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Abstract: In the present work, copper nanoparticles were deposited onto the surface of two different 
commercial titanias (Evonik Aeroxide P25 and Aldrich anatase). During the synthesis, the 
concentration of copper was systematically varied (0.5%, 1.0%, 1.5%, 5.0%, and 10 wt.%) to optimize 
the composite-composition. The photocatalytic activity was evaluated under UV-light, using methyl 
orange and Rhodamine B as model and ketoprofen as real pollutant. For the hydrogen production 
capacity, oxalic acid was used as the sacrificial agent. The morpho-structural properties were 
investigated by using XRD (X-ray diffraction), TEM (Transmission Electron Microscopy) DRS 
(Diffuse Reflectance Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), and SEM-EDX 
methods (Scanning Electron Microscopy-Energy Dispersive X-ray Analysis). Increasing the copper 
concentration enhanced the photocatalytic activity for methyl orange degradation in the case of 
Aldrich anatase-based composites. When the P25-based composites were considered, there was no 
correlation between the Cu concentration and the activity; but, independently of the base 
photocatalyst, the composites containing 10% Cu were the best performing materials. Contrarily, 
for the ketoprofen degradation, increasing the copper concentration deteriorated the photoactivity. 
For both Aldrich anatase and P25, the best photocatalytic activity was shown by the composites 
containing 0.5% Cu. For the degradation of Rhodamine B solution, 1.5% of copper nanoparticles 
was the most suitable. When the hydrogen production capacity was evaluated, the P25-based 
composites showed higher performance (produced more hydrogen) than the Aldrich anatase-based 
ones. It was found that Cu was present in four different forms, including belloite (Cu(OH)Cl), 
metallic Cu, and presumably amorphous Cu(I)- and Cu(II)-based compounds, which were easily 
convertible among themselves during the photocatalytic processes. 
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1. Introduction 
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It is a known fact that, without water, there is no life because this is the compound that is most 
common on Earth. Seventy-one percent of our planet is covered by water, of which 2.5% is fresh 
water, and the rest is saltwater (seas, oceans), while the human body contains approximately 60% of 
water. Another sad fact is that the amount of potable water of the Earth is dropping drastically and 
is becoming more and more contaminated. A large number of pesticides, detergents, phenols, 
petroleum, and petroleum derivatives, etc., can be found in our environment, causing great damage 
[1]. 

Besides traditional physical, chemical, and biological wastewater treatment technologies, 
various alternative methods have been developed for water purification, and this circle is expanding. 
This includes high-efficiency oxidation procedures, whereby undesirable substances are initiated by 
photolysis or chemically generated radicals (•OH radical). In practice, the most common methods 
are ozone-based, hydrogen peroxide-based (Foto-Fenton reaction: light +Fe2++ hydrogen peroxide), 
and heterogeneous photocatalytic methods [2]. 

A high number of semiconductor photocatalysts are known, including ZnO [3], WO3 [4], SnO2 
[5], CuO [6,7], etc. Titanium dioxide is the most widely and most commonly used photoactive 
material since it is not considered toxic for the environment, it is chemically inert, has good 
photocatalytic properties, and can be purchased at a low price [8]. Among the titanium dioxides, the 
crystalline anatase or the anatase-rutile mixtures (Evonik Aeroxide P25, ≈89:11 anatase: rutile ratio) 
are frequently applied in water purification processes, thanks to their high efficiency [9]. 

It is well-known that the photocatalytic activity of titanium dioxide can be significantly 
increased by reducing different metals/noble metals on its surface. Several examples have been found 
in the literature, and researchers have so far included Au [10], Ag [11], Pt [12], Cu [13,14], and Pd 
nanoparticles [15] on the surface of these semiconductors. Among the above listed metals, Cu is the 
cheapest, which is why many experiments were carried out with it, including this research, wherein 
we chose copper nanoparticles, as well. 

Copper nanoparticles possess many intriguing properties which provide them many 
applications, such as antibacterial, antifungal, and antiviral applications [16–18]. A great deal of work 
can be found concerning the application of copper nanoparticles in electrochemistry [19,20] and 
electroanalysis [21]. Interesting applications, such as the enhancement of thermal conductivity of 
ethylene glycol, can also be found [22]. 

Among the publications, several show the application of copper nanoparticles in the field of 
catalysis [23–25]. 

Forming composites with TiO2, Cu nanoparticles proved to be good as photocatalysts, too. Many 
publications can be found on the deposition of Cu nanoparticles on TiO2. It was shown that 
depositing 1–10% Cu on titania issued in beneficial effect on the decomposition of acetic acid into 
biogas and hydrogen [26], on the degradation of methyl orange [27], CO2 photoreduction [28], 
aqueous hexavalent chromium [29], or humic acid degradation [30]. In another study, 2.5 wt.% Cu 
doped TiO2 composites showed a higher reaction ability than P25 [31]. Researchers proved that, if 
copper nanoparticles are present in a higher amount, CuO crystallization can take place [32]. An 
interesting finding is that the combination of photocatalysis and adsorption can accomplish deep 
desulfurization [33]. 

Another very important feature of photocatalysts is that, if there is noble metal/metal 
nanoparticle next to the semiconductor, they can produce hydrogen if an adequate sacrificial agent 
is present [34]. 

According to the literature, titanium dioxide modified with copper nanoparticles also has 
hydrogen-generating ability. So far, hydrogen was produced so far from an aqueous solution of 
ethanol and glycerol [35], from a methanol and water mixture [36], or from a glycerol and water 
mixture [37]. 

Most of the publications on photocatalysis are about model pollutants. Many articles present the 
photocatalytic degradation of phenol, methanol, oxalic acid, methyl orange, methylene blue, 
Rhodamine B, etc. [5,10,38]. However, there is a lack of testing of actual contaminants for Cu 
containing photocatalysts. Among the investigated real pollutants, ketoprofene is widely studied. 
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Mostly TiO2-based catalysts were tested for this purpose using different light sources: UVC 
irradiation [39], UV and UV-Vis illumination [40], combined non-thermal plasma and UV light [41], 
or NUV-Vis irradiation [42]. 

Due to their lower price and interesting properties, Cu deposited TiO2 photocatalysts were 
obtained. To test their photocatalytic activity, three contaminants were selected: ketoprofen 
(contaminant of emerging concern—CEC), methyl orange, and Rhodamine B (model pollutant), 
while their H2 production capacity was also evaluated. 

2. Materials and Methods 

2.1. Materials 

During the experiments, the following materials were used without further purification: 

• two commercial titanium dioxides: Evonik Aeroxide P25 (89% anatase and 11% rutile 
photocatalyst—abbreviated as P25) and Aldrich anatase (AA); 

• copper precursor: CuCl2; (0.3 mol L−1 solution); 
• for stabilizing the particle size of copper: trisodium citrate (Na3C3H5O(COO)3, Alfa-Aesar, 0.63 × 

10−4 mol L−1); 
• for reducing copper nanoparticles: sodium borohydride (NaBH4, Merck, 0.15 mol L−1 as a 4 °C 

solution); 
• for the study of hydrogen-producing ability: crystalline oxalic acid (C2H2O4, 50 mmol L−1 

solution); 
• for the investigation of photocatalytic activity, methyl orange (125 µmol L−1 solution) and 

ketoprofen (C7H6O3 in 0.5 mmol L−1 solution); 
• distilled water to prepare the above-mentioned solutions. 

2.2. Synthesis of the Composites 

The steps taken during the synthesis of the composites are illustrated in Figure 1. All composites 
were prepared at room temperature, continuously stirred, and by using the in situ approach: The 
synthesis started by preparing a titania (800 mg) suspension in 150 mL distilled water. Three and 
three-tenths milliliters of trisodium citrate (0.63 × 10−4 mol L−1) was added to the suspension to control 
the particle size of copper nanoparticles, and this was stirred for 10 min. Cu nanoparticles were 
obtained by chemical reduction from 4.2 mL CuCl2 (0.3 mol L−1), which was stirred another 10 min; 
after this, 1.68 mL of sodium borohydride solution was used (0.15 mol L−1). The resulting suspension 
was stirred 30 min (containing TiO2 and copper nanoparticles), then dried, washed (3 × 15 min with 
45 mL Milli-Q water at 6000 rpm), and finally dried again to obtain powdered samples. These 
synthesis parameters obtained a composite with a composition of 99 wt.% TiO2 and 1 wt.% Cu. 
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Figure 1. The main steps of the synthesis of the composites containing TiO2 and Cu nanoparticles—
the nanoparticles were obtained from CuCl2 by chemical reduction with NaBH4, and the TiO2 was 
purchased commercially (AA and P25). 

In order to investigate the effect of the Cu nanoparticles on the commercial titania, the mass 
content of copper was varied; therefore, five different samples were prepared for both base catalysts, 
with: 0.5%, 1%, 1.5%, 5%, and 10% copper. 

The nomenclature of the samples was hereby defined: the abbreviation of the base catalyst (P25 
or AA) + the number of the percentage of the copper nanoparticles + Cu. For example: P25-0.5Cu is 
when P25 was the base catalyst and 0.5% Cu was reduced on it, or AA-1Cu is when AA was the base 
and 1% Cu was used. 

2.3. Characterization Methods and Instrumentation 

Using transmission electron microscopy (TEM), the detection of morphological properties was 
implemented. The initial morphological characterization of the composites was carried out with a 
FEI Tecnai F20 electron microscope (Hillsboro, Oregon, USA) equipped with an Eagle 4k CCD camera 
with a 200 kV acceleration voltage. 

Energy dispersive X-ray spectroscopy (EDX) was used to verify the composite compositions and 
to calculate the real copper content. Samples were analyzed using a Hitachi S-4700 Type II Cold 
Cathode Field Scanning Electron Microscope (Schaumburg, Illinois, USA). For an energy dispersive 
X-ray spectrometer, a RÖNTEC XFLASH detector was mounted on the microscope and a 20 kV 
acceleration voltage was used. 

X-ray diffraction (XRD) was used for the characterization of the crystalline materials. Powder X-
ray can be used to determine the crystalline structure of the material and to distinguish different 
crystal phases; their proportion (by using the integrated area values of the most intensive diffraction 
peak of a given phase) can be calculated, and the mean size of the crystallites can be estimated using 
the Scherrer equation [43]. To perform the measurements, a Rigaku Miniflex II diffractometer (Tokyo, 
Japan) was used, with Cu-Kα radiation (λ = 1.5406 Å) equipped with a graphite monochromator. 

In the case of diffuse reflection spectroscopy (DRS), the light absorption properties of a solid 
sample was measured. The spectra of the samples (λ = 300–800 nm) were registered by using JASCO-
V650 spectrophotometer (Wien, Austria) with an integration sphere (ILV-724). The indirect band gap 
of the photocatalysts was determined via the Kubelka-Munk method [44]. 

Kratos XSAM800 instrument (Manchester, UK) was used to measure the XPS spectra, which was 
equipped with non-monochromated Mg anode as an X-ray source operated at 144 W (12 kV, 12 mA). 
The survey spectra was recorded with 80 eV pass energy and 1 eV step size. High resolution Cu2p 
spectra was recorded with 40 eV pass energy, 0.1 eV step size. All high-resolution spectra were charge 
corrected to the aliphatic component (284.8 eV) of the C1s region. No smoothing nor other signal 
processing was used. Peaks were fitted using a linear background and Gauss-Lorentzian (70–30%) 
peak shapes. 

2.4. Determination of Photocatalytic Activity 

2.4.1. Methyl Orange Degradation 

During the photocatalytic experiments, the concentration of the suspension was 1 g L−1. The 125 
µM methyl orange solution was always freshly prepared. This suspension was placed into a double-
walled, Pyrex glass reactor, which was situated 10 cm from the lamps. After the equilibrium 
experiments: 10 min of ultrasonic bath and 20 min of stirring in the dark; the course of the 
measurement was as follows: 1.5–2 mL sample was taken every 10 min in the first hour and in every 
20 min in the second hour. Continuous air bubbling, stirring, and thermostating (25 °C) were assured 
during the measurements. The irradiation was with 6 × 6 W fluorescence UV-A lamp (Lightech, 
Dunakeszi, Hungary) with 365 nm emission maximum. To remove the catalyst particles, 
centrifugation was performed (13,000 rpm min−1). To evaluate the degradation progress of a specific 
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pollutant, UV-Vis measurements were performed using a JASCO-V650 spectrophotometer, using 
distilled water as a reference. Applying the pre-prepared calibration curve for the solution of methyl 
range (calibration range 0–200 µM, 10 points, R2 = 0.9974), the actual concentration was determined 
at 513 nm. In the evaluation of the rate constants, a pseudo-first order kinetics was considered, as is 
usual for photocatalytic reactions. Therefore, the integrated form of the first order reaction rate 
equation was used, followed by the graphical representation of ln(C0/C). From the slope of the curve, 
the rate constant was determined. 

2.4.2. Ketoprofen Degradation 

For these experiments, 1 g L−1 suspension was prepared from 50 mg photocatalyst with 50 mL 
10−4 M ketoprofen solution. Prior to the degradation process, the suspension was homogenized using 
ultrasonication, which was followed by stirring in the dark for 15 min to achieve the adsorption-
desorption equilibrium. The measurement lasted 2 h, and the irradiation of the suspension was with 
UV light (2 × 40 W lamps, λmax = 365 nm) under continuous stirring. One and five-tenths to two 
milliliter samples were taken four times, at 30, 60, 90, and 120 min. To remove the catalyst particles, 
the samples were centrifuged (13,000 rpm min−1). High Performance Liquid Chromatography (HPLC) 
was used for the analysis of the liquid samples collected during the photodegradation tests. Agilent 
1100 type of HPLC equipment with a diode array UV detector was used. The separation of the 
degradation products and the micropollutant was performed on a reversed phase LiChroCART® 125-
4, RP-18 (5 µm) column. A 50–50% mixture of acetonitrile and 1% acetic acid was used as eluent, 
while its flow rate was 0.8 mL min−1, and the detection wavelength was set to 256 nm. 

2.4.3. Rhodamine B Degradation 

Photocatalytic activities of the composites were also determined by the decomposition of 
Rhodamine B solution. UV light (λmax = 365 nm) was used for irradiation. Rhodamine B stock solution 
(10 µmol·L−1) was prepared, and then a 1 g·L−1 suspension was made. An ultrasonic bath was used to 
distribute the catalyst more efficiently, then stirred for 15 min in the dark for adsorption to occur, and 
finally placed under the lamp with continuous stirring. Two milliliter samples were taken every 10 
min in the first hour of the experiment and every 20 min in the second hour. After the centrifugation 
(3 min, 13,800 rpm) and filtration (with a Whatman Anotop 25 0.02 µm syringe filter) of the samples, 
the residual Rhodamine B concentration was measured. UV-Vis measurements were performed 
using a JASCO-V650 spectrophotometer, with the use of distilled water as a reference. Applying the 
pre-prepared calibration curve (calibration range 0–25 µM, 10 points, R2 = 0.9913) for the solution of 
Rhodamine B, the actual concentration was determined at 553 nm. 

2.5. Determination of Photocatalytic Hydrogen Production Capacity 

The hydrogen-generating capacity of the composite photocatalysts was also measured in the 
presence of a UV light (10 × 15 W lamps, λmax = 365 nm) using a mixture of oxalic acid (50 mM) and 
suspended composite (1 g L−1 suspension concentration). With continuous stirring, nitrogen flow was 
provided, the role of which was to provide an oxygen-free conditions. Distilled water was circulated 
in the reactor mantle that was connected to a thermostat so that the temperature was 25 °C during 
the experiment. The duration of the measurement was also 2 h, like the photocatalytic activity 
measurements, and the hydrogen evolution rate (mmol min−1) was measured by a gas chromatograph 
(GC) attached to the reactor. 

GC were performed using a Hewlett Packard 5890 gas chromatograph. As a carrier gas, N2 was 
used with a flow rate of 50 cm3 min−1. The column was loaded type (5 Å molecular filter). The used 
GC had a thermal conductivity detector in which a sensor was located in a small volume cell. 

3. Results and Discussion 

3.1. X-Ray Diffraction 
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From X-ray diffraction measurements, the mean primary crystal size of TiO2 was calculated, and 
its crystal structure was also determined. The particle size of P25 (anatase and rutile crystals), 
regardless of the presence of copper, is 25–40 nm, of AA is ~80 nm. The crystal phase composition, 
which is known from the factory data, of P25 is 11 wt.% rutile and 89 wt.% anatase (for total titanium 
dioxide content), and of AA is 100% anatase, as evidenced by X-ray diffractograms. The presence of 
copper nanoparticles did not affect the particle size and crystal structure of the TiO2, which were 
calculated with the Scherrer-equation. Cu was detected (COD 00-901-3022, Figure 2a) at 41.2 (2θ°), 
which is the most intense diffraction peak of Cu and can be attributed to the (111) crystallographic 
plane, while at higher Cu content (starting from 5% of Cu addition), the presence of belloite—
Cu(OH)Cl (COD 00-900-9151) was also identified, along with Cu, at 30.7 (2θ°), 32.2 (2θ°). At first 
sight, the latter diffraction peak seems to be a double one but has the same full width at half maximum 
(FWHM) value as the peak located at 30.7 (2θ°), pointing out that in fact it is a simple standalone 
reflection (Figure 2). 

In the case of P25-based samples, the Cu content was a relatively constant 0.5–1.9 wt.%, while 
starting from sample P25-5Cu, a substantial amount of belloite appeared, as well, in 2.5 (P25-5Cu) 
and 7.5 wt.% (P25-10Cu), respectively. The appearance of Cu(OH)Cl is not surprising, as CuCl2 was 
used a precursor, and Cu nanoparticles are small-sized during the synthesis and tend to hydroxylate. 
A similar phenomenon was observed in our recent work, as well [45]. Cu nanoparticles tend to 
agglomerate as soon as they are formed, and this was also observed here, obtaining ~50–60 nm 
particle sized Cu (samples P25-0.5Cu and P25-1Cu), while for the sample and P25-1.5Cu, an even 
higher aggregation degree was observed. This achieved an invalid value of <75 nm, suggesting a 
recrystallization phenomenon, which indeed took place at higher copper content, when belloite was 
formed, which showed a 35.2 nm mean primary crystallite size in both samples (P25-5Cu and P25-
10Cu), while the Cu nanoparticles remained at the <75 nm value. In the case of the AA-based samples, 
Cu was not identifiable since they are most probably non-crystalline, although their presence was 
proven by other methods (e.g., EDX). However, the Cu(OH)Cl phase was noticed as starting from 
the sample AA-5Cu in 3.2 wt.%, while in sample AA-10Cu, this value was 3.8 wt.%. The primary 
mean crystallite size was 34.8 nm in both samples. The case of AA-based samples demonstrates that 
the total amount of Cu was not anchored after the chemical reduction process. 

 

 

(a) 

(b) 
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Figure 2. X-ray diffraction (XRD) patterns of the composites. (a) Evonik Aeroxide P25 (89% anatase 
and 11% rutile photocatalyst (P25). (b) Aldrich anatase (AA)-based. New reflections were detectable 
between 30–35 (2θ°) when 10% copper is present, pointing out the presence of belloite. 

3.2. Transmission Electron Microscopy 

To verify the presence of Cu nanoparticles, transmission electron microscopy was used. Figure 
S1 shows two TEM micrographs of P25-10 Cu composite, in which darker spots may indicate copper 
nanoparticles. The copper nanoparticles were 1–2 nm in size, while P25 (containing both anatase and 
rutile nanocrystals) were about 20–40 nm [46]. TiO2 nanocrystals did not show any specific shape, 
and spherical and polyhedral particles were both found. The copper nanoparticles also did not have 
any specific shape; rather, they are spherical and randomly located on the surface of the TiO2 crystals. 
To ascertain the presence of Cu nanoparticles, more precise approaches were needed. 

3.3.  Energy-Dispersive X-Ray Spectroscopy (EDX) 

EDX was performed to confirm the elemental composition of the composites. The results show 
that copper is present with TiO2, so the synthesis was successful. This can also be clearly seen in 
Figure 3. Furthermore, for AA-based composites, interesting results were observed, which are 
summarized in Table 1, together with the results for the P25-based composites. It was noticed that, 
as the theoretical copper content increases, the difference between the theoretical and real content 
increases. Especially in the case of the catalysts containing 5% and 10% Cu, significant differences can 
be observed. This phenomenon can be explained in several ways: The copper nanoparticles did not 
adhere onto the surface, or partial transformation to other compounds (which may be soluble in 
water) can be also presumed. In such a way, it is possible that, in the composites, which contained a 
higher amount of copper, copper converted to copper oxides or other insoluble compounds, such as 
belloite, which was detected by XRD. Interestingly, the copper content was the same as the theoretical 
ones in the case of the P25-based composites, with major differences being observed just for sample 
P25-10Cu. The results obtained by EDX correlate perfectly with the observations in the section in 
which the XRD patterns of the samples were investigated. 

 
Figure 3. Element mapping of P25-5Cu composite. 

Table 1. The theoretical and real content of Cu in the composites, and the band gap energies and the 
degradation efficiencies (for methyl orange and ketoprofen) of the composites. EDX = energy-
dispersive X-ray spectroscopy. 

Composite 
Name 

Cu (%) Band 
Gap 
(eV) 

Methyl Orange 
Degradation (%) 

Ketoprofen 
Degradation (%) 

Rhodamine B 
Degradation (%) Theoretical Real 

(EDX) 
AA-0.5Cu 0.5 0.45 3.19 7.1 69.1 35.7 
AA-1Cu 1.0 0.94 3.21 6.6 66.1 38.4 

AA-1.5Cu 1.5 0.69 3.18 14.5 63.1 40.1 
AA-5Cu 5.0 2.35 3.18 17.4 62.6 39 

AA-10Cu 10.0 3.95 3.18 23.1 60.8 41.8 
P25-0.5Cu 0.5 0.5 2.97 37.5 80.5 84.8 
P25-1Cu 1.0 1.1 2.95 38.1 82.6 88.6 
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P25-1.5Cu 1.5 1.9 2.91 30.5 66.4 90.1 
P25-5Cu 5.0 4.7 2.83 24.9 33.5 70.9 
P25-10Cu 10.0 6.5 2.85 39.1 23.2 52.2 

AA - - 3.24 75.6 88.9 100 
P25 - - 3.04 82.8 78.7 100 

3.4. Diffuse Refllectance Spectroscopy 

The diffuse reflection spectra differed depending on Cu content, as can be seen in Figure 4, so in 
all cases, the excitation threshold was influenced; in the case of AA, this effect was neglectable. It was 
found that the presence of copper reduced the bandgap energy in the case of P25. This can be 
explained considering several facts: 

• On the surface of P25 particles, copper was anchored more efficiently, as demonstrated in the 
previous sections. 

• It is interesting that the composites based on AA did not change their band-gap energy. Usually, 
if a composite component is present in a higher concentration, it should also be visible in the 
optical properties (in the case of P25, it was visible in the spectra). Therefore, the key to explain 
this anomaly lies in the number of contacts between Cu containing particles and TiO2. P25 is 
made of smaller crystallites (25–40 nm) than AA (~80 nm); therefore, the ratio between the Cu 
and titania particles is totally different, as demonstrated in our recent papers [47,48]. More 
precisely, as the anatase particles are twice as large in AA than in P25, therefore, the possibility 
of contacting a Cu containing particle is high in AA, while in the case of P25, it is low. In the 
latter case, it could be imagined that any kind of inhomogeneity in Cu particle distribution will 
be visible in the DRS spectra, as well, as it was in our case. 

 
Figure 4. Diffuse reflectance spectroscopy (DRS) spectra (AA-based is shown in the top figure; P25-
based is shown in the bottom figure) of the composites: The influence of the excitation threshold is 
more accentuated on the P25-based catalysts, while the presence of belloite shows an impact on the 
whole absorption spectrum and the band-gap value itself. 

Furthermore, the presence of belloite boosted the visible light absorption of the material, 
conferring a slight greenish appearance of the samples. It seems also that, after belloite appears in the 
P25-containing samples, the band gaps decrease 0.1 eV abruptly, showing the intervening in the 
whole composite functioning mechanism, while this effect never appeared for AA-based composites. 

3.5. Photocatalytic Performance of the Composites 

3.5.1. Photodegradation of Methyl Orange 

Figure 5 shows the decomposition curves of methyl orange using the prepared composites. 
Unfortunately, none of the copper modified catalysts showed better photocatalytic activity than the 
base photocatalysts. However, this fact does not mean that the composites would be inactive, as a 
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small amount of methyl orange was degraded in each case. The efficiency values are summarized in 
Table 1. 

For composites that contain AA and copper nanoparticles, the increase in copper content 
improved the photocatalytic activity. No correlation between copper content and photocatalytic 
activity was observed in the series of P25-based composites. However, in both cases, the best 
photocatalytic activity was shown by the composite which contained 10% copper nanoparticles. 
These results contradict those found in the literature. Several publications reported that larger 
amounts (5%, 10%) were added to the TiO2 surface, but the results demonstrate that the minor 
amounts of copper (0.5%, 3%) resulted in better photocatalytic activity [26,27]. There is no correlation 
between the specific surface area of the composites and the photocatalytic activity, as the surface area 
of the titanias (P25—45–55 m2/g and AA—10 m2/g) was not affected by the presence of Cu 
nanoparticles [29]. Moreover, at such a low concentration values of Cu, the surface area of the base 
photocatalyst cannot be changed significantly. 

3.5.2. Photodegradation of Ketoprofen 

For ketoprofen decomposition, the results are more promising than the methyl orange 
degradation. Ketoprofen was removed by each photocatalyst, and even some of the P25-based 
composites achieved better activity at the end of the 120 min experiment than the base photocatalyst. 
As in the previous chapter, the conversion values for ketoprofen are summarized in Table 1. Figure 
6 presents the photocatalytic degradation curves of ketoprofen. In the case of AA and copper 
composites, the copper content did not significantly influence the activity (69.1–60.8% conversion 
values). For P25-based catalysts, however, there was a significant difference between the 
photocatalytic efficiencies, depending on the percentage of the present copper (values between 80.5–
23.2%). Contrary to the methyl orange degradation, the increase in copper content reduced the 
activity in both cases, with the best photocatalytic activity being the composites containing 0.5% Cu 
(in both cases).Reproducibility was tested in certain cases; however, the results were of no interest. 
Therefore, they are not included in the manuscript. 
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Figure 5. Degradation of methyl orange under UV illumination—the composites did not show better 
activity than the corresponding bare titania. P25-based composites proved to be more efficient than 
the AA-based ones. 

3.5.3. Photodegradation of Rhodamine B 

Rhodamine B solution was also used for testing the photocatalytic activity. Figure 7 shows the 
degradation efficiencies of the synthetized composites. The base catalysts achieved outstanding 
results, as they decomposed all the Rhodamine B at the end of the 120 min experiment. So, none of 
the prepared composites managed to show a better performance than their copper-free counterpart. 
The P25-based composites showed better photoactivity than the AA-based ones. The degradation 
efficiencies are also summarized in Table 2. The best activity was performed by P25-1.5Cu (90.1%), 
which was the highest conversion value among all three types of photocatalytic tests (methyl orange, 
ketoprofen, and Rhodamine B). It is worth mentioning that all P25-based composites achieved 
degradation efficiencies above 50%. The AA-based composited had a slightly lower activity, but each 
of them decomposed at least 35% of the Rhodamine B. The best activity was obtained by AA-10Cu 
(41.8%), which was followed closely by AA-1.5Cu (40.1%). Altogether, for the degradation of 
Rhodamine B, 1.5% of copper nanoparticles was the most suitable. 
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Figure 6. Degradation of ketoprofen under the irradiation of UV light—some of the composites 
achieved better activity than the base catalyst but only in the case of P25. 
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Figure 7. Photocatalytic degradation efficiencies of Rhodamine B solution under UV light—the P25-
based composites showed better activity than the AA-based ones. 

Table 2. Conversion vs. reaction rate constant for all the investigated samples. 

Sample Name 

Methyl Orange Rhodamine B Ketoprofen 
H2 Production 
Capacity (mL) 

Rate 
Constant 
(min−1) 

Degradation 
(%) 

Rate 
Constant 
(min−1) 

Degradation 
(%) 

Rate 
Constant 
(min−1) 

Degradation 
(%) 

P25 0.0142 82.8 n.a. 100 0.021 78.7 0 
P25-0.5Cu 0.0037 37.5 0.0189 84.8 0.0135 80.5 0.304 
P25-1Cu 0.0039 38.1 0.0175 88.6 0.0149 82.6 0.466 

P25-1.5Cu 0.003 30.5 0.0141 90.1 0.0089 66.4 0.721 
P25-5Cu 0.0026 24.9 0.0063 70.9 0.0037 33.5 0.985 

P25-10Cu 0.0038 39.1 0.0056 52.2 0.0021 23.2 0.358 
AA 0.0107 75.6 n.a. 100 0.0176 88.9 0 

AA-0.5Cu 0.0005 7.1 0.0033 35.7 0.0096 69.1 0.061 
AA-1Cu 0.0005 6.6 0.0037 38.4 0.0088 66.1 0.338 

AA-1.5Cu 0.0011 14.5 0.0038 40.1 0.0083 63.1 0.057 
AA-5Cu 0.0015 17.4 0.0035 39.0 0.0083 62.6 0.161 
AA-10Cu 0.002 23.1 0.0036 41.8 0.0077 60.8 0.108 

n.a.—not available. 

3.5.4. The Comparison of Pseudo-First Order Kinetics and the Achieved Degradation Efficiencies 

For all the degradation experiments, the reaction rate constants were calculated and are 
summarized in Table 1 alongside the conversion values achieved (it must be noted that, in the case 
of Rhodamine B degradation of bare P25 and AA, the reaction rate constants were not evaluated due 
to the 100% degradation efficiency in a very short time). The general observation is that those 
composites which have about the same degradation rate have almost the same reaction rate constants 
(e.g., for methyl orange degradation, P25-0.5Cu reached 37.5% removal efficiency and the reaction 
rate constant of 0.0037 min−1, while P25-1Cu showed an efficiency of 38.1%, with the reaction rate 
constant of 0.0039 min−1). Therefore, it can be concluded that the photocatalysts with the same 
degradation yield showed the same reaction rate constants, as well. Moreover, as 36 degradation data 
was available, the degradation yield values and the reaction rate constants are represented and 
shown in Figure 8. It was found that, with the increase of the rate constants, the conversion values 
were increasing, as well, to a certain point, and after it, a decrease was observed. The data points in 
the increase section of the curve are mostly the samples with Cu, while the maximum point and 
decrease section are the pure photocatalyst, showing that the presence of Cu aligns the conversion 
values with the reaction rate constants. This could coincide with the proposed reaction mechanism 
of the investigated compounds, more specifically, of ketoprofen. 

The degradation mechanism of the copper containing catalysts may follow two main reaction 
pathways. In both approaches, Cu is considered a very efficient charge separator (the electron affinity 
of copper is well-known), meaning that the electron is spatially separated from the hole. This 
consideration yields two approaches: 

• It is known that ketoprofen can react with holes directly. This is a plausible approach as the holes 
are available on the surface of the titania nanoparticles. By the oxidation via holes in the first 
step, a carbocation is obtained, which can be easily decarboxylated. 

• Ketoprofen can uptake the generated photoelectrons, as well. This can occur in two ways: 

o First, the ketoprofene molecule captures a photoelectron, forming carbanionic intermediate 
at the surface of titania (where no Cu is present), which can react further with a hole if one 
is formed in the vicinity of the organic molecule. This scenario can also lead to a fast 
decarboxylation of the molecule. 

o The photoelectron can be captured, as well, directly from the Cu itself. The resultant 
carbanionic intermediate results in a metastable radical, which can be transformed into 
several products, as well. 
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As discussed, until now, the main role of the Cu resides in separating the charges and 
transferring it to the ketoprofen molecule. 

As shown above the electron and the hole utilization was exclusively focused on the 
decarboxylation of ketoprofen, meaning that the electron transfer and utilization from TiO2 can be 
equally possible from Cu and from TiO2, as well, balancing out the possible influence on the 
degradation trend of the copper contents of the samples. This results in a direct relationship between 
the degradation rate and reaction rate constant, which seems to be valid for all the investigated 
organic compounds’ degradation. In addition, it can be pointed out the fact that the kinetics of the 
degradation process do not change as the composite composition changes, which is very interesting 
since Cu usually intervenes in the degradation pathway. 

 

Figure 8. The evolution of the photocatalytic conversion of the studied organic pollutants in function 
of the reaction rate constant. 

3.5.5. Photocatalytic H2 Production 

The photocatalytic hydrogen producing capacity is evaluated in this section. During the 
photocatalytic conversion under oxygen-free conditions, oxalic acid is mineralized according to the 
following reaction: 

(COOH)2 + 2h+ + 2e− = 2CO2 + H2.  

Oxalic acid was used as sacrificial agent, since this method was developed and well-attended by 
our research group. Using both composites, it was found that the presence of copper nanoparticles 
contributed to hydrogen generation, as it is commonly known that TiO2 by itself is not suitable for 
this process. For composites containing P25 and copper, with the increase of Cu content, a better 
hydrogen producing capability (0.5 <10 <1 <1.5 <5) was achieved (Figure 9), as the higher copper 
content resulted in a more efficient charge separation. Although the 10% sample is out of the observed 
trend, this can be attributed to the presence of belloite, which probably enhances the hydrogen 
production up to a certain amount (sample P25-5Cu), while, in excess, it shows an inhibitory effect 
(sample P25-10Cu). In the case of AA-based catalysts, there is no correlation between copper content 
and the hydrogen-generating capacity. The sample containing 1% copper produced the highest 
amount of hydrogen. The other samples had similar performance. What can also be observed is that 
P25-based photocatalysts developed more hydrogen than the AA-based ones because the particle 
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size of P25 is smaller, and the surface area is larger; therefore, copper nanoparticles are located on a 
larger surface [47], and the sacrificial agent can be degraded more efficiently, as well. 

 
Figure 9. H2 evolution of the composites (P25—left-hand image; AA—right-hand image), showing 
the enhanced H2 production of P25-based composites. 

In addition, the total hydrogen generation was evaluated (Figure 10). The generation rate may 
be dependent from the oxidation state changes in the Cu nanoparticles, and the real overall hydrogen 
generation performance can be more accurately given if the amount of hydrogen generated is 
estimated by integrating the area under the evolution curves. If this issue is considered, then, in the 
case of AA-based composites, the maximum H2 production rate is achieved at 1.0 wt.% of Cu, while 
in the 1.5 wt.% Cu, the H2 production decreases. 

 

Figure 10. The amount of the generated hydrogen in function of the Cu content of the composites and 
the base photocatalyst. 

Furthermore, in the case of P25-based composites, this trend seems to be untrue, as it increases 
until 5 wt.% of Cu, decreasing afterwards. These two results are rather interesting because the optimal 
noble metal content reported in the literature is between 1–1.5% for photocatalytic applications. 
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However, to understand this issue, the oxidation state changes in the copper nanoparticles should be 
discussed. This can be found in the last section of the paper. 

3.5.6. Structural and Mechanistic Insights on the Behavior of Cu Containing TiO2 Photocatalysts 

As shown, until now, various efficiency values were achieved in different processes (Figure 11). 
It seems that the only degradation enhancement was observed when ketoprofen was degraded. 
However, the enhancement was just for the P25-based composites, where it was also just up to 1.5 
wt.% of added Cu. The enhancement up to 1.5 wt.% is generally demonstrated in the scientific 
literature for several noble metals, as well, such as Au [10], Pd [48], and Pt [47], and, interestingly, the 
detrimental effect of metal/noble metal nanoparticles on the photodegradation of organic pollutants 
was also discussed. It is rather interesting, however, that good H2 production capacity was observed 
for the sample which contained 5 wt% of Cu—sample P25-5Cu. This composite contained the belloite 
(Cu(OH)Cl) phase, a compound that is sparsely investigated in magnetodielectric systems. Its 
presence enhances the hydrogen formation, amounting to an increase from 0.7 (P25-1.5Cu) to 1.1 mL 
(P25-5Cu). However, it was also observed that, by further increasing the belloite amount, the 
hydrogen generation decreased to 0.38 mL. In the case of the hydrogen production, the AA 
composites showed the same trend, where the presence of belloite was also beneficial, but an 
exception was observed in sample AA-1Cu, which was the best among the AA samples and needs 
further detailed investigations. That is why Cu2p XPS was (Figure 12) measured. 

 
Figure 11. Correlation between the copper content and the achieved photocatalytic performance 
(degradation efficiency at the end of the 120 min experiment—%) in the degradation of methyl orange, 
ketoprofen, and the total hydrogen production at the end of the 120 min experiment (mL) for both 
composite series (P25-based—left-hand image; AA-based—right-hand image image). 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

H
2 (m

L)

C
on

ve
rs

io
n 

(%
)

Cu content (wt.%)

Methyl Orange degradation
Ketoprofene degradation
Hydrogen production

0.0

0.1

0.2

0.3

0.4

0.5

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

H
2 (m

L)

C
on

ve
rs

io
n 

(%
)

Cu content (wt.%)

Methyl Orange degradation
Ketoprofene degradation
Hydrogen production



Catalysts 2020, 10, 85 16 of 20 

 

 
Figure 12. The Cu2p X-ray photoelectron spectroscopy (XPS) spectra of two copper containing 
composites, (A)—AA-5Cu and (B)—P25-5Cu, showing the presence of Cu(I) and Cu(II). 

The binding energy of ~932.08 eV corresponds to Cu(I) (most probably Cu2O), while ~934.0 eV 
can be assigned to Cu(II), respectively; this indicates that Cu is present in the form of CuO, Cu(OH)2 
and the detected crystalline belloite, as well. Stronger satellite features in the AA-based sample 
compared to the P25-based one also suggested Cu(II) is dominant compared to Cu(I). The presence 
of the two species was not surprising at all, as it was already anticipated. Concerning the presence of 
Cu(II), a direct sign was the diffraction peaks of belloite in which Cu is bivalent, while the presence 
of CuO, Cu(OH)2 was not visible by other methods, suggesting that their concentration is very low 
or they are amorphous. Interestingly in the P25-based samples, the X-ray diffraction suggested the 
presence of metallic Cu but was completely absent from the Cu2p XPS spectra of the samples, most 
probably, due to stability reasons. 

Monovalent copper represented an intermediate state to metallic Cu, and its formation can be 
expected, as well, but its presence is most probably negligible, similarly to CuO or Cu(OH)2. This 
clearly suggests that, following the reduction of the copper precursor, the formed nanoscaled Cu 
immediately transformed to one of the products listed above. It should also be mentioned that, by 
using different deconvolution approaches of the Cu2p XPS spectra, in some cases, elemental Cu can 
be also detected. Nevertheless, the ratio of the surface copper species is 24.8% Cu(I) and 75.2% Cu(II), 
showing that the re-oxidation of Cu is nearly complete after the reduction process. 

As these copper species can be easily interconverted among them, it is clear that, during the 
photocatalytic degradation, their concentration could change. This can be true even more in the case 
of photocatalytic hydrogen generation, dismissing any real activity trends (as discussed in the 
appropriate section of the paper), and the following scenarios could be listed: 

i. Belloite will be transformed to elemental Cu as the experiment is carried out under reductive 
atmosphere (nitrogen), and the holes are scavenged by the oxalic acid. Moreover, the formation 
of pure CuCl2 (soluble in water) or Cu(OH)2 cannot be excluded, as well, due to migration of the 
Cl- from belloite to a Cu2+ center. And if CuCl2 will be formed again, then its reduction to 
elemental Cu will be possible again as the electrons will be consumed by ionic Cu, while the 
formed hydroxide could block the surface of the clusters/particles. 

ii. If scenario (i) occurs, an increase in Cu content would be inevitable, thus possibly releasing a 
higher amount of H2. 

iii. Cu can be oxidized by the formed holes, as well; therefore, the formation of oxides (CuO and 
Cu2O) also cannot be excluded. 
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iv. If scenario (iii) occurs, then we have an oxide/oxide heterojunction, which induces another 
variable in our system. 

Due to these dynamic changes in the oxidation states, it can be imagined that the optimal value 
of 1 wt.% of metal could be shifted, as was shown in the earlier sections of the present work. It seems 
that, as more Cu is available for the oxidation state changes between different species, the more 
efficient the composite system becomes. Of course, after a specific Cu content, the majority of the 
electrons and holes are consumed by the Cu species; therefore, an activity decrease is inevitable, 
which was also observed in our case. 

4. Conclusions 

Ten new composites were produced based on two commercial titanium dioxides: Evonik 
Aeroxide P25 and Aldrich anatase. Copper nanoparticles were reduced onto the surface of the two 
TiO2, and the percentage by weight of copper was changed from 0.5% to 10% during the experiments. 
From XRD and from the EDX studies, it was concluded that, in the case of composites containing a 
higher percent of copper, belloite and other copper species also appear, in addition to the metal 
nanoparticles. By creating the composites, the excitation threshold was also shifted to the visible light. 

For the photocatalytic activity, the degradation of methyl orange, ketoprofen, and Rhodamine B 
was performed. Although no better photocatalytic activity was achieved with the composites (both 
AA- and P25-based ones), it was observed that, for the methyl orange degradation, the samples 
containing 10% Cu (both AA- and P25-based ones) were the most likely to be able to approach the 
activity of the base photocatalysts. For ketoprofen degradation, P25-based composites achieved better 
photocatalytic activity than the base catalyst. In the case of both AA- and P25-based composites, the 
samples containing 0.5% copper degraded the most in the ketoprofen solution. For the degradation 
of Rhodamine B, 1.5% of the copper nanoparticles was the most suitable value. Finally, the 
photocatalytic hydrogen production capacity of the produced composites was examined. Both sets 
of catalysts managed to develop hydrogen, albeit higher in P25-based ones than those containing AA. 

Based on the available experimental data, it seems that Cu dynamically changes its oxidation 
states depending on the synthesis and on the base of the used photocatalysts. Copper can be found 
in the form of belloite, as mentioned above, but we cannot exclude the presence of Cu2O nor CuO, 
based on the XPS results. Moreover, the metallic form of copper proved to be less stable as the XPS 
spectra showed a dominance of the +1 and +2 oxidation state of copper. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/10/1/85/s1, Figure 
S1: TEM micrographs of the sample P25-10 Cu—the darker and smaller spots may indicate copper nanoparticles, 
which was reinforced by the distance between the lattice fringes, which were found to be 0.210 nm, which 
corresponds to copper, Figure S2. The Tauc plots of the DRS spectra concerning the samples based on AA-TiO2, 
showing the slight difference in the band-gap values of the photocatalysts, Figure S3. The Tauc plots of the DRS 
spectra concerning the samples based on P25-TiO2, showing the differenced in the band-gap values of the 
photocatalysts, which were listed. 
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