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ABSTRACT—Many preclinical studies in critical care medicine and related disciplines rely on hypothesis-driven research
in mice. The underlying premise posits that mice sufficiently emulate numerous pathophysiologic alterations produced by
trauma/sepsis and can serve as an experimental platform for answering clinically relevant questions. Recently, the lay press
severely criticized the translational relevance of mouse models in critical care medicine. A series of provocative editorials
were elicited by a highly publicized research report in the Proceedings of the National Academy of Sciences (PNAS;
February 2013), which identified an unrecognized gene expression profile mismatch between human and murine leuko-
cytes following burn/trauma/endotoxemia. Based on their data, the authors concluded that mouse models of trauma/
inflammation are unsuitable for studying corresponding human conditions. We believe this conclusion was not justified.
In conjunction with resulting negative commentary in the popular press, it can seriously jeopardize future basic research
in critical care medicine. We will address some limitations of that PNAS report to provide a framework for discussing
its conclusions and attempt to present a balanced summary of strengths/weaknesses of use of mouse models. While
many investigators agree that animal research is a central component for improved patient outcomes, it is important to
acknowledge known limitations in clinical translation from mouse to man. The scientific community is responsible to dis-
cuss valid limitations without overinterpretation. Hopefully, a balanced view of the strengths/weaknesses of using ani-
mals for trauma/endotoxemia/critical care research will not result in hasty discount of the clear need for using animals to
advance treatment of critically ill patients.
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Extraordinary claims require extraordinary evidence.

VCarl Sagan
INTRODUCTION

In the United States (1) and European Union countries (2),

approximately 15 and 7 million laboratory rodents, respec-

tively, are used annually for research and testing. While it is

difficult to precisely define the exact number of mice used in

the field of critical care illnesses (such as trauma, burn, in-

fections, endotoxemia, and sepsis), it is not an overstatement

that the majority of preclinical studies rely on this species. As
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of the end of October 2013, a search of PubMed produced

between approximately 4,200 and 24,300 publications in re-

sponse to a Bmouse and burn/sepsis/shock/trauma[ query

(queries ordered from the lowest to highest number of hits).

One of these studies, the collaborative report by Seok et al. (3)

published in the February 26, 2013, issue of the PNAS, iden-

tified a potentially serious mismatch in the translational utility

of the mouse-to-human data in the area of critical care medi-

cine. The original data stem from the Inflammation and Host

Response to Injury, Large Scale Collaborative Research Pro-

gram Project (under the GLUE GRANT scientific consortium;

www.gluegrant.org/index.htm). The aim of the GLUE GRANT

project was to compare the genetic responses of humans and

mice following burn, trauma, and endotoxemia by analyzing

approximately 5,000 human genes and their mouse orthologs.

Based on their interpretation of these results, the authors con-

cluded that Bgenomic responses in mouse models poorly mimic

human inflammatory diseases[ and claimed the mouse gene

profile response appeared random when compared with the

human gene response to burn, trauma, or lipopolysaccharide

(LPS) challenge. To those investigators familiar with how the

immune system reacts to these innate stimuli, this broad gen-

eralization of their analysis appears, at least partly, unwarranted.

Nevertheless, this labor-intensive study (3) is among a growing

list of publications (4Y6) challenging the merits of using mice

and other animal models in basic and preclinical research and

thus should be thoroughly discussed.

The ripple effect

Given the surprising and controversial nature of the data

concerning mouse-to-human (in)compatibilities in tested in-

flammatory disease models, the findings of the PNAS paper

were quickly publicized in the lay press. The initial account of

the research in the New York Times entitled, BMice Fall Short

as Test Subjects for Some of Humans’ Deadly Ills[ (7), led to a

subsequent ripple effect in the form of several alarming

follow-up editorials, posts, and/or blogs (8Y11). Their collec-

tive conclusion was clear and implied that decades of mouse-

based research culminated in few scientific advances, wasted

precious research opportunities, and were a poor use of tax-

payers’ money. Consequently, given that Bmouse models of

inflammation are basically worthless[ (10), Bit seems that re-

searchers have tortured mice in vain for decades in the search

for drugs to help humans recover from certain traumas, like

severe burns, blunt force, and sepsis[ (11). There is concern

that the sensational tone of those communications will be

damaging to preclinical mouse-based research programs. As a

result, public perception, research progress, and funding sup-

port for basic discovery and hypothesis-driven research for

many medical disciplines may be impeded. As the authors of

the original PNAS paper were mostly directing their criticisms

toward inflammation, trauma, shock, and sepsis research, we

felt compelled, following the recent comments by others

(12Y16), to collectively address their controversial conclu-

sions. By discussing its main limitations, we aim to delineate

the boundaries within which the work of Seok et al. (3) should

be viewed and evaluated. Importantly, we also provide objec-

tive information demonstrating that animal research using

mice has led to groundbreaking studies that have improved

patient care and outcomes.

Lost in translation: what does the PNAS study really say?

Seok and colleagues (3) report that the genomic response to

trauma, burns, or endotoxin challenge shows an extremely low

correlation between mice and humans, while these different

types of injury responses showed high similarity among hu-

mans. The authors state in the first paragraph that BAmong

genes changed significantly in humans, the murine orthologs

are close to random in matching their human counterparts

(e.g., R2 between 0.0 and 0.1).[ We contend that the authors

have overinterpreted their data because of the many limita-

tions of their study design and analysis, some of which they

have failed to acknowledge. Furthermore, it remains uncertain

whether and/or to what extent the results of gene expression

profiling should be used to judge the biological validity of

animal models for human disease. Although we disagree with

the overall conclusion and interpretation of this PNAS report,

the intention of this article is not to lessen the value of the

authors’ work but to analyze conclusions of the study in an

appropriate evidence-based framework. The following is a

partial list of limitations and issues that were identified sub-

sequent to the publication of the PNAS paper (17Y19) and that

were featured in a debate session at the 2013 annual Shock

Society meeting in San Diego, Calif (20).

Comparing strain, sex, and age—Gene profiles of a highly

heterogeneous (outbred) population of burn/trauma/endotoxemic

male and female patients were compared with inbred, geneti-

cally identical C57BL/6J male mice at the approximate age of

2 months. Using inbred mice that are genetically identical for

such a comparative analysis is equivalent to comparing a single

individual burn or trauma patient to 167 trauma or 244 burn

patients. Furthermore, comparing individual responses to these

injuries in inbred versus outbred subjects represents an important

study limitation because of the differential immune system re-

sponse among inbred mice to various parasitic (21, 22), viral

(23, 24), and bacterial (25, 26) infections. The most recent re-

view by Fink (27) offers a deeper insight into the limitations of

the inbred strains in modeling of sepsis (also in the context of

the PNAS article). Summarizing, testing a single strain of mice

does not justify the assertion that all mouse models poorly

mimic human inflammatory diseases given that this or any other

strain fails to represent the genetic diversity of the entire mouse

population. Furthermore, comparison of a single mouse sex to

the mixed male/female population of human patients demands

further caution regarding data interpretation given that sex

modifies leukocyte responses after trauma-hemorrhage (28Y30),

bacterial infection (31), or LPS (32, 33). In addition, it cannot

be assumed that 8-week-old mice (used in the PNAS study)

constitute a reliable surrogate for older patients. In the C57BL/6J

strain, the age of 8 weeks corresponds approximately to the

present human age of 8 years (34). This contrasts sharply with

the average age of 34 years in trauma patients (35), 30 years

in healthy control subjects, and 18 to 40 years in the eight

volunteers injected with endotoxin (3, 35). It remains to be

established how strongly (if at all) this particular age disparity

can influence the studied responses in mice and humans.
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However, the role of age should not be minimized as differen-

tial age-dependent outcomes and responses in the immunoin-

flammatory compartment were demonstrated in pediatric versus

adult patients with trauma (36, 37), burns (38, 39), endotoxemia

(40), and infections (41, 42) as well as in corresponding mouse

models (43Y46). Of note, although not directly pertinent to data

analyzed in the study by Seok and colleagues (3) (as leukocytes

from septic patients were not analyzed), age is a major mis-

match in the mouse-to-human comparison of data from sepsis

syndromes; whereas a majority of human septic patients are old,

preclinical sepsis models (including the most relevant) typically

rely on young mice (47).

Gene expression analysis using unfractionated blood
leukocytes—The composition of circulating leukocytes differs

markedly between humans and mice (i.e., 60% vs. 15% neu-

trophils and 30% vs. 70% lymphocytes, respectively) (6), and

a recent study by Shay et al. (48) demonstrated that human

versus mouse granulocytes and lymphocytes have distinct

gene expression profiles. Because the comparison was made

on only unfractionated whole-blood leukocytes in the study,

this translates into the profiling of a neutrophil-rich versus

lymphocyte-rich sample, which undoubtedly skewed the final

results. It must be noted that an oral communication by one of

the PNAS coauthors indicated that reanalysis of genomic re-

sponses in a more narrow polymorphonuclear (PMN) leukocyte

population did not markedly improve the overall correlation

(20), although a peer-reviewed publication of such a reanalysis

has not yet been reported. The risks of imprecise comparison of

genomic responses in circulating white blood cells are not

solely restricted to mouse versus human studies; earlier GLUE

GRANT-based reports that analyzed various inflammation/

injury scenarios using only mouse models voiced identical

concerns (49, 50). Analyses of gene expression in discrete

leukocyte subsets are certainly warranted as they provide more

precise information regarding individual activation patterns in

injury and/or infection.

Model and severity mismatch—The influence of this po-

tential limitation was suggested by the authors in the origi-

nal article. For example, mice may have higher resistance to

inflammation/trauma/infection because they are housed in a

controlled environment and most often lack predisposing con-

ditions present in the human population. This injury severity

mismatch may translate into a dissimilar response both on

the genomic and protein levels. Although animal models are

designed to produce a pronounced, clinically relevant posttrau-

matic physiological effect, a near-death severity threshold is often

needed because milder severity only recapitulates some features

of trauma or sepsis response (51Y53). It is also noteworthy that

because of their innate high resistance to trauma and inflamma-

tion, mouse models cannot adequately recapitulate a full pallet of

the most severe responses that occur in patients. This may be

partly due to yet another mismatch: it is generally appreciated

that any patient admitted to the intensive care unit (ICU) and

survives would have likely died without intervention. Our in-

ability to replicate this aggravating phenomenon may be another

influential limitation in animal modeling.

To approximate sepsis, the authors used LPS delivery into

human volunteers and mice for their gene expression profile

comparison. Although this is a commonly used model in

humans that supposedly mimics some clinical features of the

sepsis syndrome, it is not a true model for sepsis. Sepsis and

sepsis syndrome are complex responses, and most of the

existing experimental models fail to reproduce the entire

spectrum of sepsis syndromes diagnosed in patients, especially

the bolus injection of LPS. In other words, it is inappropriate to

compare aged patients with monobacterial pneumonia-induced

bacteremia with the cecal ligation and puncture (CLP) model

of polymicrobial peritonitis. Other mismatched secondary com-

parisons were made based on the Gene Expression Omnibus

database (54); data from each of the existing specific sepsis

models should be compared with only the corresponding clin-

ical condition (47). Another debatable point, recently raised in

a letter by Cauwels et al. (12), is that the relative dose of LPS

differed markedly between mice and human volunteers. It is

also important to consider that besides genetic background,

environment and underlying diseases can markedly affect the

host response to infection. In such a scenario, mice can be

rendered either hyporesponsive or hyperresponsive to LPS

with major differences in inflammatory responses that in

turn alter susceptibility to infection. For example, mice with

chronic kidney disease exhibit an increase in morbidity when

subjected to sepsis (55). Increased inflammatory responses

may be induced by previous Propionibacterium acnes infec-

tion, hepatotoxic agents (e.g., D-galactosamine), and growing

Lewis lung carcinoma, whereas exposure to minute amounts

of LPS renders the animals tolerant to LPS (56). This modu-

lation is likely to occur in humans as well, in whom underly-

ing diseases such as diabetes mellitus and end-stage renal

dysfunction are known to impair host response to infection

(47). Thus, diverse underlying conditions or exposure to path-

ogens may further underscore differences between experi-

mental studies with healthy animals and studies in humans in

clinical settings.

Analysis of responses in a single source—Many critically ill

patients trigger activation of virtually all body systems so that

the total amount of secreted cytokines comes from multiple

cells and organs (Fig. 1). Because of technical and/or diag-

nostic ease, blood, with its cellular and soluble components,

is the most frequently used source of information in critical

conditions (57Y60). Although the blood-based diagnostics have

proven utility in many facets of ICU monitoring, blood leuko-

cytes represent a relatively narrow source considering the entire

pool of inflammatory mediators released to the systemic circu-

lation after trauma and during severe infections (61, 62). Given

that virtually all inflammatory mediators detected in the blood

are produced by various sources (Fig. 1), it cannot be ignored

that the interspecies compatibility is better when other sites of

cytokine synthesis are compared (e.g., hepatocytes). Yet, de-

spite rapid technological advancements in the ICU, such inter-

species comparisons are currently either beyond reach or very

difficult to perform. Although this caveat is not a shortcoming

of the article, it does highlight the fact that the systemic or

organ-specific contribution to the inflammatory response needs

to be taken into consideration when interpreting results.

Compartmentalization of the immune-inflammatory response—
The multisource synthesis of inflammatory mediators has
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yet another important aspectVthe compartmentalization of

the immunoinflammatory response. It has been suggested that

in systemic inflammatory response syndrome and/or infec-

tion, compartmentalized synthesis and release of inflamma-

tory cytokines are equally important (63Y65) and that cells

other than leukocytes may be responsible for morbidity and

mortality in trauma (61), inflammatory shock (66), endo-

toxemia (67Y69), and/or infection (70). Studies have also

shown that peripheral blood cells fail to reflect what occurs

in the tissue fixed cells within the same or different organs

(30, 49, 50, 71, 72). Furthermore, the concept of compart-

mentalization pertains to coexistence of differential (and of-

ten contrasting) responses that depend on the specific location

of the immune-competent machinery, and this notion has

been supported by numerous preclinical studies. For example,

in mice, hemorrhage resulted in a contrasting cytotoxic ca-

pacity with reduction in peritoneal and splenic macrophages

and enhancement in Kupffer cells (73). The disparity in the

posthemorrhage response also extends to the cytokine com-

partment: transcriptional activity of tumor necrosis factor !
(TNF-!), interleukin 1" (IL-1"), and transforming growth

factor " (but not IL-6) and the release capacity of TNF-!
and IL-1 were shown to be enhanced in Kupffer cells but

diminished in peritoneal and splenic macrophages (73, 74).

Remarkably, compartmentalization of the gene and protein

expression response after trauma-hemorrhage (30, 75), in-

fection (71), and no challenge (76) was also reported to occur

in different cell types of the same organ (e.g., liver) and in

cells of the same origin (e.g., mononuclear cells) but different

locations (i.e., blood, spleen, peritoneum). Interestingly, data

reported by the two aforementioned GLUE GRANT studies

that compared genomic white blood cell and splenic re-

sponses in the mouse injury/infection model further substan-

tiate the notion of compartmentalization given that responses

in those two compartments were highly dissimilar both at

the early (50) and late phase after challenge (49). Collec-

tively, the existing evidence strongly suggests that changes

occurring in the blood compartment are not tantamount to the

alterations arising in tissues/organs. Thus, any changes in

treatment protocols based on changes occurring in circulat-

ing leukocytes only, regardless of whether on the genomic or

protein level, and without considering the role of less diag-

nostically accessible compartments, could be very detrimen-

tal to patients.

Genome-to-protein gap—The poor correlation between

mouse and man of the genomic responses reported in the orig-

inal PNAS publication was not verified on the protein level.

While fully understandable because of the labor-intensive na-

ture of genomic screening, the wide gap between the genomic

activation and the final protein product should not be sum-

marily discounted. We speculate, for example, that correlation

of circulating cytokines between patients and corresponding

mouse models, had it been performed, would have shown

better correlation than the changes in mRNA content in leu-

kocytes. Prior work by the GLUE GRANT investigators (77)

showed that using the same type of endotoxin in mice and

humans produced nearly identical kinetics of cytokine pro-

duction. In addition, the concentrations of many of the cyto-

kines or cytokine inhibitors that were produced were relatively

close. Also, both mice and humans showed equivalent lym-

phopenia after endotoxin injection. Furthermore, the exist-

ing evidence demonstrates comparable temporal patterns for

systemic inflammatory responses after both injury (78, 79)

and/or systemic infection (47), especially when patients are

FIG. 1. Sources of inflammatory mediators produced in response to a critical condition. A typical critical illness, regardless whether of purely traumatic
or infectious origin, triggers a broad inflammatory response that involves virtually all organ and cellular systems. The sum of inflammatory mediators circulating in
the blood, the most expedient source of diagnostic information, is composed of proteins synthesized at multiple sites and sources. The simplified (given the
overlap of cells and organs) schematic displays the most important and recognized sources of cytokine production. Black framing indicates the organ/cell
populations that were used in the comparative genomic response study by Seok et al. (3).
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matched with the corresponding (and appropriate) mouse

models. Collectively, these data suggest the total concentration

of circulating cytokines is either substantially enriched by

nonleukocyte sources (Fig. 1) or strongly influenced by var-

ious posttranscriptional/translational modifications (Fig. 2).

Regarding the latter point, the strong relationship between

mRNA and protein abundance levels is not self-evident, and

cancer research demonstrates that the correlation greatly

varies. For example, comparison of mRNA and protein ex-

pression of three genes/protein pairs (MMP-2, MMP-9, and

TIMP-1) showed no significant relationship in prostate cancer

patients (80), whereas in human lung adenocarcinomas, only

20% of the 98 total screened genes demonstrated statistically

significant correlation with their respective products (81). In

human bladder cancers (82), gene-to-protein correlation was

highly significant in some targets and low to negligible in

others. A very similar outcome (i.e., high correlation vari-

ability between protein and mRNA expression levels) was

demonstrated in circulating monocytes from healthy females

(83) and human livers (84), suggesting that the use of mRNA

expression to predict protein expression levels even in healthy

organisms appears to be burdened with a relatively high un-

certainty. The presence of a severe condition such as trauma

or sepsis may further influence the gene-to-protein conduit.

Overall, our current understanding of the dynamic chain of

events occurring between genomic activation and arrival of

the final product in diseased organisms remains poor, and a

straightforward gene-to-protein relationship should not be re-

flexively assumed in any biological system (85).

(Mis)matching the temporal response patterns—The analy-

sis of the genomic data included comparisons of temporal

expression patterns between human and mouse models. This is

a commendable approach given the rapid fluctuation produced

by inflammatory responses in trauma (blood loss and/or burn

injury) and endotoxemia (47, 86, 87). Yet, execution of such a

longitudinal comparison with large databases is particularly

prone to both types I and II errors. One example of such a po-

tential inaccuracy was discussed in the most recent commentary

by Perlman et al. (14): the authors suggested that temporal

dynamics of mouse and human critical conditions should

not be matched 1:1 on the time scale given that compared

with patients, murine disease models evolve over a shorter

time course. A similar concern regarding the human-to-mouse

time mismatch was echoed by Osterburg et al. (15). Further-

more, preliminary reassessment of the same GLUE GRANT

data, with a specific focus on the temporal match, by another

independent group (ImmGen Consortium) was presented at the

recent Shock Society Pro and Con Debate (20). This alternative

analysis demonstrated markedly better human-to-mouse corre-

lations (e.g., reaching r = 0.41 on day 7 after burn injury by

Fold-Change Quadrant Plot analysis), suggesting the original

analysis of temporal responses might not have been sufficiently

rigorous. The complete and detailed findings of the aforemen-

tioned reassessment will be soon submitted for peer review and

will be published in a separate report to allow impartial com-

parison of the two different analytical methods applied.

In summary, the above concerns warrant additional mouse ver-

sus man studies and verification by an independent investigative

FIG. 2. From DNA to the final product. Regulation of gene expression. The path from the genomic activation to the final protein is interrupted by a series of
complex regulatory steps that may either completely halt and/or markedly modify the abundance of the final product. The simplified schematic lists the most
important regulatory mechanisms between DNA activation and synthesis of the ready protein: (1) to initiate transcription, demethylated DNA must be bound to
acetylated histones; (2) RNA-polymerase and transcription factors bind on DNA to start transcription; (3) mRNA leaves the nucleus and is translated into protein;
(4) some proteins are produced in a dormant state and require subsequent activation. Green arrow indicates the first regulatory step between genomic activation
and generation of the corresponding mRNA. Red arrows indicate remaining regulatory steps prior to the emergence of the final protein coded by the mRNA.
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TABLE 1. Selected mouse-to-human translational examples

No. Translational phenomenon/response Specific comments: mouse Specific comments: human

1 Antibodies to TNF given
indiscriminately fail to reduce
sepsis mortality

BALB/c mice were pretreated with antibodies to
TNF prior to CLP sepsis. The murine studies were
published 3 y before the failed human trials (101, 116)

Anti-TNF antibodies failed to be an effective
treatment strategy in a general population
of septic patients (117, 118)

2 Pretreatment with an anti-TNF
strategy prevents early systemic
inflammatory response syndrome

Passive immunization with the antiserum to TNF-!
in BALB/c mice protected them against the lethal
hyperinflammation by Escherichia coli LPS (98)

AntiYTNF-! therapy was effective in humans
with louse-borne relapsing fever when given
as a pretreatment against Jarisch-Herxheimer
reactions (119)

3 Low-dose steroid therapy is
associated with decreased
mortality in septic mice
and humans

Demonstrated in C57BL/6 male mice subjected
to CLP and treated with different corticoid
concentrations; low but not high-dose steroids
improved 21-d survival (120)

Early initiation of low-dose corticosteroid
therapy decreased mortality in septic shock
patients (121)

4 Regulation of chemotactic behavior
of mouse and human neutrophils
via purinergic signaling

Human and mouse neutrophils rely on same
purinergic receptor subtypes (P2Y2, A3, and
A2a receptors) for autocrine signaling (122Y124)

Demonstrated in vitro and in vivo; mice are
suitable to study chemotaxis in inflammation,
trauma, and sepsis (122Y124; NCT01180361*)

5 Human and mouse neutrophils rely
on similar signaling mechanisms
for their activation during
bacteria-induced acute lung injury

Increased nuclear activation of NF-.B in pulmonary
neutrophils of mice after in vivo administration
with endotoxin (125, 126)

Increased nuclear accumulation of NF-.B in
peripheral or pulmonary neutrophils of human
volunteers after in vitro or in vivo stimulation
with endotoxin (127) or in peripheral
neutrophils of patients with sepsis (128)

6 Sepsis always in MARS:
simultaneous systemic release
of both proinflammatory and
anti-inflammatory cytokines in sepsis

Demonstrated in ICR/CD-1 (outbred) female mice
subjected to CLP sepsis (129, 130)

Demonstrated in septic shock patients (131)
and patients with postoperative abdominal
sepsis (132)

7 IL-6 serves as a biomarker for
sepsis mortality

IL-6 measured 6 h after the onset of CLP sepsis in
BALB/c (133) and CD-1 mice (129) accurately
predicts survival

Patients with high levels of IL-6 are at increased
risk of dying of sepsis (134, 135)

8 Role of nicotinic receptors in
inflammatory responses after
endotoxemia is similar in mice
and humans

Demonstrated in C57BL/6 mice and !7 nicotinic
receptorYdeficient mice; endotoxin-induced response
was abrogated via activation of anti-inflammatory
cholinergic pathway (vagus nerve stimulation) (136)

Human volunteers were administered endotoxin
and GTS-21 (!7nAChR agonist) or placebo
to study anti-inflammatory effects of
cholinergic pathway (137; NCT00783068*)

9 Similar mode of pathogen-associated
molecular patterns detection via
Toll-like receptors (TLRs) in mice
and humans

TLR-4 was identified as the receptor that senses
LPS in experiments with congenic sensitive
(C3H/HeN; C57BL/10ScSn) and resistant
(C3H/HeJ and C57BL/10ScCr) mice (138);
TLR-4 expression level determines the degree
of LPS-susceptibility in mice (139)

Human volunteers administered with LPS
demonstrated altered TLR-induced genes
expression (140). TLR-signaling pathways
are strongly modulated in septic patients (141)

10 Sepsis induces profound apoptosis
of immune and gastrointestinal
epithelial (GIE) cells

Demonstrated in CLP female ND4 mice (142) and
Pseudomonas aeruginosa pneumonia-induced
septic FVB/N mice (143); apoptosis in B and
T lymphocytes and dendritic cells. GIE cell
apoptosis in large and small intestine

Demonstrated in patients who died of sepsis
and sepsis and MODS; data obtained by
retrospective (rapid autopsy) and prospective
(tissue resection) examination (144Y146)

11 Sepsis increases while septic shock
decreases the rate of hepatic
gluconeogenesis

Demonstrated in mechanically ventilated
C57BL/6 (inbred) male mice subjected to CLP
sepsis (147)

Demonstrated in ‘‘infected’’ patients after surgery
or trauma (148) and ‘‘bacteremic’’/‘‘complicated
bacteremic’’ burn patients (149)

12 Increased nitric oxide reduces systolic
contractility but supports (adaptive)
left ventricular diastolic relaxation

Demonstrated in mechanically ventilated male
C57BL/6 mice subjected to CLP sepsis (150)

Demonstrated in patients with septic shock
(151), rat cardiomyocytes exposed to serum
from patients with septic shock (152), and
patients with chest pain (153)

13 Identical pathomechanism of
increased intestinal mucosal
permeability during inflammatory
conditions in mice and humans

Increased intestinal permeability is associated with
an increase in IL-1"Yinduced NF-.B activation
and MLCK expression (154). This action involves
p38 kinase and ATF-2 activation in mice and
humans (155)

Production of IL-1" in ulcerative and Crohn colitis
(156) increases intestinal epithelial tight
junction permeability (157); these actions are
mediated by an NF-.BYdependent increase
in MLCK gene transcription (158)

14 Epithelial tight junction barrier
failure in mice and humans

Demonstrated in anti-CD3 murine diarrhea
(159, 160) model, Card15/NOD2j (159) and
NOD2-deficient (160) mice; MLCK activation is
necessary for epithelial barrier dysfunction and
mucosal permeability increase (159, 160); NOD2
gene regulates this response (161, 162)

Demonstrated in human colonic epithelial cell
line HT-29/B6 (163), Caco-2 cells (164, 165),
and intestinal epithelial cells (165); TNF-!
impairs mucosal barrier function of the
epithelial tight junction (163) by NF-.B
activation (164) and increasing gene/protein
expression of MLCK (165)

(Continued on next page)
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team to validate the analysis of the findings reported by Seok and

colleagues (3). If confirmed, the asserted dissimilarity of the ge-

nomic responses in human versus mouse leukocytes will have

important and long-term implications for preclinical animal re-

search, for example, alerting against the interspecies translational

incompatibility of data generated in preclinical (i.e., in the mouse)

testing of potential therapeutic genetic manipulations on the level

of circulating leukocytes. At present, however, because of the rapid

15 Intrauterine group A streptococcal
infections in mice and humans
are similarly modulated by
prostaglandin (PG) E2

Demonstrated in a mouse (C57BL/6) GAS (group A
streptococcus) infection model; PGE2 impaired
the phagocytic ability of mouse peritoneal
macrophages in vitro (166)

An in vitro human macrophageYGAS interaction
model was used. In GAS infected human
THP-1 (macrophage-like) cells, PGE2 impairs
the phagocytic ability of THP-1 and of human
placental macrophages (166)

16 LPS-tolerant cells present a
reprogramming of gene
expression and function following
a second challenge with LPS

Differentially regulated genes were found in bone
marrowYderived macrophages tolerant to LPS. The
tolerizeable (T; proinflammatory action) genes were
typically not reinduced in macrophages upon second
LPS exposure, whereas the nontolerizeable (NT;
antimicrobial action) genes were reinduced (167)

Demonstrated in human monocytes made
tolerant to LPS (168, 169); class T genes
encompass antigen presentationYrelated and
proinflammatory cytokine genes; NT genes
code for anti-inflammatory/microbial factors
(168); T and NT genes modulate TLR
signaling pathway (169)

17 Sepsis increases muscle protein
degradation and proteasome
activity

CLP-induced sepsis in B6 mice increased total
and myofibrillar protein breakdown in EDL with
evidence of increased proteasome activity (170)

Critically ill patients with sepsis show
increased muscle proteolysis and
proteasome proteolytic activity (171)

18 Sepsis decreases lean body mass
and increases muscle wasting

CLP-induced sepsis in C57BL/6 male mice
decreases body weight, lean body mass,
and muscle mass (172)

Patients with severe peritonitis sepsis show
loss of body weight and muscle mass and
protein (173)

19 Sepsis induces elevated
thrombinVantithrombin
complexes are a part of TF/FVIIa
pathway activation of coagulation

Using a mouse model peritonitis was induced by
an intraperitoneal injection of live E. coli (174)

Demonstrated in patients with severe bacterial
peritonitis (175) and in healthy volunteers
injected with endotoxin (176)

20 Sepsis induces systemic elevation
of matrix metalloproteinase (MMP)
8 as part of the inflammatory
process in humans and mice

Increased activity of MMP-8 was observed in plasma
of C57BL/6 mice. Generation of MMP-8 genetically
deficient mice was used to understand the biological
function of the enzyme in inflammation (177)

Increased mRNA expression and activity of
MMP-8 was observed in blood of pediatric
septic patients and correlated with disease
severity and mortality (177)

21 Similar mechanisms of mitochondrial
dysfunction and mitochondrial
biogenesis during sepsis in mice
and humans

Mitochondrial dysfunction was demonstrated in
CLP male BALB/c mice (178); mitochondrial
biogenesis was associated with an increase in
PGC-1! in peritonitis by fibrin clot in male C57BL/6
mice (179)

Mitochondrial dysfunction was demonstrated
in muscle biopsies of septic shock patients
(180). Septic survivors presented increased
expression of the mitochondrial
biogenesis-related PGC-1! (181)

22 Inflammation-induced autophagy
in tissues

Demonstrated in C57BL/6 male mice subjected to
CLP (182) and Atg16L1 deficient healthy mice
(183) and mice infected with Salmonella enterica
(184); autophagy regulated by Atg16L1 gene

Demonstrated in patients who died of
sepsis (182) and in patients with Crohn
disease (183)

23 Similar dynamics of circulating
plasminogen activator inhibitor
(PAI) 1 in subjects surviving and
dying of sepsis

Demonstrated in CD-1 female mice subjected to
CLP (185) and posttraumatic sepsis (186);
PAI-1 increase correlates with sepsis severity
and/or outcome

Demonstrated in surviving and nonsurviving
patients with sepsis, severe sepsis, and/or
septic shock (187)

24 Reduced antioxidant defense and
increased oxidative stress in
spinal cord injury

Demonstrated in CD-1 male mice with spinal cord
injury; increase in protein nitration and membrane
lipid peroxidation and secondary damage (188;189).

Demonstrated in patients with spinal cord
injury; strong and long-term reduction of
circulating antioxidants and increase of
oxidative stress (190)

25 Heat shock protein (HSP)
72 serves as a biomarker
for early detection of acute
kidney injury

Demonstrated in B6/129-j/F2 male iNOS knockout
mice subjected to renal injury by ischemia/reperfusion;
increase of renal HSP-72 mRNA and protein
correlated with the extent of renal injury (191)

Urinary HSP-72 was significantly increased
in patients with clinical acute kidney injury
prior to elevation of serum
creatinine (192)

26 Plasma gelsolin is a potential
prognostic biomarker for
critically ill surgical patients

Exogenous gelsolin infusion reduces brain inflammation
and apoptotic signaling and improves survival of
mice following major burn injury (193) as well as
attenuating burn-induced pulmonary microvascular
dysfunction (194)

Low plasma gelsolin levels were associated
with increased risk of death occurring in the
ICU (195) and correlated with development
of multiple organ dysfunction syndrome
and fatal outcome in burn patients (196)

*www.clinicaltrials.gov identifier (NCT number).
NF-.B indicates nuclear factor kappa B; MARS, mixed anti-inflammatory response syndrome; MLCK, myosin L chain kinase; NOD, nucleotide oligo-
merization domain; EDL, endothelial cellYderived lipase; TF, tissue factor; PGC-1!, peroxisome proliferator-activated receptor + coactivator 1!; MODS,
multiorgan dysfunction syndrome; iNOS, inducible nitric oxide synthase; mRNA, messenger ribonucleic acid.

TABLE 1. Continued

No. Translational phenomenon/response Specific comments: mouse Specific comments: human
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character of interventions in critical medicine, the vast ma-

jority of inflammation-targeted therapies focus on circulating

inflammatory mediators, irrespective of the site of their syn-

thesis, and focus less on manipulations of gene expression.

The Good and the Bad: The Role of Mouse Models in
Critical Illness

Compared with other protracted disease conditions such

as cancer or atherosclerosis, critical care research faces more

difficult hurdles. These challenges stem from the fact that

critical illness typically progresses very quickly, triggers rapid

reactions from all body systems, results in heterogeneous

reactions, and causes extreme fluctuations in the elicited re-

sponses. Consequently, the challenge of trying to develop

clinically relevant mouse models to simultaneously mimic all

components of human critical injury and illness likely repre-

sents a fool’s errand. Paradoxically, the wide public uproar

provoked by the work of Seok and colleagues (3) may simul-

taneously beVregardless of the ultimate accuracy the study’s

findingsVits great service to the scientific community as it has

elevated the discussion on the adequacy of preclinical mouse

modeling in the contemporary research realm to a deserving

premiere spot. In doing so, it is likely to also stimulate the

discussion of the fidelity of mouse models designed to mimic

other human pathological conditions (e.g., heart disease, obe-

sity, cancer, etc.).

The limitations of existing mouse models of critical care

illnesses (and beyond) are not a new concern. Apart from the

ones discussed here, previous articles have focused on the

mouse-to-human mismatch, e.g., characterizing major differ-

ences in the immunoinflammatory signature (6). In addi-

tion, responses to inflammatory stimuli (88, 89), biochemical

functionality of homologous proteins (90), makeup of serum

proteins (91), and the influence of so called Bcold stress[ in the

laboratory setting (92) have been identified as important dif-

ferences between mice and humans. However, some of these

same arguments could be used to criticize the way in which

clinical studies are conducted. For example, laboratory isola-

tion approaches for blood leukocytes vary widely between

laboratories. This could lead to contrasting results in experi-

ments using patient samples in a manner similar to that of

mouse studies. Also, most human studies are limited to using

blood samples, whereas other tissue and organ compartments

can be effectively studied in mice, which improves the scien-

tific profundity of well-designed animal research studies. No

less important for modeling/translational purposes are variations

within populations of human patients themselves. Trauma/sepsis

patients typically receive allogeneic blood transfusion (versus

shed blood in animals), different doses of morphine-based

products (versus lack of and/or set doses of nonmorphine/

morphine substances), inotropic agents, and others, a majority

of which produce strong immune-inflammatory effects that

are very difficult to account for and match experimentally

(93). Thus, patient studies are fraught with numerous small

and large differences in the manner in which clinical care and

standard procedures are carried out at different institutions.

Furthermore, apart from the biologically based differences,

preclinical testing is simultaneously influenced by no less

important study design flaws such as (1) an excessive focus on

early (acute) events; (2) age mismatch; (3) a lack of comor-

bidities; (4) using pretreatment versus posttreatment in an

appropriate manner; (5) lack of broad spectrum antibiotic

coverage for sepsis treatment studies; and (6) difficulty in re-

producing specific ICU conditions in animal models (47). This

is far from an exhaustive list of mouse-to-human mismatches

and/or potential confounding factorsVmany new pieces of this

puzzle are yet to be identified.

From a global perspective, however, these differences do

not appear to supersede similarities as there are countless

physiological and pathological traits shared by both species in

response to critical illness. We have selected dozens of rele-

vant examples demonstrating the striking similarities in the

responses of mice and humans (Table 1). This list could serve

as a starting point for designing animal models for answering

clinically relevant questions. Ideally, the origins of a Bperfect[
animal model should be deeply rooted in the clinical problem

solving, and the model itself should reproduce as closely as

possible the entire spectrum of pathophysiologic consequences

and the mechanisms of the human condition it aims to dupli-

cate. Such an ideal match may be challenging to achieve, not

only with mice or rats but with larger species as well, even

nonhuman primates. An obvious first step in responsible

modeling is to identify and verify a murine system with an

acceptable resemblance to the studied critical illness and in the

specific context of the defined scientific question. For exam-

ple, one should not set out to study septic acute lung injury

in CD-1 mice as this strain does not typically develop this

condition (94), or to expect that pretreatment data generated

in a burn model conducted in healthy 4-week-old male mice

will be translatable to the entire spectrum of human patients.

The initial selection of the model must be subsequently

followed by a fine tuning of the study design and, finally,

a realistic interpretation of the acquired data. The latter ele-

ment requires careful consideration. Too frequently (the PNAS
article notwithstanding) lax interpretations of animal-based

results are published in the scientific literature creating

confusing (if not outright misleading) Bbackground noise[
(95). Compulsory disclosure of relevant animal experimen-

tation details in compliance with the ARRIVE Guidelines

(http://www.nc3rs.org.uk; recently adapted by the Shock
journal; BInstructions for Authors.[ Shock 41(1), January 2014)

will partly help to remedy this confusion. A more diligent

peer-review process is even stronger medicine given the

growing stock marketYlike competition in the area of scien-

tific publishing (96).

Achieving the goal of implementing the elements listed

above will likely generate data sets that are much more precise

and relevant to patients. Yet, old habits die hard, and many

misconceptions surrounding applicability of data from mouse

models are likely to have long half-lives. The most recent

exchange between Cauwels et al. (12) and the authors of the

original article (3) is perhaps a telling example: in the reply

letter to Cauwels et al. (97), the fact that anti-TNF treatment

was lifesaving in mice administered a lethal dose of LPS (98)

but failed in septic patients supported their notion that mouse

models are generally unfit to predict human inflammatory

470 SHOCK VOL. 41, NO. 6 OSUCHOWSKI ET AL.

Copyright © 2014 by the Shock Society. Unauthorized reproduction of this article is prohibited.

http://www.nc3rs.org.uk


diseases such as sepsis. However, when anti-TNF antibodies

were used in a clinically relevant model of sepsis (i.e., CLP)

(99, 100), they also failed to have any protective effects

against sepsis (101); a finding similar to the lack of efficacy

seen in patients. Thus, it is humans, and not mice, with their

incomplete understanding of sepsis pathophysiology coupled

with the use of an inappropriate animal model, that are to be

blamed for the spectacular collapse of anti-inflammatory sep-

sis trials. After Bsuccessfully[ executing various treatments

(i.e., against circulating cytokines or endotoxins) in the mouse

(98), rat (102), rabbit (103), dog (104), and nonhuman pri-

mates (105), the striking failure of similar anti-inflammatory

therapeutic protocols in septic patients has brought a painful

realization that injecting mice and other species with a lethal

dose of bacterial LPS is not a good predictive model for a

typical human sepsis. It must be stressed, however, that a

complete renouncement of anti-inflammatory treatments based

on the failed trials would be equally short sighted, and the

most recent meta-analysis argues that application of anti-TNF

agents in septic patients should be revisited (106). It has be-

come clear that responses elicited in sepsis are highly mixed,

and the immunosuppressive component frequently exceeds

hyperinflammation (107). Hence, in smaller cohorts of patients

treated based on the similar type of acquired sepsis (e.g., me-

ningococcal septicemia), their well-defined immunoinflam-

matory makeup, and/or predicted susceptibility toward the

tailored treatment, even the Bnotorious[ anti-TNF interven-

tion may be lifesaving (108). Limited evidence in support

of implementing such tactics is already available (109, 110;

www.clinicaltrials.gov identifier NCT01046669).

Clearly, sepsis and septic shock are complex disease pro-

cesses. We suggest multiple animal models should be consid-

ered for basic research and preclinical testing of therapeutics.

The remarkable capability of contemporary science has opened

many new investigative avenues such as emergence of human-

ized mice (111Y113) and access to a growing selection of re-

combinant inbred mouse strains (with specific defined genetic

traits) from the Collaborative Cross Project (114, 115). Yet,

whereas using inbred mice for basic research remains important

to advancing knowledge and may allow much more nuanced

investigation of gene environment and gene-pathogen in-

teractions, the efficacy testing of beneficial treatments should

be tested in outbred mice as well. Attempts to test the efficacy

of treatments with multiple types of infectious disease models

(e.g., CLP, pneumonia, urosepsis, etc.) should be considered

and tested before moving forward with efficacy trials in large

animals and then patients.

CONCLUSIONS

The current reality is that other than whole-blood assays and

isolated single organ cultures, animal models are the only vi-

able and fully intact biological systems that allow examination

of clinically relevant hypotheses and studies to decipher un-

derlying mechanisms of biological phenomena. Mice have

been in the forefront of these investigations precisely for the

reason that they have served as an origin of many subsequent

successes at the patient’s bedside, including the area of critical

care medicine. Yet, it is evident that any mouse study is merely

a beginning in the long process that requires caution and series

of subsequent verification steps. To continue with in vivo re-

search in an ethically responsible way, the scientific commu-

nity has an obligation to seek improvements and implement

more fitting solutions in the currently used mouse model sys-

tems so they continuously adapt to the evolving understand-

ing of the respective human critical illnesses and not vice

versa. We must remain cognizant of the known limitations of

the models, share newly discovered incompatibilities, and be

willing to abandon the erroneous models if necessary. In re-

lation to this discussion on the relevance of mouse models in

critical care medicine, the allegory of inflammatory response

appears to be very fitting. Specifically, an exaggerated or ex-

cessively weak inflammatory reaction will typically lead to a

poor outcome in an ICU patient. In a similar manner, excessive

trust or hasty discounting the usefulness of mouse models for

research will have a negative impact on preclinical critical care

research and ultimately result in fewer discoveries that im-

prove patient care and outcome.
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