarantini
et al. 2015).

Gait and balance disorders are ubiquitous in aging. In
addition to being a major cause of falls, they are also
associated with increased morbidity and mortality, as
well as reduced level of function and increased risk of
institutionalization. Clinically diagnosed gait abnormal-
ities in older adults involve multiple contributing fac-
tors, including neurological diseases (e.g., strokes,
Parkinson’s disease) (Hajjar et al. 2009). Clinical

Fig. 3 Neurovascular uncoupling impairs gait coordination. a A
similar sequence regularity index reflects no change in step pat-
terns in mice treated with MSPPOH+NAME+INDO as compared
to control mice. b Hildebrand plot of the common gait patterns:
AA (RF-RH-LF-LH), AB (LF-RH-RF-LH), CA (RF-LF-RH-
LH), and CB (LF-RF-LH-RH). Percentages indicate relative use
of each step pattern in each mouse group. The most common step
pattern in both was the CA pattern. Mice with neurovascular

uncoupling used more frequently the radial AA pattern than con-
trol mice and compensated with a decreased use of the alternating
AB pattern and CB pattern. c The average deviation of phase
dispersion (calculated between the right front paw [RF] and left
front paw [LF]) from the expected value (50%) under baseline
conditions and after treatment with MSPPOH+NAME+INDO.
Data are mean ± SEM.*P < 0.05 vs. control (n = 10 in each group)
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studies, including theMOBILIZE Boston study (Sorond
et al. 2011), link neurovascular uncoupling to subtle gait
dysfunction (e.g., slowing of gait) in humans. Recent
studies extend these findings, demonstrating that
neurovascular coupling, assessed using transcranial
Doppler, is related to activation of brain regions within
the executive network, which predicts gait alterations in
older adults (Jor’dan et al. 2017). While these findings
regarding the association between neurovascular
uncoupling and gait abnormalities were intriguing, a
cause-and-effect relationship cannot be established giv-
en the cross-sectional nature of these studies. In the
present study, short-term experimentally induced isolat-
ed neurovascular uncoupling resulted in significant

change in duty cycle, phase dispersion, and gait pattern,
whereas no significant changes in gait speed, cadence,
base of support, stride length, and stride time. These
findings provide direct evidence that a cause-and-effect
relationship likely exists between impairment of
neurovascular coupling responses and alteration in gait
coordination, supporting the conclusions of earlier clin-
ical studies (Sorond et al. 2011). Our results also warrant
further studies on different modalities of gait (e.g., indi-
ces reflecting gait coordination) in the context of
neurovascular uncoupling in humans. There are several
lines of evidence in support of the concept that induction
of neurovascular uncoupling is the main mechanism by
which inhibition of synthesis of EETs, prostaglandins,
and NO affects brain function (Leithner et al. 2010;
Tarantini et al. 2015). Although we cannot exclude the
possibility that the inhibition of synthesis of nitric oxide,
prostaglandins, and EETs may also affect other aspects
of neural, glial, or vascular mechanisms, which were not
investigated in this study, it did not affect somatosensory-
evoked potentials in the barrel cortex (Tarantini et al.
2015). Previous investigations also did not observe alter-
ations in basic synaptic transmission parameters and ob-
served normal long-term potentiation response of fEPSPs
in the hippocampus using inhibitors of synthesis of nitric
oxide, EETs, and prostaglandins (Leithner et al. 2010;
Tarantini et al. 2015).

Healthy neural control systems can fine tune the
stride-to-stride fluctuations of gait. Gait variability is a
sensitive parameter, which in older humans was report-
ed to predict cognitive decline (Brach et al. 2008;
Callisaya et al. 2010; Cedervall et al. 2014; Decker
et al. 2016; Gillain et al. 2016; Herman et al. 2005;
Verghese et al. 2002, 2007, 2008; Wittwer et al. 2013)
and survival(Verlinden et al. 2013) and associated with
risk of falls (Verghese et al. 2010). There is strong
evidence that vascular pathologies promote gait vari-
ability. For example, subclinical brain vascular abnor-
malities, measured on brain MRIs as infarcts and white
matter hyperintensities, were reported to associate with
greater variability of spatial gait parameters (step length)
(Rosano et al. 2007). In older adults, gait variability is
thought to be associated with areas important for senso-
rimotor integration, coordination (Tian et al. 2017), and
memory and executive function (Rosso et al. 2014). In
the present study, there was a discernible trend for
increased gait variabil i ty after induction of
neurovascular uncoupling. It will be interesting to
determine whether a similar relationship exists

Fig. 4 Neurovascular uncoupling tends to increase gait variabil-
ity. a Stride length variability and b stride time variability in
spontaneously walking control mice and mice treated chronically
with MSPPOH, L-NAME, plus indomethacin (INDO). Data are
mean ± SEM (n = 10 in each group). MAD median absolute
deviation
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between gait variability and neurovascular uncoupling
in older humans. If this is the case, then it could be
proposed that even subclinical impairment of
neurovascular function in aging may exacerbate the
complex gait abnormalities in older patients. In that
regard, it is important to point out that in aging, and
age-related pathophysiological conditions (e.g., hyper-
tension), neurovascular uncoupling often co-occurs with
other microvascular pathophysiological alterations (e.g.,
microhemorrhages (Ungvari et al. 2017b), white matter
hyperintensities (Sorond et al. 2013)), which are also
known to cause gait abnormalities (Toth et al. 2015c). It
should be thus emphasized that specific patterns of gait
variability may imply different underlying causes
(Brach et al. 2008).

Our findings have important clinical relevance. Exper-
imentally induced neurovascular uncoupling mimics im-
pairment of functional hyperemia observed in aging (Toth
et al. 2014) and pathophysiological conditions associated
with accelerated cerebromicrovascular aging. Advanced
age promotes neurovascular uncoupling, at least in part,
by decreasing NO bioavailability (Park et al. 2007;
Tarantini et al. 2016; Toth et al. 2014). A wide range of
pathophysiological conditions in the elderly was shown to
adversely affect the synthesis and/or release of NO and
astrocyte-derived vasoactive eicosanoid mediators, pro-
moting neurovascular uncoupling (Girouard and Iadecola
2006; Kazama et al. 2004; Tucsek et al. 2014). Cardiovas-
cular risk factors, including hypertension (Kazama et al.
2003, 2004), dyslipidemia, smoking, low circulating IGF-
1 levels (Toth et al. 2015a), and obesity (Tucsek et al.
2014b), which are all important risk factors for cognitive
decline in elderly patients (Gorelick et al. 2011; Iadecola
et al. 2009; Miralbell et al. 2013), also inhibit NO media-
tion of neurovascular coupling andmicrovascular dilations
by promoting oxidative stress, uncoupling endothelial NO
synthase and/or by upregulating asymmetric
dimethylarginine (ADMA), an endogenous inhibitor of
NO synthase. In that regard, it is important that a signifi-
cant association between serum ADMA level and slower
gait speed was demonstrated among elderly individuals
(Obayashi et al. 2016). Type 2 diabetes mellitus (Duarte
et al. 2015) also leads to neurovascular dysfunction, which
is associated with increased risk for brain function loss and
long-term cognitive impairment (Biessels and Reijmer
2014; Brundel et al. 2012, 2014; de Bresser et al. 2010;
Palta et al. 2014; Reijmer et al. 2011; Ruis et al. 2009;
Ryan et al. 2014, 2016; van den Berg et al. 2008, 2009,
2010). Increased oxidative stress and heightened

inflammation associated with cardiovascular risk factors
may also affect arachidonic acid metabolism, decreasing
production of vasodilator prostaglandins and EETs and/or
increasing synthesis of vasoconstrictor eicosanoids, such
as 20-hydroxyeicosatetraenoic acid (20-HETE), contribut-
ing to neurovascular dysfunction.

In recent years in gait research, there has been a
substantial increase in the use of methodologies that
dynamically assess cerebral blood flow during walking.
Methods such as functional near-infrared spectroscopy
(fNIRS) can be used to assess functional hyperemia
through monitoring of blood oxygenation and blood
volume in the cortex during neuronal activation, which
are profoundly affected by age-related alterations in
cerebrovascular hemodynamics. Thus, using these
methodologies, the link between impaired functional
hyperemia and gait alterations can be elucidated.

On the basis of our present and previous (Tarantini
et al. 2015) findings, we posit that pharmacological and
non-pharmacological interventions that promote micro-
vascular health and improve neurovascular coupling
responses may exert beneficial effects on higher cortical
function (Sorond et al. 2013). Recent findings provide
initial support for this concept showing that pharmaco-
logical or dietary interventions (e.g., treatment with
resveratrol in mouse models (Toth et al. 2014; Witte
et al. 2014), consumption of cocoa in elderly patients
(Sorond et al. 2013)) that rescue endothelial function
and neurovascular coupling can improve cognitive func-
tion in aging. Further, our recent studies also demon-
strate that rescue of neurovascular coupling responses
by treatment with the mitochondria-targeted antioxida-
tive compound SS-31 improves gait coordination in
aged mice (Tarantini and Ungvari, under review).
Second, pharmacological treatments and dietary and
lifestyle factors that impair neurovascular coupling
(e.g., by inhibiting the synthesis of nitric oxide,
epoxyeicosatrienoic acids, and/or prostaglandins) may
adversely affect gait coordination and/or cognitive
function. For example, pharmacological inhibitors of
the synthesis of vasodilator eicosanoids, including
indomethacin, were shown to impair neurovascular
coupling in humans (Bruhn et al. 2001; Szabo et al.
2014), decreasing BOLD cerebral MRI contrast by over
50%. The available data from the Baltimore Longitudi-
nal Study on Aging also suggest that use of the cyclo-
oxygenase inhibitor aspirin is associated with greater
prospective cognitive decline (Waldstein et al. 2010);
however, its effect on gait function was not investigated.
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In that regard, the results of the Aspirin in Reducing
Events in the Elderly (ASPREE) trial (a placebo-
controlled trial of aspirin treatment that will determine
the effects of 5 years of daily 100 mg aspirin on gait
function in the elderly (McNeil et al. 2017)) will be
informative.

Collectively, combined inhibition of production of nitric
oxide, epoxyeicosatrienoic acids, and prostanoids signifi-
cantly reduces CBF responses to neuronal activation in
mice, which mimics neurovascular uncoupling observed
in aging and pathophysiological conditions associatedwith
accelerated cerebromicrovascular aging. The results of this
study provide experimental evidence in support of the
concept that neurovascular uncoupling per se promotes
subclinical gait abnormalities. Our findings, taken together
with the results of earlier studies (Hamel et al. 2016;Ongali
et al. 2014; Papadopoulos et al. 2017; Tong et al. 2012),
point to potential benefits of pharmacological and non-
pharmacological (e.g., dietary (Sorond et al. 2013)) inter-
ventions targeting neurovascular coupling pathways and
promoting microvascular health to preserve gait function
in aging.
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