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A B S T R A C T

In the past ten years, the latest advances in Information and Communication Technology had a
significant impact on distributed systems by giving birth to paradigms such as Cloud Computing,
Fog Computing and the Internet of Things (IoT). The environments they created are closely
coupled in most cases: IoT sensors and devices generate data that have to be stored, processed
and analysed by cloud or fog services, depending on the actual application needs. These IoT-Fog-
Cloud systems are very complex, and the use of simulations in their design, development and
operational processes is inevitable. Nowadays, there are many simulator solutions available to
model and analyse these systems depending our research needs, but in many cases it is hard to
grasp their differences, and implementing certain scenarios in different tools is time consuming.
The goal of this work is to help researchers and practitioners in this regard by proposing a survey
and taxonomy of the available simulators modelling clouds, IoT and specifically fogs, which is the
latest, currently still forming paradigm. The main contributions of this study are our novel
viewpoints for classification including software quality, which is performed by analysing the
source code of the considered simulators. We also propose comparison tables for three groups of
simulators that reveal their differences and the way they model the elements of these systems.
Finally, we discuss the relevant findings of our classifications, and highlight open issues that need
further research.

1. Introduction

In the past decade we experienced how rapidly distributed computing infrastructures evolve. The use of cloud technologies was
almost unavoidable in 2010 for successful service providers of the future. Miniaturisation and improvements in battery lifetimes have
led to small computational devices that can interact and communicate among themselves and with the environment through the
Internet giving birth to the Internet of Things (IoT) paradigm. As the number of things grows, the vast amount of data they produce
requires the assistance of cloud services for storage, processing and analysis. Such IoT-Cloud systems can be utilised in many ap-
plication areas ranging from local smart homes to mid-range smart cities, or wider smart regions. To cope with the possibly huge
number of communicating entities, data management operations are better placed close to their origins, resulting in better exploiting
the edge devices of the network. In the latest distributed computing paradigm called Fog Computing [1] groups of such edge nodes
forms a fog, where data processing and analysis can be performed with reduced service latency and improved service quality
compared to a remote cloud utilisation.

As a result, cloud and fog technologies can be used together to aid data management needs of IoT environments, but their
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application give birth to complex systems that still needs a significant amount of research. It is obvious that significant investments,
design and implementation tasks are required to create such IoT-Fog-Cloud systems in reality, therefore it is inevitable to use si-
mulations in the design, development and operational phases of such establishments. This rationale has led many scientist to create
simulators to investigate and analyse certain properties and processes of similar complex systems. There are already existing survey
papers highlighting the basic capabilities of simulation tools in clouds, IoT and fogs, also comparing them by certain views, e.g. by
Ragman et al. [2] or by Puliafito et al. [3]. Nevertheless, we believe that modelling Fog Computing in such simulators is far from
complete, and there is a need to gather and compare how key properties of fogs are represented in these works to trigger further
research in this field.

The main contributions of this survey are: (i) a detailed introduction and analysis of simulators modelling cloud, IoT and fog
systems; (ii) the identification and definition of viewpoints (including software quality metrics) and a taxonomy for classifying them;
and (iii) a throughout categorisation of these simulators with comparison tables revealing their properties related to fog modelling,
and the identification of open issues still remaining.

The remainder of this article is as follows: Section 2 introduces related works proposing surveys in similar research fields and
states our methodology for literature review. Section 3 is composed of five subsections, in which we give short introductions of the
analysed simulators, define the taxonomy elements used for categorising them, provide classifications with comparison tables for
three groups of simulators, and discuss the relevant findings of our classifications. Finally, Section 4 states future recommendations,
and Section 5 concludes our work.

2. Related work and literature review

The methodology for finding suitable works for our investigations was twofold. First, we looked for recently published surveys
targeting Fog Computing, and narrowed their scope to Fog modelling and simulation. Hence, we filtered the group of their cited
papers, and kept the ones using simulators. In this way, we could build on their results, as well as go beyond their findings by further
analysing these works. Second, to extend the group of considered solutions, we performed literature search with the following
engines: Google Scholar, ResearchGate, Scopus and Dimensions. We performed detailed searches for publications in the last five years
(2015-–2019) with the following keywords (for all fields): Fog Computing + Simulation. Table 1 shows the results of our literature
search per publication year. We went through the search results and gathered only those works that contained solutions having open-
source simulator implementations or containing novel approaches in the field of Cloud and Fog Computing. ResearchGate does not
provide detailed information on search results, thus we omitted it in the comparison table. We also considered relevant solutions
referenced in the processed articles, but we skipped those tools or simulators, which were published more than 10 years ago.

There already a couple of survey papers addressing different aspects of Cloud Computing and Fog Computing supporting IoT
systems. These works helped us to identify taxonomy categories for comparing our considered papers, i.e. solutions modelling Cloud
and Fog Computing in simulated environments. Next, we summarise the most relevant surveys we found, then compare them with
our research aims.

Rahman et al. [2] looked for available solutions for simulating Cloud Computing, and modelling data centres and their networks.
The authors investigated capabilities of cloud simulators with the following categories: (i) graphical user interface, (ii) application
model, (iii) communication model, (iv) energy model, (v) virtual machine (VM) support, (vi) SLA support, (vii) cost model. They
investigated 15 simulators in detail, and also listed the applied programming language, the utilised platform, and the code avail-
ability of the simulators. Probably this study is the closest to our work in terms of comparison methodology, but we focused more on
the quality of the simulator software, and broadened the research scope to IoT and fog areas.

Yousefpour at al. [4] presented a survey on Fog Computing and made comparisons with the following main points of views:
computing paradigms such as cloud, fog, mobile, mobile-cloud, edge, and frameworks and programming models for real applications,
software and tools for simulated applications.

Svorobej at al. [5] examined different fog and edge computing scenarios, and investigated Fog and Edge computing with various
aspects, such as (i) Application Level Modelling, (ii) Infrastructure and Network Level Modelling, (iii) Mobility and (iv) Resource
Management and (v) Scalability, and made a comparison of seven available fog tools.

Hong and Varghese [6] summarised resource management approaches in Fog and Edge Computing focusing on their utilised
infrastructure and algorithms, while Ghanbari at al. [7] investigated different resource allocation strategies for IoT systems. This
second work classified the overviewed works to eight categories: QoS-aware, context-aware, SLA-based, efficiency-aware, cost-aware,
power-aware, utilisation-aware, and load balancing-aware resource allocation. We found this work particularly interesting, hence it

Table 1
Literature search results in 5th June, 2019.

Year Google Scholar Scopus Dimensions

2019 3320 914 2940
2018 6140 1560 5447
2017 4460 707 3389
2016 2870 310 2100
2015 2160 206 1650
Sum 18 950 3697 15 526
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opened the investigations to the field of IoT.
Puliafito et al. [3] investigated the benefits of applying Fog Computing techniques to support the needs of IoT services and

devices. In their survey they described the characteristics of fogs, and introduced six IoT application groups exploiting fog cap-
abilities. They also gathered fog hardware and software platforms supporting the needs of these IoT applications.

Table 2 summarises the relevant surveys representing the current state of the art close to our research aims. Though cloud
solutions are dominating, some started to open investigations towards fog, edge and IoT fields. To the best of our knowledge, there is
no detailed study available targeting the fog modelling capabilities and the usability of simulation tools. In our work we still do not
neglect cloud and IoT solutions, hence they are tightly connected to fogs in most cases. We also investigate the software quality of the
available simulators, which has a direct effect on the learning curve of utilisation and experiment reliability.

Referring back to our literature search methodology, we checked all references of these six surveys and found 39 papers fitting our
aims. Then we analysed these works in detail focusing on simulator availability and fog modelling, further reducing the number of
papers to 13. In parallel, based on the throughout literature searches we performed, we found 30 papers containing simulators that
could potentially be used for modelling Fog Computing environments having considerable user communities. Most of these started to
be developed as cloud simulators, and were later extended to model fogs as well. As a result, we arrived to 43 solutions to serve as a
base for our research investigations. In the next section we give a short introduction to the main goals and properties of these works,
then compare them in a detailed taxonomy.

3. Modelling fog computing in simulators

In this section we present an introduction and detailed comparison of the currently available simulators in the fields on cloud, fog
and IoT. We considered the following properties as taxonomy categories for the investigation: (i) the topology and layers of a
simulator, (ii) the type of a simulator (i.e. a generic, event-driven or a specialised, network simulator), (iii) the date of the latest
modification (to help filtering outdated solutions), (iv) the applied cost model in a simulator (i.e. pre-defined, static or real provider
pricing model), (v) geographic location management (mostly for fog placement optimisation), (vi) utilised sensor model, (vii)
configurable network settings or protocols, (vii) VM management functionality, (viii) power usage or energy consumption calcula-
tions, and finally (ix) support for hierarchical organisation model (mostly in case of IoT and fog simulators).

3.1. Introduction of general cloud simulators

As we mentioned before, the life of most simulators we consider started as a cloud or network simulator. Some stayed at this level,
and others were extended to support the analysis of fog, edge or IoT management. This means that we cannot avoid the investigation
of cloud simulators.

The one of the most referred and widely used simulators is the CloudSim simulation toolkit [8], which is a popular solution for
simulating cloud environments. In CloudSim, users define tasks by creating so-called cloudlets, which are processed by virtual
machines running on cloud resources. This open-source, Java-based solution is available on GitHub [9], and it is built on SimJava
[10]. CloudSim is a discrete event simulator, and its architecture has five layers (i.e. network, cloud resources, cloud services, VM
services, user interface structures). Virtual machines in CloudSim has three states, and users can configure only static usage costs for
resources (i.e. memory, bandwidth, CPU and storage usage). CloudSim also contains a power model, but it is only restricted to CPU
energy consumption. Communication between components in the network is modelled with the bandwidth parameter and a delay
value.

There are many extensions of CloudSim, focusing on mostly one aspect of Cloud Computing or providing implementation for a
missing or insufficient feature of the original software. Unfortunately, it seems that the developers found no need to collect all of the
extensions into a single repository, and there are also many referred studies without publishing or citing available source code. Next
we introduce the ones we found relevant for our research.

CloudAnalyst [11] is one of the oldest extensions of CloudSim and contains important additions by implementing (i) application
users, (ii) internet connections, (iii) simulations defined by time periods, (iv) service brokers. CloudAnalyst is available on cloud-
bus.org [12].

CDOSim [13] is an extension to simulate cloud deployment options for migration support. The simulator can measure the cost of a
deployment and its response time. The novelty of this work to introduce MIPIPS, which is fine-grained version of MIPS for low level

Table 2
Comparison of related surveys according to their main contributions.

Survey Year Aim

Yousefpour at al. [4] 2018 paradigms and research topics for fogs
Hong and Varghese [6] 2018 resource management in the fog and edge
Rahman et al. [2] 2019 simulating cloud infrastructure
Svorobej at al. [5] 2019 fog and edge simulation challenges
Ghanbari at al. [7] 2019 resource allocation methods for IoT
Puliafito et al. [3] 2019 fog characteristics for IoT
Our survey 2019 fog models and software quality of simulators
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instruction definitions.
TeachCloud [14] is an other extension for educational purposes. The main features added in this version are: (i) cloud workload

generator, (ii) MapReduce framework, and (iii) new cloud network models. It is available on GitHub [15].
EMUSIM [16] has the purpose to bring emulation and simulation into one tool to predict service behaviour, when the resource

pool is changing. First, an emulation phase can be used to extract information on application behaviour, then in the second phase this
information is fed into a simulation model to arrive to more accurate methods for application simulation. Its source is available on
cloudbus.org [17].

CEPSim [18] has the aim to simulate complex event processing (CEP) and stream processing systems in cloud environments. CEP
is usually related to Big Data management, in this version CEP systems are represented by Directed Acyclic Graphs. Users can define
how to process input streams with special queries that can run continuously in the simulation with user-defined runtime. This work is
also available on GitHub [19].

CloudEval [20] is a CloudSim extension to support virtual machine consolidation with different migration algorithms. The authors
have created a domain specific language (DSL) for algorithm implementation for investigating specific VM migration strategies. The
proposed DSL is based on the Groovy programming language, and it contains the followings: descriptions for (i) data centre and the
VM scheduling strategies, (ii) evaluation metrics, and finally (iii) data collection and performance metrics.

CloudSimSDN simulator [21] is an extension to simulate Software Defined Networking (SDN) methods, which makes network
elements (e.g. switches) dynamically programmable. Its new components (e.g. Link, Switch and Host) enable networking with virtual
links in the Physical Topology. There is also a Virtual Topology layer in the top level of the CloudSimSDN architecture. The con-
figuration of a simulation is based on JSON files which contain specifications for the nodes, policies and bandwidth values, and CSV
files which contain the workload on the defined topology. This tool is available on Github [22].

The ContainerCloudSim [23] package was created by responding to the growing trend of container technologies. It is an extension
that enables running containers on top of VMs in a simulation. In this solution the Container entity is hosted by a VM, and the
container task has a very similar working as a Cloudlet.

NetworkCloudSim [24] extends CloudSim with enhanced network options for modelling the interconnection of data centres.
NetworkCloudlet is a novel component in this version, which can be used to simulate different task types (namely communication and
computation tasks). Other extended components are the NetworkDataCenter and the NetworkHost (which can be manager by the
former), these classes make it possible to simulate network traffic (using bandwidth and latency parameters) through switches. It also
uses the ContainerCloudSim package.

DynamicCloudSim [25] was created to simulate instability and dynamic changes in VM provisioning, which may occur in cases
the host machine serves more than one virtual machines at the same time. The newly introduced features are the followings: (i)
running different type of task (i.e. input-output, CPU, bandwidth-bound) on VMs, (ii) managing instability caused by hardware and
network issues, (iii) managing heterogeneity caused by different type of hosts, (iv) introducing VM performance changes and noise,
and finally (v) defining failures during task execution. The source code of this tool is available on GitHub [26].

Finally, CloudSim Plus [27] is a redesigned and refactored version of CloudSim, which aims to provide easier usage and more
reliable simulation. It is also available on GitHub [28].

Concerning solutions outside the CloudSim world, the DISSECT-CF cloud simulator [29] is an event-driven simulator written in
Java, available on GitHub [30]. It can be used to model cloud Infrastructure-as-a-Service systems, having an energy consumption
model both for physical and virtual machines with min, max and idle power states. Concerning resource management, there are four
possible states of a physical machine, while virtual machines can be in 11 different states including migration. To model network
communication between nodes, users can configure latency, as well as input, output and disk bandwidth. For further information, a
recent study on its comparison to CloudSim is available in [31].

DCSim [32] is an event-driven simulator (using the Java programming language). It was developed for simulating virtualized
resource management. The main ability of DCSim is to provide VM sharing mechanism for VMs belonging to a single, multi-tiered
application. Its architecture is composed of: DataCentre, Host, VMAllocation, and there are unique managers for networking, virtual
machines and power consumption. During simulation the following values are measured: (i) dynamic VM allocation (migration), (ii)
SLA violation, (iii) host operation hours and utilisation, (iv) power consumption and (v) simulation and algorithm running time.
DCSim is available on GitHub [33].

GroudSim [34] aims to simulate Grid and Cloud systems in a scalable way. This Java-based software is a discrete-event simulator
with the main abilities to provide cost calculation, and simulations using background-load of the resources. The architecture is
composed of Entity, Job and Cost elements, and it contains a cost model using time units of CPU usage, or data usage (in GB).

GreenCloud [35] is an extension of NS-2 [36] packet-level network simulator and based on TCL scripts and C++. The main
purpose of the simulator is to present energy-aware cloud datacentre analysis including energy-usage measurements of the system
components (i.e. servers, switches, links). Its energy consumption model includes PUE, and DC infrastructure efficiency (both are
represented in Watt). The architecture components can be servers and switches, and the tool is able to simulate TCP/IP protocols for
networking.

ICanCloud [37] is an OMNET++ based simulator [38] (programmed in C++), which aims to simulate cloud infrastructures. Its
novelty is that it introduces a hypervisor component for managing cloud brokering policies. Its experiments are focused on the trade-
offs between cost and performance of a given application, which can be run with Amazon VM instances types only. The architecture
has the following elements: cloud system, hypervisor, application repository, VM repository, hardware models. It also contains a cost
model, which follows the pay-as-you-go manner. The virtual machine handling is quite simple, it can execute the jobs, but neglects
cloud-specific network simulation. It uses the Inet framework (included in OMNET++) for TCP/UDP protocols. It is available at
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[39].
Finally, SPECI [40] was developed with the aim to simulate cloud-scale data centres focusing on their performance and behaviour,

which it is based on a discrete-event simulator called DES Java.

3.2. Introduction of IoT simulators

Some of these cloud simulators followed the new trend represented by the Internet of Things. Such things are sensors and small
devices that can be connected to the Internet, and used to monitor environments or gather special-purpose data. They are rarely
utilised ”alone”, cloud services are generally needed to store and process their data. Once such data management is performed at the
cloud network edge or close to the users in purpose, we arrive to the latest trend of Fog Computing. This reasoning led us to introduce
the category of IoT simulators in our research. The revised cloud simulators had the aim to model entities of the Internet of Things
world, which in some cases led to the introduction of fog features. Nevertheless, we can also find solutions focusing on IoT system
operation, somewhat neglecting or hiding cloud and fog capabilities. In our view, IoT simulators belong to a separate category, hence
IoT devices and sensors can be modelled as independent entities of data sources having special properties (e.g. data generation
frequency, behaviour models, limited connectivity). In this section we compare works focusing on IoT management.

SysML4IoT [41] is an extension of SysML and it is designed for model-driven development for IoT systems. In SysML4IoT an IoT
system has two main component groups: devices (Tag, Sensor, Actuator), and services (Human, Digital Artifact), and this approach
follows the publish/subscribe pattern to specify sensor behaviour. With this tool a high level model can be designed of an IoT system,
that can later be transformed to a source code, hence an implementation of a system.

CrowdSenSim [42] is a simulator designed for mobile crowd-sensing. The main features are the followings: (i) users can read in
the layout of cities, (ii) can manage user mobility and (iii) perform energy measurements for sensing tasks. The modules or layers are
the followings: User Mobility, City Layout and CrowdSensing module. For managing mobility, latitude, longitude and altitude of a
device is considered, and it may also use real sensors (e.g. accelerometer, temperature and pressure). This simulator contains a power
model using idle, transmission and reception modes, and the cost of the sensing is also measured. It is available at [42].

The DPWSim [43] simulation toolkit helps to develop and test IoT application with web services using the DPWS standard without
any physical devices. DPWS works with publish/subscribe mechanism on the architecture based on spaces, devices, operations and
events. The main abilities of the DPWSim are the following: (i) Platform Independence due to JVM, (ii) virtual device management
for DPWS and it supports SOAP and HTTP protocols. DPWSim is available on GitHub [44].

SimIoT [45] is an extension of SimIC [46] with IoT layer, and the authors demonstrate its utilisation with an IoT-based health care
application use case. This extension provides an extra layer for communication between the entities. Its architecture has three main
layers: User level (device-sensor), SimIoT level (communication broker) and SimIC level (cloud entities). The virtual machines are
used to execute tasks, and there is a bandwidth constraint for governing the network load.

There are a few studies mentioning the use of a special software to simulate or manage IoT systems. Angelakis et al. [47] used the
Mixed Integer Linear Program in Matlab to model resource allocation problems in heterogeneous IoT networks. Simulink [48] is also
a Matlab-based solution that provides secure model based design for IoT system analysis. Thomas and Irvine [49] presented an LTE
approach for IoT sensor networks. They performed experiments with the OMNET++ network simulator to investigate how many
sensor nodes can be transmitted per resource block.

The SmartSim tool [50] was designed for energy-metering in IoT smart homes. This simulation tool was developed in Python, and
it is able to generate smart device energy traces based on energy models (with frequency, duration, time and activity). It is available
on GitHub [51].

There is a semi-simulated solution for modelling IoT, fog, and cloud systems called MobIoTSim [52], which is an Android-based
software for IoT device simulation and management. It was designed with the aim to avoid expensive device and sensor purchases for
developing and evaluating IoT applications. By executing simulations, the mimicked devices can connect to real cloud providers (e.g.
IBM Bluemix), and communicate over the network using MQTT and HTTP protocols. MobIoTSim has the following layers: sensor,
device, application and cloud. This simulation tool available on GitHub [53].

IOTSim [54] is a CloudSim extension that supports Internet of Things and Big Data simulation. IoT has appeared in the CloudSim
model as a three layer architecture: perception, network and application layer, with the following details: CloudSim Simulation
Layer, Storage Layer, Big Data Processing Layer and User Code Layer. The aim of this work was to simulate a MapReduce approach
for Big Data processing, hence the novelty of this work is the MapReduce function implemented by the MapCloudlet and Re-
duceCloudlet entities. Unfortunately, no detailed information can be found on sensors or actuators, and there were no available
source code cited.

Finally, DISSECT-CF-IoT [55] is an extension of the DISSECT-CF cloud simulator. The novelty of this extension is the sensor
model, which contains detailed configuration options (e.g. measurement delay, data generation frequency and generated file size
parameters), detailed network configurations for IoT devices, and different approaches for multi-cloud management strategies for IoT
applications. It also contains extensible pricing models of four real providers (Amazon, Azure, IBM Bluemix and Oracle), both for IoT
and cloud side costs. To enable large-scale simulations, it uses different XML description files for easy configuration management. It is
available on GitHub [56].

3.3. Introduction of fog simulators

Finally, we arrive to the latest category of fog simulators responding to the latest trend called Fog Computing. In this category we
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focus on key properties required to model a Fog Computing environment. In their development we can also identify the close relation
to clouds: most of them are extensions of cloud or IoT simulators. Nevertheless they follow different architectural models: some has
centralised, some more decentralised, peer-to-peer communication schemes. As a result, understanding the model elements, functions
and implementation details can be very hard and time-consuming; that is one of the issues our survey aims to relax.

Brogi et al. [57] presented a novel cost model for deploying applications on a fog infrastructure. The approach is based on a
simulation prototype called FogTorchΠ (available on GitHub [58]), which determines a deployment on fog according to actual
resource consumption and cost needs. To calculate these metrics, the simulator uses Monte Carlo methods. The main capabilities of
this simulator are the monthly cost calculation extended with subscription/data transfer cost of IoT devices (using bandwidth and
latency parameters), and it takes into account geolocation information. The cost model differentiates two methods: (i) to choose one
pre-defined virtual machine with the given costs, or (ii) to build the necessary units of the CPU cores, RAM and HDD for a virtual
machine. The connections of fog nodes and clouds have different types, and both vertical and horizontal hierarchies are possible. The
realisation of an IoT-Fog-Cloud architecture follows the 3-tier model sensor-fog-cloud, but it lacks some important features of cloud/
fog simulation (e.g. virtual machine simulation and management). This tool focuses on providing a fog searching algorithm for the
given parameters. FogDirSim [59] is a closely related simulation tool from the same authors, which provides compatibility with
CISCO FogDirector across REST services to secure managing IoT applications on fog architectures.

Abbas et at. [60] presented a work using the OPNET network simulator [61] and aims to present the fog security service for end-
to-end security between the fog layer and IoT devices. They represent the difference between the cloud-fog-device layer architecture
and the fog-device architecture with a decentralised approach. Authors describe an encryption solution for Fog layer and its devices
in a mixed real-life system and simulation possibilities. First, they run a scenario with real devices (e.g. iPhone, Samsung Galaxy) to
get some benchmark values, then they used the OPNET network simulator parameterized with the measured values to get in-
formation about different traffic loads.

Tychalas and Karatza proposed PDES [62] for Fog Computing, the Parallel Discrete Event Simulation implemented in C pro-
gramming language. They defined a system with the following parameters: a cloud of 128 VMs, a cluster of 32 raspberries, a cluster of
64 PCs and 64 smartphones. If a task arrives to the system, it can be stored in a resource queue. The tasks are independent, and they
prefer the shortest queue with the lowest load for placing a task. There are three thresholds in the system for task allocation
(representing the cloud, raspberry and smartphone categories). It seems that there is no possibility for detailed and dynamic con-
figuration of simulated system components, the provided solution focuses on analysing task scheduling algorithms to decrease the
response time.

The FogNetSim++ [63] is built on the OMNeT++ discrete event simulator, which is focuses on network simulation, and
available on GitHub [64]. This simulator was designed to provide configuration options to handle fog networks (e.g. fog node
scheduling algorithms and devices hand-over). The implementation programming language is C++. The main capabilities of this
simulator are the handling of communication protocols such as MQTT or CoAP, and the different mobility models such as Linear-
Mobility or TractorMobility.

Edge-Fog [65] is a Python-based simulator, in which a fog layer is represented by networking devices (e.g. routers and switches).
The authors use this tool to present their LPCF algorithm (i.e. least processing cost first), which orders tasks to available nodes by
minimizing processing time and network costs. This approach is decentralised, thus the edge layer has device-to-device connection. It
is available on GitHub [66].

The Yet Another Fog Simulator (YAFS) [67] is proposed to simulate application deployment on a fog infrastructure. The main
capabilities of the simulator are the following: (i) dynamic application module allocation, (ii) network failures and (iii) user mobility.
YAFS is a Python based discrete event simulator, and provides JSON-based scenario definition. The simulation results contain in-
formation such as the network utilisation, response time, network delay. Its source is available on GitHub [68].

EdgeNetworkCloudSim [69] is an extension of CloudSim that supports the edge computing paradigm focusing on consolidation
and orchestration on the edge (mostly mobile) devices. The EdgeNetworkCloudSim is based on NetworkCloudSim, and the extensions
are the following: EdgeService models the service chain, EdgeDatacenterBroker communicates with a user, and EdgeVms helps to
define a service app. This work is also available on GitHub [70].

The PureEdgeSim [71] tool was proposed to design and model cloud, fog and edge applications focusing on high scalability of
devices and heterogeneous systems. PureEdgeSim is based on CloudSim Plus, and it uses XML descriptions for the simulation, where
the users can configure the data and parameters of geographical location, energy model and virtual machine settings.

One the most referred fog simulators is iFogSim [72], which is also based on CloudSim. iFogSim can be used to simulate real
systems and follows the sensing, processing and actuating model, therefore the components are separated to these three categories.
The main physical components are the following: (i) fog devices (including cloud resources, fog resources, smart devices) with
possibility to configure CPU, RAM, MIPS, uplink- and downlink bandwidth, busy and idle power values, (ii) actuators with geo-
graphic location and reference to the gateway connection, (iii) sensors, which generates data in form of a tuple representing in-
formation. The main logical components aim to model a distributed application: the (i) AppModule is a processing element of
iFogSim, and the (ii) AppEdge realises the logical dataflow between the virtual machines. The main management components are
following: the (i) Module Mapping searches for a fog device to serve a virtual machine, if no such device is found, the request is sent
to an upper tier object, and the (ii) Controller launches the application on a fog device. For simulating fog systems, first we have to
define the physical components, then the logical components, finally the controller entity. Although numerous articles and online
source codes are available for the usage of this simulator, but based on our experiments suggest that there is a lack of source code
comments for many methods, classes and variables. As a result, application modelling with this tool requires a relatively long learning
curve, and its operations take valuable time to understand. It is available on GitHub [73]. After its appearance, it has been used for
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many research works and various experiments. For example, in [74] a smart city network architecture is presented for Fog Computing
called FOCAN as a case study, and in [75] the authors purposed to combine Fog and Internet of Everything into the so-called Fog of
Everything paradigm.

There are also more advanced extensions of iFogSim. MyiFogSim [76] (available on GitHub [77]) was designed to manage virtual
machine migration for mobile users. The main capability of this simulator is the modelling of the user mobility and its connection
with the VM migration policy. The evaluation contains a comparison to a simulation without VM migration. Another extension is the
iFogSimWithDataPlacement [78] tool (available on GitHub [79]), which proposed a way for data management investigation on how
data are stored in a fog system. It also considers latency, network utilisation and energy consumption for data placement. The authors
presented a parallel Floyd-Warshall algorithm to define the shortest distance between the nodes for the optimal data placement.

EdgeCloudSim [80] is another CloudSim extension that is available on GitHub [81]. The main capabilities of this simulator are the
network modelling extension for WLAN, WAN and the device mobility. They aimed to respond to the disadvantage of iFogSim’s
simple network model that ignores network load and does not provide content mobility.

StormOnEdge/SpanEdge [82] is another decentralised tool related to edge computing, aiming to model data stream-processing.
Developers can build-up a geographically distributed network by installing the parts of a stream processing application near to the
data source for latency and bandwidth reduction. It is available on GitHub [83].

We can also find simulation solutions the field of Fog Computing exploiting the use of Matlab, Docker or other real service APIs.
Zhang et al. [84] proposed to investigate simulated resource allocation in a 3-tier fog network by using by MatLab framework. They
aim to provide management functionalities for data service operators, data service subscribers and fog nodes.

DockerSim [85] aims to support the analysis of container-based SaaS systems in simulated environments. It is based on the
OMNET++ and iCanCloud network simulators to model container behaviour, network, protocol and OS process scheduling be-
haviour. It is available on GitHub [86].

EmuFog [87] is an extensible emulation framework for fog infrastructures, and also a useful tool for emulating real applications.
After designing a network topology, EmuFog enables to connect fog nodes in the topology, and to run Docker applications on it. It is
available on GitHub [88].

DISSECT-CF-Fog is a direct extension of DISSECT-CF-IoT, available on GitHub [89], written in Java programming language. The
purpose of this simulator extension is to model fog devices and nodes, and by building on the core DISSECT-CF simulator and on
DISSECT-CF-IoT extension functions, it is able to model IoT-Fog-Cloud systems. The main benefit of this fog extension is offers the
possibility of detailed configuration settings through XML configuration files, and it requires only minimal programming knowledge
for define additional scenarios. DISSECT-CF-Fog contains an own simulation time unit for the general and time-independent simu-
lations. The network operations, such as bandwidth, latency simulations and file transfers between the physical components are
supported by its core simulator. To create a physical topology, any horizontal and vertical connections are allowed, but for now the
vertical communication supports only upward direction. The IoT layer provides the management of smart devices and those sensors
with the abilities of simulating sensor measurement time, data generation frequency with size configuration. Its application man-
agement layer handles the VMs and pairs the compute tasks (generated based on the received amount of data) to the VMs. The cost
module is responsible for evaluating pricing methods, capable of calculating both dynamic cloud and IoT side costs based on real
provider schemes. Finally, the logical data-flow are defined by the physical topology by default for simplicity.

Table 3
Comparison of the examined cloud simulators with implementation-related properties.

Simulator Core simulator Last modified Type
or published

CloudSim SimJava 2019 event-driven
CDOSim CloudSim 2012 event-driven
NetworkCloudSim CloudSim 2011 event-driven
TeachCloud CloudSim 2015 event-driven
CloudAnalyst CloudSim 2009 event-driven
EMUSIM CloudSim 2012 event-driven
CEPSim CloudSim 2016 event-driven
CloudEval CloudSim 2016 event-driven
CloudSimSDN CloudSim 2019 event-driven
ContainerCloudSim CloudSim 2019 event-driven
DynamicCloudSim CloudSim 2017 event-driven
CloudSim Plus CloudSim 2019 event-driven
DISSECT-CF - 2018 event-driven
SPECI DES Java 2009 event-driven
DCSim - 2014 event-driven
GroudSim - 2011 event-driven
GreenCloud NS-2 2011 network
ICanCloud OMNET+ 2015 network
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3.4. Detailed taxonomy for fog modelling in simulators

To compare the works we introduced in the previous subsections we define 10 taxonomy categories. These categories appear in
the comparison tables we placed next to the introduction of the considered simulators: Tables 3–5 are used to summarise cloud
simulators; Tables 6–8 are used for IoT simulator comparison; and finally Tables 9–11 depicts and compares properties of fog
simulators. In the followings we define our taxonomy elements, then provide a discussion for the mapped survey papers:

• Simulation type:
Simulation in general has a long history of research, and many classification schemes are available. Roth [90] stated that there are
three major types of simulation models: discrete, continuous, and combined. For dynamic systems discrete event simulation
models are the most widespread. In order to categorise the overviewed solutions, we define the following types of simulators: (i)
network simulators aim to simulate the network connections and data transfers between the nodes. They are useful for modelling
low-level interactions in systems, but their disadvantage is that it is hard to create higher-level abstract components (i.e. cloud or
fog resources, IoT sensors) to build up complex systems (from their building blocks, i.e. network entities). Generally in these cases
the simulation time may increase significantly. The other type category is the general, (ii) event-driven simulators, which use the
discrete event simulation model, where the inner working of the systems can be modelled by specific time moments (i.e. events).
These events are usually mapped to system states, and the state transitions to certain component operations. The disadvantage of
these simulators is the lack of built-in network operations and properties, however one may choose the level of abstraction more
easily, which is an advantage – as we have seen in DISSECT-CF or NetworkCloudSim to take into account the network traffic
during the generation of virtual machines, communication or data forwarding. In Fig. 1 we can see the ratio of the defined
simulator types for the considered works. More than the half of the investigated simulators (with 62.8%) of falls in the event-based
category to simulate complex systems composed of cloud, IoT or fog elements.

• Implementation:
The next category aims to reflect the development details of the considered simulators. Many of them have a single developer or a
small group of contributors, only some have bigger developer communities (CloudSim or OMNET++).
We have seen in the previous subsections that some solutions become very popular, and influenced other researchers to extend the
core tools with additional functionalities. Fig. 2 presents a graph highlighting the connections among the overviewed simulators
based on the realised extensions. The bottom circle represents the core or base simulators, their extensions within the same system

Table 5
Comparison of the examined cloud simulators with software metrics.

Simulator Language Lines of Code Comments (%) Duplication (%) Files Bugs Vulnerabilities Code Smells

CloudSim Java, XML 20 752 33.9 21.4 225 33 136 1.2k
CDOSim Java N/A
NetworkCloudSim Java
TeachCloud Java, XML, JSON 33 905 49.1 N/A 395 N/A
CloudAnalyst Java, HTML,XML 44 861 12.1 N/A 248 N/A
EMUSIM Java, XML, Python 1665 3.33 N/A 21 N/A
CEPSim Java, Scala 5875 20.5 N/A 82 N/A
CloudEval Java, Groovy N/A
CloudSimSDN Java, XML 12 585 16.8 15.7 120 23 109 1.2k
ContainerCloudSim Java N/A
DynamicCloudSim Java, XML 16 778 31.5 14.2 173 65 428 754
CloudSim Plus Java, XML 32 425 34.8 5.6 441 36 2 1.3k
DISSECT-CF Java, XML 5152 42.6 0.3 62 9 17 173
SPECI Java N/A
DCSim Java, Markdown 9006 13.1 N/A 143 N/A
GroudSim Java N/A
GreenCloud C+, TCL script N/A
ICanCloud C+, HTML, XML, JS 2 901 003 4.1 N/A 12 463 N/A

Table 6
Comparison of the examined IoT simulators with implementation-related properties.

Simulator Core (Simulator) Last modified/ published Type

SysML4IoT – 2016 –
CrowdSenSim v1.0.0 – 2017 event-driven
DPWSim – 2014 service-messaging events
SimIoT SimIC 2014 N/A
SmartSim – 2016 N/A
IOTSim CloudSim 2016 event-driven
MobIoTSim Android 2019 semi-simulated
DISSECT-CF-IoT DISSECT-CF 2019 event-driven
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categories are placed on top of them, while the arrows lead to extensions for solutions modelling other systems as well. This graph
shows that many variations of a base simulator exist, and we also know that a concrete simulator has many development versions
that may have different features. This fact makes it very hard for researchers to choose the right version for their investigations,
and for developers to create an improved solution of different versions of the same simulator. Our taxonomy aims to reveal some
implementation details later, in this regard.

• Publication date:
In the last decades we have seen the evolution of distributed systems: cloud systems got matured around 2010, then various things
started to appear to form IoT systems to generate data for clouds, finally fog nodes were created to improve application execution
quality of cloud services. Our investigations cover the past 10 years, and we believe that the publication and development dates
can help us to place the considered simulators in this evolution timeframe. The publication date of a solution determines the
technological novelties and capabilities its model is based on. It is true that a well maintained and updated simulator can follow
the latest trends, but its software can ware out in a few years due to the corrections and extensions. The comparison tables reveal
that CloudSim and DISSECT-CF were born quite early, and they are still under development to respond to the ongoing technology
changes. On the other hand, old tools without improvements cannot fulfil recent researcher needs.

• Cost model:
To predict costs of certain operations in a complex system is an important and useful feature for researchers. With the advent of
commercial solutions in these distributed systems, it became inevitable to provide simulated cost calculations for users planning to
enter this market. Though commercial solutions for Fog Computing are still in their infancy, we can find various cost models for
clouds and IoT in the considered simulators.

• Geolocation:
One of the goals of Fog Computing is to reduce data transfer and service response times, which require the use of geographical
information of system elements (e.g. sensors, nodes or users).
In most cases simulators having this property use two different representations: storing the (i) X and Y coordinates of an element
in a system or the (ii) longitude and latitude values for more specific distance calculations. We applied this taxonomy category
only for IoT and fog simulators.
Mobility is a closely related property to geolocation, solutions offering this feature enable dynamic changes in the location of
certain system elements.

• Sensor model:

Table 8
Comparison of the examined IoT simulators with software metrics.

Simulator Language Lines of Code Comments (%) Duplication (%) Files Bugs Vulnerabilities Code Smells

SysML4IoT N/A
CrowdSenSim v1.0.0 HTML, JS, C+, Python 44 437 2.8 N/A 346 N/A
DPWSim Java,HTML 55 346 51.2 551
SimIoT Java N/A N/A
SmartSim Python 946 12,7 13
IOTSim Java N/A N/A
MobIoTSim Java,XML 5490 4,6 75
DISSECT-CF-IoT Java,XML 7160 37.1 0.3 91 23 90 306

Table 9
Comparison of the examined Fog simulators with implementation-related properties.

Simulator Core (Simulator) Last modified/ published Type

FogTorchΠ – 2018 N/A
FogDirSim – 2018 N/A
OPNET – 2019 network
PDES – 2018 event-driven
FogNetSim+ OMNET+ 2018 network
Edge-Fog – 2017 N/A
YAFS – 2019 event-driven
EdgeNetworkCloudSim NetworkCloudSim 2017 event-driven
PureEdgeSim CloudSim Plus 2019 event-driven
iFogSim CloudSim 2017 event-driven
MyiFogSim iFogSim 2017 event-driven
iFogSimWithDataPlacement iFogSim 2018 event-driven
EdgeCloudSim CloudSim 2019 event-driven
StormOnEdge/SpanEdge – 2016 N/A
Zhang et al. - Matlab – 2017 N/A
DockerSim iCanCloud 2017 network
EmuFog – 2019 emulator
DISSECT-CF-Fog DISSECT-CF-IoT 2019 event-driven
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Sensors are key elements of IoT systems, and in many cases they appear in fog environments as well. Therefore it is important to
know, how sensors (or devices or things) are represented in certain simulators. In general, they should provide interfaces to
discover, connect and monitor, they have certain data generation frequency, possibly data storing or queuing properties. Their
model may also reflect behavioural information, such as actuation, failures or latencies.

• Network model:
One of the crucial points of a simulator for distributed systems is how it handles the network operations, especially the re-
presentation of bandwidth and latency. The corresponding configuration settings, and the fine- or coarse-grained networking
functions usually have a significant impact on the simulation time and accuracy of a simulator. Fine-grained models can support
low-level protocol representations (e.g. HTTP or MQTT communication) to provide realistic simulations.

• VM management:
Representing virtual machines and their management functions are some of the basic properties of modelling clouds and fogs.
They determine the configuration means of VMs in the simulated environments, that can highly affect the usability of the si-
mulator. The corresponding features of this category are: migration, task execution, network load and background workload.
Some fog solutions neglect this category to focus more on physical fog node management (e.g. FogTorchΠ or YAFS).

• Energy model:
Physical elements of real-life distributed systems consume energy and affect carbon emissions. In order to develop solutions
reducing these values, simulators should provide energy metering and power usage predictions. In general, three options are used
for energy models: idle, min and max consumption.

Table 11
Comparison of the examined Fog simulators with software metrics.

Simulator Language Lines of Code Comments (%) Duplication (%) Files Bugs Vulnerabilities Code Smells

FogTorchΠ Java, XML 2748 15.9 8.3 39 21 31 308
FogDirSim Python, YAML 5641 1.4 N/A 84 N/A
OPNET N/A N/A
PDES C N/A
FogNetSim+ C+ 20 199 5.7 59
Edge-Fog Python 887 17.2 66
YAFS Python, JS, HTML, JSON 31 597 22.0 208
EdgeNetworkCloudSim Java, HTML 113 654 27.5 571
PureEdgeSim Java, XML 3308 12.2 4.3 30 18 101 301
iFogSim Java, XML 27 754 25.3 24.3 290 124 248 1.5k
MyiFogSim Java, XML 32 723 23.2 23.5 328 174 275 2k
iFogSimWithDataPlacement Java, Protocol Buffers 212 780 7.6 N/A 2313 N/A
EdgeCloudSim Java, XML 6232 14.3 29.7 54 14 22 496
StormOnEdge/SpanEdge Java, XML 1417 10.3 34.1 17 9 11 232
Matlab (Zhang et al.) N/A N/A N/A N/A

DockerSim C+, INI 48 118 22.7 336
EmuFog Java 2570 77.6 52
DISSECT-CF-Fog Java, XML 9870 33.3 2.0 118 31 192 482

Fig. 1. The ratio of the simulator types.

A. Markus and A. Kertesz Simulation Modelling Practice and Theory 101 (2020) 102042

13



• Source code metrics:
As a final taxonomy element we chose source code metrics to represent and compare the software quality of the considered
simulators. In general, bad software quality makes it hard to read, understand and reuse the source code for extensions, and it also
negatively affects simulation time and accuracy. In this work we used the static code analyser called SonarQube [91] to calculate
certain quality metrics. This tool is able to measure various quality features of the source code of a software. In cases we could not
apply SonarQube, we used an even simpler tool called CLOC [92] that can handle almost any type of programming language, but
provides less information. Certainly, we could analyse only simulators with published, open-source code. We considered the
following metrics for our investigation:
• Language: the applied programming language to implement the simulator. We also highlighted additional languages where

applicable, e.g. the ones used for serialisation.
• Lines of code: this metric represents the number of lines in the source code. Note that blank lines are not counted.
• Comments: this metric counts a ratio (in %) of comment lines to the total lines of code (i.e. blank lines plus lines of code).
• Duplication: it denotes the ratio of the code duplications to the whole source code.
• Files: this metric tells us the number of files consist the software.
• Bugs: it shows the number of bugs in the software, where bugs represent wrong language constructions (e.g. missing operand

casting), according to the definition of SonarQube.
• Vulnerabilities: this metric tells us the number of vulnerabilities in the software, which are possible security issues (e.g. public

member notation in a class) in the SonarQube terminology.
• Code smells: it counts the number of code smells, which are code blocks where modification and understanding could be time-

consuming (e.g. empty statements), based on the definition of SonarQube.
In general, when a tool has acceptable quality metrics, it also has a positive effect on the application of the simulator.
Concerning the evaluation of the metrics we can state that higher values for code duplication complicate the readability of the
source code, and the bigger ratio of comment lines helps researchers understanding and reusing the code. Needless to say, the
researchers should prefer less number of bugs, vulnerabilities and code smells, when deciding to use a simulator for an

Fig. 2. Visualized relationships between the examined Cloud, IoT and Fog simulators.
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investigation. Concerning the implementation of the reviewed works, Fig. 3 shows that almost 70% of the investigated simu-
lators are written in Java, which is a platform independent programming language.

3.5. Discussion

In this subsection we provide further discussions on the comparison of the analysed simulators. In the previous subsections we
provided short introductions of the main properties of the overviewed works, defined the taxonomy elements used for categorising
them, and provided classifications with comparison tables for three groups of simulators, namely: cloud, IoT and fog simulators.
Though the tables provide detailed information on the properties of the tools, we summarise the most valuable findings of these
comparisons.

For cloud solutions, Table 3 shows that most of the cloud simulators apply the generic, event-driven model to simulate entities of
cloud systems. We can also see that 12 out of 18 simulators are based on CloudSim. Table 4 depicts that only limited (mostly static)
cost calculations can be performed on the majority of these tools, and mostly the bandwidth parameter is the only way to model
network communications. VM management functions are less supported in the network simulator category, and they are also sur-
prisingly simple for the cloud-specific ones, except for DISSECT-CF (offering 12 functions). The energy model is also quite simple for
most solutions (using static, physical CPU power consumption values), GreenCloud and DISSECT-CF have additional possibilities.
Table 5 reflects software quality. Java is the dominating programming language, and the source code length varies between 5 to 30
thousand in general. iCanCloud is exceptionally long, which is due to the underlying OMNET++ framework size. Code duplications
and the number of files seem to be proportional to the code length, the number of bugs and vulnerabilities are the highest in the
CloudSim family. The percentage of comments are surprisingly low in most cases, only TeachCloud and DISSECT-CF are close to 50%.

For solutions with IoT support, Table 6 shows that IoT system modelling is still not mature enough compared to Cloud Computing
simulation solutions. Simulators in this group appeared around 2014, showing a wider variety of approaches (fully simulated, semi-
simulated and real environments), and there seems to be no converging among them. Table 7 depicts that IOTSim and DISSECT-CF-
IoT have the most detailed models reflecting almost all taxonomy elements. Important to note that geolocation support only appears
in CrowdSenSim, meanwhile only DISSECT-CF-IoT supports dynamically measured IoT-side cost calculation besides cloud side-costs.
The third comparison table in this group, Table 8 details the measured source code metrics of IoT solutions. We can see that only
DISSECT-CF-IoT as an extension maintains the quality of its base simulator (having similar good values for comments and code
duplication), while other extensions often worsen quality compared to their core solutions. Finally, we can see a huge variation in the
lines of code metric, CrowdSenSim and DPWSim have tens of thousands lines, while SmartSim has less then a thousand, and DISSECT-
CF-IoT and MobIoTSim stands in the middle.

Considering fog modelling, according to Table 9 we can state that models of Fog Computing are evolving more rapidly than the
ones for the IoT based on the latest publications, which is approved by the fact that we found twice as much solutions for the fog
group. There are many independently developed tools (the half of the considered studies), and six works extend in a direct or indirect
way some CloudSim solution. It also seems that former (purely) network simulation solutions are not considered any more to be the
base of new extensions for fogs. Table 10 shows that all defined taxonomy categories are covered by at least one simulator, but the
most wanting category is VM management, hence only seven out of 18 tools are able to consider the utilisation of network operations
of a virtual machine. We can see a great improvement over IoT simulators for geolocation support and network models. Only the
iFogSim simulator (and its variants) and the DISSECT-CF-Fog satisfy all of our categories. Unfortunately, many simulators (Fog-
TorchΠ, OPNET or SpanEdge) aim to model one specific capability of Fog Computing, which makes them less productive and usable
for general simulations. Table 11 depicts that the iFogSim simulator has relatively bad software quality: about one forth of its code is
duplicated, and it has more than 25 thousand lines of code having more than 1500 code smells, which is the worst of all simulators.
On the contrary, DISSECT-CF-Fog and PureEdgeSim have the best ratio of duplication, and EmuFog has the best ratio of comment
lines.

Fig. 3. The ratio of the programming languages used to implement simulators.
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4. Future research challenges

In the previous section we have seen the state-of-the-art in cloud, IoT and fog simulation. Modelling Cloud Computing solutions is
the earliest field, the CloudSim tool and its family dominates investigations in this area. Though new cloud management algorithms
are still developed and validated with them, they are rarely updated or maintained. The IoT field brought up new simulation
methods: they partly effected the former cloud simulators by triggering extensions to model cloud support functionalities for IoT data
management, and novel simulators also appeared to focus on the device and sensor handling capabilities of IoT systems. These
solutions are not really converging, and the non-standard approaches in this area make it hard to come up with comprehensive
solutions.

Fog Computing modelling is the latest direction, and it tries to build on previous cloud and IoT system simulators as Fig. 2
suggests. This are is under active research, and fog modelling is sill in its infancy, mainly due to the still forming real-world fog
applications. By taking a look at the results of this survey, we can state that some properties of fog modelling do appear in all three
groups of simulators, hence we need to be aware of the latest improvements in all areas to design better solutions for fogs. Never-
theless, in general such extensions have a negative effect of the software quality, which also affects the usability of a simulator. We
managed to show such effects with the evaluation of our proposed metrics.

Focusing on the currently available fog simulators, we can summarise that though usable solutions can be found for analysing
specific fog capabilities or use cases, but general, complex fog environments are still hard to be addressed with a single tool. It is also
unlikely that near future solutions would target to come up with a general simulator, rather extensions will appear to cover more fog
management related properties. One direction, which has already been started is the modelling of container-based fog node beha-
viour, another one is the location-aware management of fog nodes. Table 10 is used to reveal these trends. Cost modelling and
energy-aware management are also missing features in many simulators, hence they still need extensive research. The sensor models
are quite simple in most tools, therefore sensor and device behaviour analysis and modelling should also be a target feature of future
research.

The further extension of current simulators will likely be the case for the future of fog modelling, therefore a higher attention is
needed to maintain software quality. Table 11 already revealed warning signs (see metrics duplication, bugs and code smells) in this
matter, as a result software reengineering methods are highly encouraged to be used in the future to arrive to reliable and main-
tainable extensions.

5. Conclusion

In the past decade we have seen how the latest technological advances shaped distributed systems and led to the emerging of
clouds, IoT systems and finally fogs. The complex networks and environments they established are closely coupled: the data gen-
erated by IoT devices have to be stored, processed and analysed by cloud or fog services to ensure reliability and sustainability.

We also know that for efficiently designing, developing and operating these complex systems one cannot avoid the use of si-
mulations. We can find numerous simulators for these purposes, but in many cases it is hard to reveal their differences, and im-
plementing our use cases with different solutions is time consuming.

The aim of our research was to respond to these problems, therefore we proposed a survey and taxonomy of the available
simulators modelling clouds, IoT and fogs. The novelty of our work lies in the applied viewpoints to perform the classifications. In out
taxonomy we separated the considered simulators to three groups, and presented comparison tables based on the taxonomy to reveal
their differences and to highlight how they model the elements of IoT-Fog-Cloud systems. We can conclude that a comprehensive
model for Fog Computing is still wanting, and complex fog environments are hard to be addressed with a single simulator. Our main
recommendation for further research is to continue model extensions of simulators to better grasp fog capabilities with the warning to
maintain software quality. This way can lead to easier understanding and shorter learning curves for designing and performing
experimentation in the field. Based on our results we believe that this study managed to reveal the approaches to be combined and
improved to provide better solutions in the future.

Acknowledgement

This research was supported by the Hungarian Scientific Research Fund under the grant number OTKA FK 131793, and by the
European Union, co-financed by the European Social Fund (EFOP-3.6.1-16-2016-00008 and EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: a taxonomy, survey and future directions, Internet Everything Algorithms Methodol.Technol. Perspect.
(2018) 103–130.

[2] U. Rahman, K. Bilal, A. Erbad, O. Khalid, S.U. Khan, Nutshell - simulation toolkit for modeling data center networks and cloud computing, IEEE Access PP
(2019). 1–1

[3] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, O. Rana, Fog computing for the internet of things: a survey, ACM Trans. Internet Technol. 19 (2019) 18:1–18:41.
[4] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J.P. Jue, All one needs to know about fog computing and related edge

computing paradigms: a complete survey, CoRR abs/1808.05283 (2018).
[5] S. Svorobej, P.T. Endo, M. Bendechache, C. Filelis-Papadopoulos, K.M. Giannoutakis, G.A. Gravvanis, D. Tzovaras, J. Byrne, T. Lynn, Simulating fog and edge

computing scenarios: an overview and research challenges, Future Internet 11 (2019).
[6] C. Hong, B. Varghese, Resource management in fog/edge computing: A survey, CoRR (2018). Abs/1810.00305

A. Markus and A. Kertesz Simulation Modelling Practice and Theory 101 (2020) 102042

16

http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0001
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0001
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0002
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0002
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0003
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0004
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0004
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0005
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0005
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0006


[7] Z. Ghanbari, N. Navimipour, M. Hosseinzadeh, A. Darwesh, Resource allocation mechanisms and approaches on the internet of things, Cluster Comput. (2019).
[8] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya, Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation

of resource provisioning algorithms, Softw. Pract. Experience 41 (2011) 23–50.
[9] Cloudsim simulator online: https://github.com/cloudslab/cloudsim, accessed in May, 2019.

[10] F. Howell, R. Mcnab, Simjava: a discrete event simulation library for java, Simul. Ser. 30 (1998).
[11] B. Wickremasinghe, Cloudanalyst: a cloudsim-based tool for modelling and analysis of large scale cloud computing environments, Distrib. Comput. Project

(2009).
[12] CloudAnalyst simulator online: http://www.cloudbus.org/cloudsim/CloudAnalyst.zip, accessed in June, 2019.
[13] F. Fittkau, S. Frey, W. Hasselbring, CDOSim: simulating cloud deployment options for software migration support, in: 2012 IEEE 6th International Workshop on

the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), pp. 37–46.
[14] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, M. Alsaleh, Teachcloud: a cloud computing educational toolkit, Int. J. Cloud Comput. 2 (2013) 237–257.
[15] TeachCloud simulator online: https://github.com/CloudComputingSim/TeachCloud, accessed in June, 2019.
[16] R.N. Calheiros, M.A. Netto, C.A. De Rose, R. Buyya, EMUSIM: An integrated emulation and simulation environment for modeling, evaluation, and validation of

performance of cloud computing applications, Softw. Pract. Experience 43 (2012) 595–612.
[17] EMUSIM simulator online: http://www.cloudbus.org/cloudsim/emusim, accessed in June, 2019.
[18] W.A. Higashino, M.A. Capretz, L.F. Bittencourt, CEPSim: Modelling and simulation of complex event processing systems in cloud environments, Future

Generation Computer Systems 65 (2016) 122–139. Special Issue on Big Data in the Cloud
[19] CEPSim simulator online: https://github.com/virsox/cepsim, accessed in June, 2019.
[20] Z. Wang, Z. Zhou, S. Jia, H. Liu, D. Li, J. Cheng, Cloudeval: a simulation environment for evaluating the dynamic cloud VM consolidation, Proceedings of the 9th

EAI International Conference on Simulation Tools and Techniques, SIMUTOOLS’16, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 2016, pp. 37–45.

[21] J. Son, A.V. Dastjerdi, R.N. Calheiros, X. Ji, Y. Yoon, R. Buyya, CloudsimSDN: modeling and simulation of software-defined cloud data centers, in: 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,pp. 475–484.

[22] CloudSimSDN simulator online: https://github.com/Cloudslab/cloudsimsdn, accessed in June, 2019.
[23] S.F. Piraghaj, A.V. Dastjerdi, R.N. Calheiros, R. Buyya, Containercloudsim: an environment for modeling and simulation of containers in cloud data centers,

Softw. Pract. Experience 47 (2017) 505–521.
[24] S.K. Garg, R. Buyya, Networkcloudsim: modelling parallel applications in cloud simulations, in: 2011 Fourth IEEE International Conference on Utility and Cloud

Computing, pp. 105–113.
[25] M. Bux, U. Leser, Dynamiccloudsim: simulating heterogeneity in computational clouds, Future Gener. Comput. Syst. 46 (2015) 85–99.
[26] DynamicCloudSim simulator online: https://github.com/marcbux/dynamiccloudsim, accessed in June, 2019.
[27] M.C.S. Filho, R.L. Oliveira, C.C. Monteiro, P.R.M. Inácio, M.M. Freire, Cloudsim plus: a cloud computing simulation framework pursuing software engineering

principles for improved modularity, extensibility and correctness, 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (2017)
400–406.

[28] CloudSim Plus simulator online: https://github.com/manoelcampos/cloudsim-plus, accessed in June, 2019.
[29] G. Kecskemeti, DISSECT-CF: a simulator to foster energy-aware scheduling in infrastructure clouds, Simul. Modell. Pract. Theory 58P2 (2015) 188–218.
[30] DISSECT-CF simulator online: https://github.com/kecskemeti/dissect-cf, accessed in May, 2019.
[31] Z. Mann, Cloud simulators in the implementation and evaluation of virtual machine placement algorithms, Softw. Pract. Experience (2017).
[32] M. Tighe, G. Keller, M. Bauer, H. Lutfiyya, DCSIm: a data centre simulation tool for evaluating dynamic virtualized resource management, Proceedings of the

2012 8th International Conference on Network and Service Management, CNSM 2012, (2012), pp. 385–392.
[33] DCSim simulator online: https://github.com/digs-uwo/dcsim, accessed in June, 2019.
[34] S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer, Groudsim: an event-based simulation framework for computational grids and clouds, Euro-Par 2010

Parallel Processing Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 305–313.
[35] D. Kliazovich, P. Bouvry, Y. Audzevich, S.U. Khan, Greencloud: a packet-level simulator of energy-aware cloud computing data centers, in: 2010 IEEE Global

Telecommunications Conference GLOBECOM 2010, pp. 1–5.
[36] NS-2 simulator online: https://www.isi.edu/nsnam/ns, accessed in June, 2019.
[37] A. Nez, J.L. Vzquez-Poletti, A. Caminero, G.G. Casta, J. Carretero, I.M. Llorente, ICAncloud: a flexible and scalable cloud infrastructure simulator, J. Grid

Comput. 10 (2012) 185–209.
[38] OMNeT++ simulator online: https://omnetpp.org, accessed in June, 2019.
[39] ICanCloud simulator online: https://www.arcos.inf.uc3m.es/old/icancloud, accessed in June, 2019.
[40] I. Sriram, SPECI, A simulation tool exploring cloud-scale data centres, CoRR abs/0910.4568 (2009).
[41] B. Costa, P.F. Pires, F.C. Delicato, Modeling iot applications with sysML4iot, in: 2016 42th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), pp. 157–164.
[42] C. Fiandrino, A. Capponi, G. Cacciatore, D. Kliazovich, U. Sorger, P. Bouvry, B. Kantarci, F. Granelli, S. Giordano, Crowdsensim: a simulation platform for mobile

crowdsensing in realistic urban environments, IEEE Access 5 (2017) 3490–3503.
[43] S. Han, G.M. Lee, N. Crespi, N. Luong, H. Kyoungwoo, M. Brut, P. Gatellier, DPWSIm: a simulation toolkit for iot applications using devices profile for web

services, 2014 IEEE World Forum on Internet of Things, WF-IoT 2014, (2014).
[44] DPWSim simulator online: https://github.com/sonhan/dpwsim, accessed in June, 2019.
[45] S. Sotiriadis, N. Bessis, E. Asimakopoulou, N. Mustafee, Towards simulating the internet of things, in: 2014 28th International Conference on Advanced

Information Networking and Applications Workshops, pp. 444–448.
[46] S. Sotiriadis, N. Bessis, N. Antonopoulos, A. Anjum, SimIC: designing a new inter-cloud simulation platform for integrating large-scale resource management,

Proceedings - International Conference on Advanced Information Networking and Applications, AINA, (2013), pp. 90–97.
[47] V. Angelakis, I. Avgouleas, N. Pappas, D. Yuan, Flexible allocation of heterogeneous resources to services on an iot device, IEEE Internet Things J. 2015 (2015).
[48] Z. Li, K. Liu, Y. Su, Y. Ma, Adaptive resource allocation algorithm for internet of things with bandwidth constraint, Trans. Tianjin Univ. 18 (2012).
[49] D. Thomas, J. Irvine, Connection and resource allocation of iot sensors to cellular technology-LTE, in: 2015 11th Conference on Ph.D. Research in

Microelectronics and Electronics (PRIME), pp. 365–368.
[50] D. Chen, D. Irwin, P. Shenoy, Smartsim: a device-accurate smart home simulator for energy analytics, in: 2016 IEEE International Conference on Smart Grid

Communications (SmartGridComm), pp. 686–692.
[51] SmartSim simulator online: https://github.com/sustainablecomputinglab/smartsim, accessed in June, 2019.
[52] A. Kertesz, T. Pflanzner, T. Gyimothy, A mobile iot device simulator for iot-fog-cloud systems, J. Grid Comput. (2018).
[53] MobIoTSim simulator online: https://github.com/sed-szeged/MobIoTSim, accessed in May, 2019.
[54] X. Zeng, S. Garg, P. Strazdins, P.P. Jayaraman, D. Georgakopoulos, R. Ranjan, IOTSIm: a cloud based simulator for analysing iot applications, J. Syst. Archit.

(2016).
[55] A. Markus, J.D. Dombi, Multi-cloud management strategies for simulating iot applications, Acta Cybern. 24 (2019) 83–103.
[56] DISSECT-CF-IoT simulator online: https://github.com/andrasmarkus/dissect-cf/tree/pricing, accessed in May, 2019.
[57] A. Brogi., S. Forti., A. Ibrahim., Deploying fog applications: how much does it cost, by the way? Proceedings of the 8th International Conference on Cloud

Computing and Services Science - Volume 1: CLOSER, INSTICC, SciTePress, 2018, pp. 68–77.
[58] FogtorchΠ simulator online: https://github.com/di-unipi-socc/FogTorchPI, accessed in May, 2019a.
[59] FogDirSim simulator online: https://github.com/di-unipi-socc/FogDirSim, accessed in June, 2019b.
[60] N. Abbas, M. Asim, N. Tariq, T. Baker, S. Abbas, A mechanism for securing iot-enabled applications at the fog layer, J. Sens. Actuator Netw. 8 (2019) 16.

A. Markus and A. Kertesz Simulation Modelling Practice and Theory 101 (2020) 102042

17

http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0007
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0008
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0008
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0009
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0010
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0010
http://www.cloudbus.org/cloudsim/CloudAnalyst.zip
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0011
https://github.com/CloudComputingSim/TeachCloud
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0012
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0012
http://www.cloudbus.org/cloudsim/emusim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0013
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0013
https://github.com/virsox/cepsim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0014
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0014
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0014
https://github.com/Cloudslab/cloudsimsdn
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0015
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0015
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0016
https://github.com/marcbux/dynamiccloudsim
https://github.com/manoelcampos/cloudsim-plus
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0017
https://github.com/kecskemeti/dissect-cf
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0018
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0019
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0019
https://github.com/digs-uwo/dcsim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0020
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0020
https://www.isi.edu/nsnam/ns
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0021
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0021
https://omnetpp.org
https://www.arcos.inf.uc3m.es/old/icancloud
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0022
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0023
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0023
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0024
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0024
https://github.com/sonhan/dpwsim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0025
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0025
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0026
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0027
https://github.com/sustainablecomputinglab/smartsim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0028
https://github.com/sed-szeged/MobIoTSim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0029
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0029
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0030
https://github.com/andrasmarkus/dissect-cf/tree/pricing
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0031
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0031
https://github.com/di-unipi-socc/FogTorchPI
https://github.com/di-unipi-socc/FogDirSim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0032


[61] OPNET simulator online: http://opnetprojects.com/opnet-network-simulator, accessed in June, 2019.
[62] D. Tychalas, H. Karatza, Simulation and performance evaluation of a fog system, in: 2018 Third International Conference on Fog and Mobile Edge Computing

(FMEC), pp. 26–33.
[63] T. Qayyum, A. Malik, M.A. Khan, O. Khalid, S.U. Khan, Fognetsim++: A toolkit for modeling and simulation of distributed fog environment, IEEE Access PP

(2018). 1–1
[64] Fognetsim++ simulator online: https://github.com/rtqayyum/fognetsimpp, accessed in june, 2019.
[65] N. Mohan, J. Kangasharju, Edge-fog cloud: a distributed cloud for internet of things computations, in: 2016 Cloudification of the Internet of Things (CIoT),

pp. 1–6.
[66] EdgeFog simulator online: https://github.com/nitindermohan/EdgeFogSimulator, accessed in June, 2019.
[67] I. Lera, C. Guerrero, C. Juiz, YAFS: a simulator for iot scenarios in fog computing, ArXiv: abs/1902.01091(2019).
[68] YAFS simulator online: https://github.com/acsicuib/YAFS, accessed in June, 2019.
[69] M. Seufert, B.K. Kwam, F. Wamser, P. Tran-Gia, Edgenetworkcloudsim: placement of service chains in edge clouds using networkcloudsim, in: 2017 IEEE

Conference on Network Softwarization (NetSoft), pp. 1–6.
[70] EdgeNetworkCloudSim simulator online: https://github.com/lsinfo3/EdgeNetworkCloudSim, accessed in June, 2019.
[71] PureEdgeSim simulator online: https://github.com/CharafeddineMechalikh/PureEdgeSim, accessed in June, 2019.
[72] H. Gupta, A.V. Dastjerdi, S. Ghosh, R. Buyya, Ifogsim: a toolkit for modeling and simulation of resource management techniques in internet of things, edge and

fog computing environments, Softw. Pract. Experience (2016).
[73] IFogSim simulator online: https://github.com/Cloudslab/iFogSim, accessed in May, 2019.
[74] P.V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, R. Buyya, FOCAN: A fog-supported smart city network architecture for management of applications in the

internet of everything environments, J. Parallel Distrib. Comput. (2018).
[75] E. Baccarelli, P.V. Naranjo, M. Shojafar, M. Scarpiniti, J. Abawajy, Fog of everything: energy-efficient networked computing architectures, research challenges,

and a case study, IEEE Access PP (2017) 2169–3536.
[76] M.M. Lopes, W.A. Higashino, M.A. Capretz, L.F. Bittencourt, Myifogsim: a simulator for virtual machine migration in fog computing, Companion Proceedings of

the10th International Conference on Utility and Cloud Computing, UCC ’17 Companion, ACM, New York, NY, USA, 2017, pp. 47–52.
[77] MyiFogSim simulator online: https://github.com/marciocomp/myifogsim, accessed in June, 2019.
[78] M.I. Naas, J. Boukhobza, P. Raipin Parvedy, L. Lemarchand, An extension to ifogsim to enable the design of data placement strategies, in: 2018 IEEE 2nd

International Conference on Fog and Edge Computing (ICFEC), pp. 1–8.
[79] IFogSimWithDataplacement simulator online: https://github.com/medislam/iFogSimWithDataPlacement, accessed in June, 2019.
[80] C. Sonmez, A. Ozgovde, C. Ersoy, Edgecloudsim: an environment for performance evaluation of edge computing systems, 2017 Second International Conference

on Fog and Mobile Edge Computing (FMEC), (2017), pp. 39–44.
[81] EdgeCloudSim simulator online: https://github.com/CagataySonmez/EdgeCloudSim, accessed in June, 2019.
[82] H.P. Sajjad, K. Danniswara, A. Al-Shishtawy, V. Vlassov, Spanedge: towards unifying stream processing over central and near-the-edge data centers, in:

2016 IEEE/ACM Symposium on Edge Computing (SEC), pp. 168–178.
[83] StormEdge/SpanEdge simulator online: https://github.com/Telolets/StormOnEdge, accessed in June, 2019.
[84] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F.R. Yu, Z. Han, Computing resource allocation in three-tier iot fog networks: a joint optimization approach combining

stackelberg game and matching, IEEE Internet Things J. 4 (2017) 1204–1215.
[85] Z. Nikdel, B. Gao, S.W. Neville, Dockersim: full-stack simulation of container-based software-as-a-service (saas) cloud deployments and environments, in:

2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 1–6.
[86] DockerSim simulator online: https://github.com/Znikdel/DockerSim, accessed in June, 2019.
[87] R. Mayer, L. Graser, H. Gupta, E. Saurez, U. Ramachandran, Emufog: extensible and scalable emulation of large-scale fog computing infrastructures, 2017 IEEE

Fog World Congress (FWC) (2017) 1–6.
[88] EmuFog emulator online: https://github.com/emufog/emufog, accessed in June, 2019.
[89] DISSECT-CF-Fog simulator online: https://github.com/andrasmarkus/dissect-cf/tree/fog-extension, accessed in September, 2019.
[90] P.F. Roth, Discrete, continuous, and combined simulation, Proceedings of the 20th Conference on Winter Simulation, (1988), pp. 56–60.
[91] SonarQube online: https://www.sonarqube.org, accessed in May, 2019.
[92] CLOC online: http://cloc.sourceforge.net, accessed in May, 2019.

A. Markus and A. Kertesz Simulation Modelling Practice and Theory 101 (2020) 102042

18

http://opnetprojects.com/opnet-network-simulator
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0033
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0033
https://github.com/rtqayyum/fognetsimpp
https://github.com/nitindermohan/EdgeFogSimulator
https://github.com/acsicuib/YAFS
https://github.com/lsinfo3/EdgeNetworkCloudSim
https://github.com/CharafeddineMechalikh/PureEdgeSim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0034
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0034
https://github.com/Cloudslab/iFogSim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0035
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0035
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0036
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0036
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0037
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0037
https://github.com/marciocomp/myifogsim
https://github.com/medislam/iFogSimWithDataPlacement
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0038
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0038
https://github.com/CagataySonmez/EdgeCloudSim
https://github.com/Telolets/StormOnEdge
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0039
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0039
https://github.com/Znikdel/DockerSim
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0040
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0040
https://github.com/emufog/emufog
https://github.com/andrasmarkus/dissect-cf/tree/fog-extension
http://refhub.elsevier.com/S1569-190X(19)30173-X/sbref0041
https://www.sonarqube.org
http://cloc.sourceforge.net

	A survey and taxonomy of simulation environments modelling fog computing
	Introduction
	Related work and literature review
	Modelling fog computing in simulators
	Introduction of general cloud simulators
	Introduction of IoT simulators
	Introduction of fog simulators
	Detailed taxonomy for fog modelling in simulators
	Discussion

	Future research challenges
	Conclusion
	Acknowledgement
	References




