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and gait abnormalities in a mouse model of whole brain
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Abstract Whole brain irradiation (WBI) is a mainstream
therapy for patients with both identifiable brain metastases
and prophylaxis for microscopic malignancies. However,
it also promotes accelerated senescence in healthy tissues
and leads to progressive cognitive dysfunction in up to
50% of tumor patients surviving long term after treatment,
due to γ-irradiation-induced cerebromicrovascular injury.
Moment-to-moment adjustment of cerebral blood flow
(CBF ) v i a n e u r o n a l a c t i v i t y - d e p e n d e n t
cerebromicrovascular dilation (functional hyperemia) has
a critical role in maintenance of healthy cognitive function.
To determine whether cognitive decline induced by WBI
associates with impaired cerebromicrovascular function,

C56BL/6mice (3months) subjected to a clinically relevant
protocol of fractionated WBI (5 Gy twice weekly for
4 weeks) and control mice were compared. Mice were
tested for spatial memory performance (radial arm water
maze), sensorimotor coordination (computerized gait anal-
ysis, CatWalk), and cerebromicrovascular function (whis-
ker-stimulation-induced increases in CBF, measured by
laser Doppler flowmetry) at 3 to 6 months post-irradiation.
We found that mice with WBI exhibited impaired
cerebromicrovascular function at 3 months post-irradia-
tion, which was associated with impaired performance in
the radial arm water maze. At 6 months, post-irradiation
progressive impairment in gait coordination (including
changes in the regularity index and phase dispersion) was
also evident. Collectively, our findings provide evidence
for early and persisting neurovascular impairment after a
clinically relevant protocol of fractionated WBI, which
predict early manifestations of cognitive impairment.

Keywords Whole brain irradiation . Neurovascular
coupling . Functional hyperemia . Dementia . Gait
dysfunction . Neurovascular unit . Cellular senescence .

DNA damage

Introduction

Whole brain irradiation (WBI) is an important therapeu-
tic treatment in patients with both identifiable brain
metastases and prophylaxis for microscopic malignan-
cies (Gaspar et al. 2010; Patil et al. 2012). Over 200,000
tumor patients with brain involvement are treated with
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either partial large field or WBI every year in the USA
(Lee et al. 2012). AlthoughWBI is clinically effective in
eliminating tumor cells, it also results in a range of
unwanted side-effects in healthy tissues. In particular,
irradiation-induced DNA damage is known to lead to
accelerated brain senescence, which promotes function-
al impairment in the cortex, hippocampus, and white
matter months to years after treatment (Khuntia et al.
2006; Welzel et al. 2008a, 2008b). As a result, up to
50% of patients who survive long term after treatment
experience progressive dementia, thus severely
compromising quality of life (Lee et al. 2012). The
available experimental data clearly demonstrate that
radiation also leads to a progressive impairment of cog-
nitive function in animal models, mimicking the clinical
scenario of cognitive decline in patients after WBI
(Lamproglou et al. 2001; Shi et al. 2006; Soussain
et al. 2009; Warrington et al. 2012; Welzel et al.
2008a, 2008b). Recent studies show that in addition to
its profound harmful effects on cognitive function, WBI
can also result in the impairment of other brain functions
such as coordination of gait (Hatcher-Martin and Factor
2016). At present, no effective strategies exist to prevent
radiation-induced decline in higher brain functions and
there are no treatments available to reverse these effects.

Although the mechanisms underlying cognitive def-
icits after WBI are likely multifaceted, there is increas-
ing pre-clinical and clinical evidence that WBI compro-
mises the structural integrity of the cerebral microcircu-
lation, which significantly contributes to cognitive im-
pairment (Ashpole et al. 2014; Warrington et al. 2011,
2012, 2013). Previous studies demonstrate that clinical
series of fractionated WBI induce a 40% decrease in
capillary density in the brain regions associated with
learning and memory (Warrington et al. 2012), mimick-
ing aging phenotype. Despite these advances, there are
no studies available elucidating the functional conse-
quences of WBI-induced accelerated brain senescence
on the cerebral microvasculature. Normal brain function
is critically dependent on a continuous, tightly con-
trolled supply of oxygen and glucose through cerebral
blood flow (CBF). Although energetic demands of neu-
rons are very high, the brain has very little reserve
capacity. During periods of intense neuronal activity,
there is a requirement for rapid increases in oxygen
and glucose delivery. This is ensured by neurovascular
coupling (functional hyperemia), a vital mechanism of
regulation of CBF that maintains optimal microenviron-
ment of cerebral tissue by adjusting local blood flow to

local neuronal activity in a moment-to-moment manner
(Attwell et al. 2010; Tarantini et al. 2015, 2016; Toth
et al. 2016; Toth et al. 2014a, 2015a, 2015b, 2017;
Tucsek et al. 2014). There is increasing evidence that
neurovascular dysfunction is causally related to cogni-
tive decline in models of aging (Tarantini et al. 2015,
2016), yet, the effects of WBI on cerebromicrovascular
function have never been investigated.

The present study was designed to test the hypothesis
that WBI-induced accelerated brain senescence associ-
ates with early-onset cerebromicrovascular dysfunction.
To achieve this goal, C56BL/6 mice were subjected to a
clinically relevant protocol of fractionated WBI (5 Gy
twice weekly for 4 weeks). WBI-treated and control
mice were tested for spatial memory performance (radial
arm water maze), sensorimotor coordination (computer-
ized gait analysis, CatWalk), and cerebromicrovascular
function (whisker-stimulation-induced increases in
CBF, measured by laser Doppler flowmetry) at 3 and
6 months post-irradiation.

Materials and methods

Experimental animals and experimental design

C57BL/6J (3 months old, n = 51) mice were purchased
from the Jackson Laboratories (Bar Harbor, ME) and
housed three per cage in the specific pathogen-free
animal facility at the University of Oklahoma Health
Sciences Center (OUHSC). Animals were kept on a
12-h light/dark cycle and fed standard rodent chow
and water ad libitum. One week before radiation treat-
ment, mice were transferred to the conventional facility
(OUHSC) and housed under similar conditions. Mice
were anesthetized and subjected to clinical series of
WBI (n = 31, 5 Gy twice weekly for a total cumulative
dose of 40 Gy) or used as a control group (n = 20). Mice
were left to recover for 3 or 6 months in the original
environment. At the end of the recovery period, mice
were experimentally tested for cognitive function, gait
coordination, and neurovascular coupling responses. All
animal protocols were approved by the Institutional
Animal Care and Use Committee of OUHSC.

Fractionated whole brain irradiation protocol

After acclimating to the conventional facility for 1 week,
mice were randomly assigned to either anesthetized
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control or radiated groups. Animals were weighed and
anesthetized via intra-peritoneal injection of ketamine
and xylazine (100/15 mg per kg). Mice in the radiated
group were subjected to clinical series of WBI (5 Gy
twice weekly for a total cumulative dose of 40 Gy).
Radiation was administered using a 137Cesium gamma
irradiator (GammaCell 40, Nordion International). A
Cerrobend® shield was utilized to minimize the dose
to the bodies of mice in the radiated group. The radiation
dose received by the mice was verified using film do-
simetry, as described (Warrington et al. 2011, 2012).

Radial arms water maze testing

To determine how accelerated brain senescence induced
by WBI affects cognitive function, spatial memory and
long-term memory was tested in mice by assessing
performance in the radial arms water maze at 3 or
6 months post-WBI treatment. The maze consisted of
eight arms with a submerged escape platform located at
the end of one of the arms. Food coloring paint was
added into the water to make it opaque. The maze was
surrounded by privacy blinds with extramaze visual
cues. Intramaze visual cues were placed at the end of
the arms. The mice were monitored by a video tracking
system directly above the maze as they waded and
parameters were measured using Ethovision software
(Noldus Information Technology Inc., Leesburg, VA,
USA). Experimenters were unaware of the experimental
conditions of the mice at the time of testing. During the
learning period each day, mice were given the opportu-
nity to learn the location of the submerged platform
during two session blocks each consisting of four con-
secutive acquisition trials. On each trial, the mouse was
started in one arm not containing the platform and
allowed to wade for up to 1 min to find the escape
platform. All mice spent 30 s on the platform following
each trial before beginning the next trial. The platform
was located in the same arm on each trial. Over 3 days of
training, mice gradually improved performance as they
learned the procedural aspects of the task. Upon entering
an incorrect arm (all four paws within the distal half of
the arm), the mouse was charged an error. Learning
capability was assessed by comparing performance on
days 2 and 3 of the learning period. When eventually
both groups learned the procedural aspects of the task,
the mice were placed in their home cage for 7 days.
Then, the mice were administered the recall trial on day
10. On day 11 (extinction), mice were tested for ability

to relearn the task, when the platform has beenmoved to
a different arm which was not adjacent nor diametrically
positioned to the previous location. Mice were tested for
two session blocks and the second block consisting of
four trials has been used for comparison.

Analysis of gait function

To determine how accelerated brain senescence induced
by WBI affects gait coordination, we tested the animals
using an automated computer assisted method (CatWalk;
Noldus Information Technology Inc.) at 3 and 6 month
post-WBI. Using the CatWalk system, the detection of
paw print size and paw placement patterns during volun-
teer running on an illuminated glass walkway by a cam-
era placed under the glass surface provides an automated
analysis of gait function and the spatial and temporal
aspects of inter-limb coordination (Tarantini et al.
2015). Briefly, animals were trained to cross the walkway
and then, in a dark and silent room (<20 lx of illumina-
tion), animals were tested in three consecutive runs. Data
were averaged across ten runs in which the animal main-
tained a constant speed across the walkway.

The variability of the data has been assessed using
quartile dispersion. We adopted a common outlier defi-
nition, labeling points more than 1.5 interquartile ranges
away from the sample median as extreme values. After
variability analyses, the following indices were calculat-
ed. The regularity index (%) is a fractional measure of
interpaw coordination, which expresses the number of
normal step sequence patterns relative to the total number
of paw placements. The formula of regularity index is
NSSP × 4/PP × 100 (%), where NSSP represents the
number of normal step sequence patterns and PP the total
number of paw placements. In healthy, fully coordinated
animals, its value is close to 100%. Phase dispersion
provides a quantitative metric of interpaw coordination.
Phase dispersion characterizes the placement of two
paws (Btarget^ and Banchor^) during the cycle of con-
secutive initial contacts with an Banchor^ paw. In a step
cycle, base of support gives the distance between the
mass midpoints of the fore prints at maximal contact.
The results are averaged and expressed in centimeters.

Assessment of neurovascular coupling responses

To determine how accelerated brain senescence induced
by WBI affects cerebromicrovascular function, cerebral
blood flow responses to whisker stimulation were

GeroScience (2017) 39:33–42 35



assessed at 3 months post-WBI treatment. Mice were
anesthetized (α-chloralose, 50 mg/kg plus urethane,
750 mg/kg, i.p.), endotracheally intubated and ventilat-
ed (MousVent G500; Kent Scientific Co, Torrington,
CT). Rectal temperature was maintained at 37 °C using
a thermostatic heating pad (Kent Scientific Co, Torring-
ton, CT). End-tidal CO2 (with dead space) was kept
between 3.2 and 3.7% to maintain blood gas values
within the physiological range, as reported (Toth et al.
2014a). Animals were immobilized and placed on a
stereotaxic frame (Leica Microsystems Inc., Buffalo
Grove, IL). The scalp and periosteum were pulled aside
and a craniotomy was made with a dental drill over the
left somatosensory cortex corresponding to the barrel
field as described (Toth et al. 2015b). The dura was
gently removed, and the open cranial window was con-
tinuously superfused with artificial cerebrospinal fluid
(ACSF, composition: NaCl 119 mM, NaHCO3

26.2 mM, KCl 2.5 mM, NaH2PO4 1 mM, MgCl2
1.3 mM, glucose 10 mM, CaCl2 2.5 mM, pH = 7.3,
37 °C). The right femoral artery was cannulated for
arterial blood pressure measurement (Living Systems
Instrumentations, Burlington, VT) to ensure that the
blood pressure was within the physiological range
throughout the experiments (90–100 mmHg). To assess
neurovascular coupling, a laser Doppler probe (Tran-
sonic Systems Inc., Ithaca, NY) was positioned above
the barrel cortex (1–1.5 mm posterior and 3–3.5 mm
lateral to bregma), and the contralateral whiskers were
stimulated for 30 s at 5 Hz from side to side, as previ-
ously described (Toth et al. 2014a, 2015b). Changes in
CBF (n = 7–8 in each group) were assessed in three
trials divided by 5–10min intervals and are expressed as
percent (%) changes from baseline.

WBI could affect functional hyperemia by impairing
neural activity evoked by whisker stimulation. To ex-
amine this possibility, we recorded spontaneous and
evoked neural activity in control and WBI-treated mice.
A glass-insulated tungsten microelectrode (impedance,
2–3 MΩ; Kation Scientific, LLC, Minneapolis, MN,
USA) was inserted into the left barrel cortex (1–
1.5 mm posterior and 3–3.5 mm lateral to bregma)
through the ACSF-perfused open cranial window for
recording local field potentials as described (Toth et al.
2015a). An Ag/AgCl electrode inserted in the neck
muscles served as reference. After basal activity was
recorded, the right whisker pad was stimulated by a
bipolar-stimulating electrode placed to the ramus
infraorbitalis of the trigeminal nerve and into the

masticatory muscles. The stimulation protocol used to
investigate neurovascular coupling and somatosensory
evoked field potentials consisted of ten stimulation pre-
sentation trials with an intertrial interval of 70 s, each
delivering a 15-s train of electrical pulses (2 Hz, 0.2 mA,
intensity, and 0.3 ms pulse width) after a 10-s
prestimulation baseline period. The signal was ampli-
fied with an AC/DC differential amplifier (high pass at
1 Hz, low pass at 1 kHz) (Model 3000; A-M Systems,
Inc. Carlsborg, WA, USA) and digitalized by the
PowerLab/Labchart data acquisi t ion system
(ADInstruments, Colorado Springs, CO, USA) with a
sampling rate of 40 kHz. Basal activity was analyzed as
distribution of wave amplitude as a function of frequen-
cy, and the negative amplitude in the somatosensory
evoked field potential response was considered as the
excitatory postsynaptic potential (Toth et al. 2014b).
Analyses were performed on the average of ten stimu-
lation trials.

Statistical analysis

Statistical analysis was carried out by unpaired t test,
one-way ANOVA, or two-way ANOVA for repeated
measures followed by Bonferroni multiple comparison
test, as appropriate, using Prism 5.0 for Windows
(Graphpad Software, La Jolla, CA). A p value less than
0.05 was considered statistically significant. Data are
expressed as mean ± S.E.M.

Results

Cognitive function is impaired in mice by 3 months
post-WBI

Previously, we demonstrated that C57BL/6J mice ex-
hibit significant impairment of hippocampal-encoded
functions of learning and memory at 5 months post-
WBI treatment (Warrington et al. 2013). To gain insight
into the time-course of the development of irradiation-
induced cognitive decline, in the present study, we
assessed learning and memory function in mice
3 months post-WBI and in age-matched controls in the
radial arm water maze (Fig. 1a, left and right panel,
respectively). We compared the learning performance
of mice in each experimental group by analyzing the
day-to-day changes in the path length and error rate. The
error rate is the sum of all incorrect arm entries, where
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each error corresponds to each incorrect entry. The error
rate for each mouse is then averaged among each exper-
imental group in every trial block. During acquisition,
mice from all groups showed a decrease in the path
length (Fig. 1a) and the combined error rate (Fig. 1b)
across days, indicating learning of the task. We found
that control mice and mice at 3 months post-WBI ex-
hibited similar learning during the first 3 days of testing
(Fig. 1b, c). We confirmed that mice exhibited signifi-
cant impairment of learning function when tested
6 months post-WBI (data not shown). Memory recall
7 days later was also similar in both groups. WBI-
treated mice showed impaired extinction ability on day
11 (Fig. 1b, c). The extinction blocks describe the ability
of the mouse to forget and relearn the task with a
different platform location. These findings suggest that

learning plasticity is impaired early after WBI treatment
and precedes impairment in learning and memory.
These data are consistent with the progressive develop-
ment of cognitive impairment post-WBI.

Mild gait dysfunction becomes evident 6 months
post-WBI

We performed gait analyses using the Catwalk system in
control and WBI-treated animals. We found that WBI-
treated mice showed no difference in gait coordination
at 3 months post-irradiation (Fig. 2a–f). However, when
followed further for another 3 months, significantly
lower regularity index and significantly higher phase
dispersion was evident in WBI-treated mice as com-
pared to controls (Fig. 3). These data suggest that gait

Learning Recall

A

B

*

C

Target arm

Start

Control

Target arm

WBI

Start

Extinction

*

Learning Recall Extinction

Control

WBI
Control

WBI

Fig. 1 WBI treatment results in impaired radial arm water maze
(RAWM) performance in mice. WBI-treated mice and aged-
matched control mice were tested in the RAWM 3 months post-
WBI. a Heatmaps representing the percentage of time spent in
different locations in the maze for a randomly selected control
(left) and WBI-treated (right) animal during experimental day 11
in trial block 9. bAverage path length required to reach the hidden
platform in the RAWM.During acquisition (trial blocks 1 to 6) and
memory recall (trial block 7) in WBI-treated mice, the average

path length required to reach the hidden platform did not differ
from that in control mice at 3 months post-irradiation. Combined
error rates (c) were also similar in both groups during acquisition
(trial blocks 1 to 6) and memory recall (trial block 7). In contrast,
WBI-treated animals traveled longer distance (b) and made more
errors (c) before they were able to relearn the task when the
platform was moved to a different location during extinction
phase. Data are mean ± SEM (*p < 0.05)
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abnormalities associated with WBI-induced accelerated
brain senescence exhibit later onset than memory
impairment.

Cerebromicrovascular function is significantly impaired
in mice by 3 months post-WBI

In order to determine whether cerebromicrovascular
dysfunction associates with cognitive decline, we
assessed functional hyperemia in the whisker barrel
cortex in mice at 3 months post-WBI. We found that
CBF responses in the whisker barrel cortex elicited
by contralateral whisker stimulation were signifi-
cantly decreased in WBI-treated mice compared to
control animals indicating impaired neurovascular

coupling at 3 months post-irradiation (representative
CBF tracings are shown in Fig. 4a, summary data are
shown in Fig. 4b). WBI could reduce functional hy-
peremia by impairing neural activity evoked by whis-
ker stimulation. To examine this possibility, we re-
corded spontaneous and evoked neural activity in
control and WBI-treated mice. We found that the
amplitude and frequency distribution of the electro-
corticogram (data not shown) and the amplitude of the
somatosensory field potentials produced by activation
of the whisker pad were not different between control
and WBI-treated mice (Fig. 4c). Therefore, WBI is
unlikely to contribute to impaired functional hyper-
emia by modulating the neural activity evoked by
whisker stimulation.

n.s. n.s.

n.s.

n.s.

n.s.

n.s.

Fig. 2 Effects of WBI on gait parameters at 3 months post-
treatment. Stride length (a), stride time (b), base of support (front
paws); c), base of support (hind paws); d), stride length variability

(e), and stride time variability (f) in control mice and WBI-treated
mice at 3 months post-treatment. Data are mean ± SEM
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Discussion

The key finding of his study is that in mice a clinically
relevant protocol of fractionatedWBI results in a significant
cerebromicrovascular dysfunction, which associates with
cognitive impairment, mimicking the aging phenotype.

There is growing evidence that vascular contributions
to cognitive impairment and dementia (VCID) are critical
in aging (Ungvari and Sonntag 2014). Among them,

impaired neurovascular coupling responses (Fabiani
et al. 2013; Park et al. 2007; Stefanova et al. 2013;
Topcuoglu et al. 2009; Toth et al. 2014a; Zaletel et al.
2005) are thought to importantly contribute to the cogni-
tive decline (Sorond et al. 2013) in the elderly. From the
results of this study and from recent findings by other
laboratories (Warrington et al. 2013), the picture emerges
that WBI-induced DNA damage responses induce an
accelerated aging-like phenotype in the neurovascular

Fig. 3 WBI results in progressive gait abnormalities in mice at
6 months post-treatment. a Regularity index in control mice and
WBI-treated mice at 3 and 6 months post-treatment. b Circular
scatter plot showing the distribution of inter-limb coupling values
(phase dispersion) in control mice and WBI-treated mice at 3 and
6months post-treatment (note that the circular plot shows a smaller

phase dispersion scatter in the inner circle (control) as compared to
the phase dispersion scatter in the outer circle (assessed 6 month
after WBI)). c This shows average deviation of phase dispersion
(calculated between the right front paw (RF) and left front paw
(LF)) from the expected value (50%) under baseline conditions
and after WBI. Data are mean ± SEM.*p < 0.05 vs. control

Fig. 4 Whole brain irradiation impairs neurovascular coupling
responses 3 months post-WBI. a Representative traces of CBF
measured with a laser Doppler probe above the whisker barrel
cortex during contralateral whisker stimulation (5 Hz) in control
andWBI-treated mice 3 months post-WBI. b Increases in cerebral
blood flow (CBF; expressed as % of baseline) measured above the
barrel field of the primary somatosensory cortex in response to

whisker stimulation in control mice and in WBI-treated mice. c
The somatosensory evoked potential responses in the somatosen-
sory cortex evoked by contralateral whisker pad stimulation are
comparable in control andWBI-treatedmice. The amplitude of the
negative wave of the field potentials was not significantly differ-
ent. Data are mean ± S.E.M (n= 6, *p < 0.05 vs. control)
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unit, which results in impaired CBF responses upon neu-
ronal activation. We posit that impaired functional hyper-
emia per se may play a significant causal role in
irradiation-induced cognitive impairment. Experimental
studies support this concept, demonstrating that pharma-
cologically induced selective neurovascular uncoupling in
mice mimics important aspects of both age-related and
WBI-induced cognitive impairment (Tarantini et al.
2015). There are also studies extant linking impaired
neurovascular coupling to gait dysfunction in the elderly
(Sorond et al. 2011). Thus, we speculate that WBI-
induced neurovascular coupling may also contribute to
the gait/motor coordination abnormalities observed in our
present study as well as in previous reports (Brown et al.
2016; Hatcher-Martin and Factor 2016). Further studies
are warranted to determine whether changes in gait after
WBI correlate with the severity of post-radiation
cerebromicrovascular deficits. Previous studies by us
and others have shown that WBI also results in a signif-
icant microvascular rarefaction (Ljubimova et al. 1991;
Warrington et al. 2012), particularly in the hippocampus,
the region responsible for spatial learning and memory
(Warrington et al. 2011). It is likely that neurovascular
uncoupling and microvascular rarefaction act synergisti-
cally to impair regional blood supply in the brain (Fuss
et al. 2000; Taki et al. 2002), exacerbating cognitive
decline. It is important that both neurovascular dysfunc-
tion andmicrovascular rarefaction are manifested relative-
ly early (within 3 months) after WBI and their onset
coincides with the appearance of cognitive symptoms.

The mechanisms underlying WBI-induced
neurovascular dysfunction are presently unknown and
should be elucidated in future studies. Neurovascular
coupling depends on an intact functional network of neu-
rons, astrocytes, and vascular cells (Attwell et al. 2010;
Chen et al. 2014). Unlike neurons, cells of the
neurovascular unit (including astrocytes and endothelial
cells) are radiosensitive (Ungvari et al. 2013). There is
evidence that WBI significantly impacts astrocytes, the
functional impairment of which has also been linked to
radiation-induced blood brain barrier disruption (Gaber
et al. 2004; Yuan et al. 2006; Yuan et al. 2003; Yuan
et al. 2005). The astrocytic mechanisms underlying
neurovascular coupling include production and release
of vasodilator metabolites of arachidonic acid, including
epoxygenase-derived epoxyeicosatrienoic acids (EETs)
and cyclooxygenase-derived prostaglandins (Peng et al.
2002; Takano et al. 2006; Zonta et al. 2003). Future
studies should determine how DNA damage responses

in astrocytes alter the synthesis/release of these mediators.
There is also strong experimental evidence that endothe-
lial NO production contributes to glio-vascular coupling
(Chen et al. 2014; Girouard et al. 2007; Longden and
Nelson 2011; Ma et al. 1996; Stobart et al. 2013; Toth
e t a l . 2015b ) . Because t he pheno type o f
cerebromicrovascular endothelial cells can also be altered
by irradiation-inducedDNA damage (Ungvari et al. 2013;
Warrington et al. 2013); future studies should also deter-
mine the role of endothelial dysfunction in WBI-induced
impairment of functional hyperemia.

In conclusion, our results add to the growing evi-
dence that stressors that cause DNA damage promote
the development of complex aging-like phenotypic
changes in the brain, which are characterized by func-
tional and structural impairment of the cerebral micro-
circulation. It is significant that cognitive decline due to
microvascular causes is potentially reversible
(Warrington et al. 2011, 2012). Our findings, taken
together with the results of earlier studies (reviewed in
Warrington et al. (2013)), point to potential benefits of
interventions that rescue glio-vascular coupling mecha-
nisms and promote microvascular health for prevention
of cognitive decline both in WBI-treated patients and
the elderly. There is increasing realization that DNA
damage-induced cellular senescence programs play a
critical role in brain aging process (reviewed in Chinta
et al. (2014)), thus we propose that the present clinically
relevant model of fractionated WBI should be consid-
ered to study fundamental mechanisms of brain and
cognitive aging as well.
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