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Taxonomy and nomenclature of bacteria with clinical and scientific 
importance: current concepts for pharmacists and pharmaceutical scientists
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1. Introduction to (bacterial) taxonomy

Taxonomy (from the greek words taxis=arrange
ment or order, and nemein=to distribute or govern) 
is the science of the classification of various living 
organisms [1,2]. In case of bacteria, taxonomy con-
sists of three independent, but interrelated disci-
plines, namely classification, nomenclature and iden-
tification (sometimes referred to as the ‘trinity’ of 
taxonomy) [2]. The most basic taxonomic group 
(i.e. unit) in bacterial taxonomy is the species, 
while groups of species are collected into genera 
(genus), which are then collected into families (Fa-
milia), families into orders (Ordo), orders into class-
es (Classis), classes into phyla (Phylum) and phyla 
into a domain (or Kingdom, the highest level), how-
ever, there are subgroups to these main classifica-

tions (see Table I and II for examples). Groups of 
bacteria at each rank or level have names with 
endings or suffixes characteristic to that rank or 
level (Table I) [1-3].

Nevertheless, taxonomic units under species may 
still be relevant (especially in the case of medically-rel-
evant bacteria), because members among specific spe-
cies can be distinguished on the basis of certain biologi-
cal or genetic characteristics: these members may be 
classified in a sub-group of members, called subspecies 
[1-3]. An example for this is the differentiation of Cam-
plyobacter species: C. fetus subsp. veneralis is a caus-
ative agent of sexually transmitted diseases and miscar-
riage among cattle, while C. fetus subsp. fetus may 
cause intrauterine infection in humans [4]. Antigenic 
characteristics may be another possible way to distin-
guish subgroups under the threshold of species, called 
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Table I Example of taxonomic classification for a common Gram-positive, Gram-negative and an atypical pathogen
Staphylococcus aureus Pseudomonas aeruginosa Mycoplasma pneumoniae

Kingdom Bacteria Bacteria Bacteria

Phylum Firmicutes Proteobacteria Tenericutes

Class Bacilli Gammaproteobacteria Mollicutes

Order Bacillales Pseudomonadales Mycoplasmatales

Family Staphylococcaceae Pseudomonadaceae Mycoplasmataceae

Genus Staphylococcus Pseudomonas Mycoplasma

Species S. aureus P. aeruginosa M. pneumoniae
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Table II Characteristics of the current bacterial classification 
and the number validly published names for each 
classification level [22]

Taxonomical level n
Kingdom Regnum 1
Subkingdom Subregnum 2
Infrakingdom Infraregnum 2
Superdivision/Superphyla Superdivisio 1
Subdivision/Subphyla Subdivisio 9
Superclass Superclassis 2
Class Classis 106
Subclass Subclassis 8
Order Ordo 188
Suborder Subordo 19
Family Familia 399
Subfamily Subfamilia 0
Tribe Tribus 24
Subtribe Subtribus 0
Genus Genus 2854
Species Species 15626
Subspecies Subspecies 586

serogroups or serovariants [5]. In case of gut bacteria 
or Enterobacteriaceae (especially important for Salmo-
nella species and Escherichia coli), hundreds of differ-
ent serovariants may be differentiated, based on the cell 
wall (O; somatic antigen, based on oligosaccharides), 
capsule (K, from the German Kapsel or Bacterienkap-
sel) and flagellar (H; from the German Hauch meaning 
“breath” or “mist”) antigens [6,7]. In fact, this is the ba-
sis of the Kauffman–White classification, which was 
frequently used for routine clinical microbiology and 
public health purposes for serotyping [8]. Similarly, 
bacteria may be further characterized based on their 
disease-causing capacity (pathogenicity) into pathot-
ypes, e.g., extraintestinal-pathogenic E. coli (ExPEC), 
enteropathogenic E. coli (EPEC), enterotoxin-produc-
ing E. coli (ETEC), enteroinvasive E. coli (EIEC), en-
teroaggregative E. coli (EAEC), diffusely adherent E. 
coli (DAEC) and so on [9,10].

However, a lot has changed since the first de-
scription of taxonomy (Augustin Pyramus de Can-
dolle, 1813), when the available methods for the 
characterization of bacterial, plant or animal spe-
cies were very limited [11]. Nowadays, with the 
advent of molecular biological methods and se-
quencing, a revolution is currently occurring with 
regards to the reporting of novel taxa [12]. The de-
scription of new bacterial species was further fa-

cilitated by the newfound interest in the character-
ization of the human microbiome [13]. One of the 
most important milestones was the launch of the 
Human Microbiome Project (HMB; the first phase 
of which was launched in 2007), with the aim of 
characterize the human gut microbial flora in 
healthy (physiological) and disease states; the 
long-term aim of this project was to find causation 
between human pathologies (e.g., autoimmune 
disorders, obesity, diabetes, neuropsychiatric dis-
orders, diseases affecting the cardiovascular sys-
tem) and qualitative/quantitative changes in the 
microbiome [14-16]. Microbial culturomics (a tech-
nique allowing for the culturing of previously un-
culturable bacterial species by reproducing their 
natural habitats using complex methods, with the 
aid of matrix-assisted laser desorption-ionization 
time-of-flight mass spectrometry [MALDI-TOF 
MS] and whole-genome sequencing [WGS]) has 
also resulted in the description of a staggering 
number of novel taxa [17-19]. Sequencing technol-
ogies also had a significant role in the description 
of the prokaryotic genetic diversity.

Between 1990 and 2000, there was on average 
200 novel bacterial species described per year [20]. 
Owing to these recent developments, the number 
of validly published genera and species has in-
creased by approximately 50% since 2004, reduc-
ing the percentage of known prokaryotes that 
have been implicated in animal or human clinical 
conditions from ~15% to ~10% [21]. Based on the 
records of the bacterio.net database, there are cur-
rently 19,717 validly published bacterial names 
and 383 so-called candidate names published (as of 
20th of October, 2019) [22]. However, the database 
of EZBioCloud.net (a freely-accesible database on 
prokaryotic diversity) contains 81,189 taxa (out of 
which, 24.89% has been validly published and 
0.51% are candidate names), 64,416 16S rRNA se-
quences (a highly conserved, evolutionally-con-
stant region) and 146,704 qualified genomes (as of 
9th of August, 2019) [23]. Nonetheless, there are re-
ports estimating that the currently known/de-
scribed microbiological diversity only represents 
around 1-5% of the global prokaryotic diversity 
[20-21].

Bacterial systematics is a field, which is fre-
quently used synonymously with taxonomy, how-
ever, the scope of systematics is much broader, in-
cluding data on bacterial morphology, physiolo-
gy, molecular biology and biochemistry, metabol-
ic products, pathogenic potential, ecological nich-
es and epidemiology to characterize, arrange and 
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classify bacteria [24]. Systematics became more 
relevant after the widespread adoption of molecu-
lar biological methods, ever higher resolution 
characterization of bacterial species [25] (Figure 1).

Due to the rapid developments in bacterial tax-
onomy, both consisting of the description of novel 
taxa and reclassification of existing bacterial gen-
era to other taxonomical units (e.g., the history of 
S. maltophilia: it first described as Bacterium booker 
(1943), later on, it was redesignated as Pseudomo-
nas maltophilia (1958) and Xanthomonas maltophilia 
(1981); finally, in 1993, the genus Stenotrophomonas 
was proposed), it is very difficult, if not impossible 
for researchers, officials, public health microbiolo-
gists and healthcare professionals to keep in mind 
all the accepted or proposed changes [26,27]. 
However, the importance of correct taxonomy in 
scientific communication and the diagnostics and 
therapy of bacterial infections cannot be underesti-
mated [3]. Even if they are not aware of all the 
changes and the newly introduced species, rele-
vant persons should be able to quickly find them 
in medical literature, scientific publications or oth-
er sources (Web pages or blogs kept up by taxono-
mists).

There are various resources for pharmaceutical 
scientists and microbiologists to get informed re-
garding the recognition of novel bacterial species 
or describing proposed reclassification of an older 
species. The official publication prokaryotic taxon-
omy and source of data regarding these matters in 
the International Journal of Systematic and Evolu-
tionary Microbiology (IJSEM); the main aim and 
role of this publication is to report the description 
of new taxa or the reclassification of existing spe-

cies [28]. The rules associated with the proposal of 
new bacterial taxa were described in the Bacterio-
logical Code (1990), which was updated though the 
publication of the Taxonomic Outline of the Bacte-
ria and Archaea (TOBA; 2006) [29,30]. Additional 
amendments to these rules are generally pub-
lished in IJSEM. The proposed new species and 
species names (candidate) are to be submitted to 
the Editorial Office of IJSEM for evaluation, with 
the suffix nova (genus nova, species nova). The new 
taxonomy and nomenclature can only be consid-
ered as official, if the Editorial Board of IJSEM and 
the International Committee on Systematics of 
Prokaryotes (ICSP) both approve the submission 
[21]. If approved, the proposed name receives the 
approved state (valid name), which is formalized 
by the certificate of approval awarded by the 
IJSEM and ICSP [21,28]. However, once these taxa 
are on the approved lists, they may still be subject 
to reclassification, based on the designation of syn-
onyms or due to a transfer to another genus. The 
validation of a new taxa is finalized if designated 
type strains of the species are deposited into inter-
nationally-recognized culture collections (e.g., 
American Type Culture Collection [ATCC], Asian 
Bacterial Bank [ABB], Anaerobe Reference Labora-
tory, Helsinki Collection [AHN], Culture Collec-
tion of Switzerland [CCOS], Collection de l’Institut 
Pasteur [CIP], United Kingdom National Culture 
Collection [UKNCC]) at least in two separate 
countries [31].

The Antoine van Leeuwenhoek Journal of Mi-
crobiology has become the second main journal in 
this field in the recent years, reporting on >100 
new candidate species per year, since 2014 [32]. In 

addition, several other journals with 
interests in microbiology/infectious 
diseases may be vehicles in reporting 
novel taxa, including but not limited 
to: Systematic and Applied Microbi-
ology, Journal of Medical Microbiolo-
gy, Current Microbiology, Clinical 
Microbiology and Infection, Diagnos-
tic Microbiology and Infectious Dis-
ease, Anaerobe, Infection, Genetics 
and Evolution, Journal of Antimicro-
bial Chemotherapy, Emerging Mi-
crobes and Infections, New Microbes 
and New Infections, Microbiology 
and Immunology, Frontiers in Genet-
ics, Frontiers in Microbiology, Ar-
chives of Microbiology, Microbiolo-
gyOpen, Standards in Genomic Sci-

Figure 1 Relationship of the field of taxonomy and bacterial systematics
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ences, Acta Pathologica Microbiologica et Immu-
nologica Scandinavica (APMIS), Zentralblatt für 
Bakteriologie, Research in Microbiology [33]. Nev-
ertheless, it is important to note that for the novel 
or revised taxa to be validly published (and the 
study was not submitted to IJSEM), the proposi-
tion must be included on an “approved” list in 
IJSEM. IJSEM publishes papers entitled “List of 
new names and new combinations previously effective-
ly, but not validly, published” six-to-twelve times 
per year, which gives a good idea about the mo-
mentum of bacterial taxonomy [21,28,33]. The pro-
posed taxa that have been previously described in 
other journals will be footnoted in IJSEM.

2. What is in a name: nomenclature in 
bacteriology

The discipline of nomenclature is mainly concerned 
with the assignment of names to taxonomic units 
or groups, on the basis of specific rules [34]. Before 
a name could be designated for any microorgan-
ism, one has to describe its biological characteris-
tics (for its future identification), allowing for its 
classification in the subordinate system, as previ-
ously described [1-3]. The origins of nomenclature 
date back to 1753, when Carl Linnaeus published 
Species Plantarum, introducing the binomial nomen-
clature and the currently used classification hier-
archy, based on greek-latin terms as the normal 
system of naming organisms [35]. Species Planta-
rum (later functioning as the International Code 
of Botanical Nomenclature [ICBN]) was first set of 
rules and recommendations of its kind. Because 
bacteria were once classified among plants, the 
nomenclature of these microorganisms was sub-
ject to the rules of the ICBN until the 1930s, when 
the bacteriological society has decided on the 
preparation of an independent code. The Interna-
tional Code of Bacteriological Nomenclature (or 
Bacteriological Code for short) was first approved 
in Copenhangen, 1947 [29,30]. The entire frame-
work of naming bacteria is too complex to be de-
scribed in its entirety, as the Bacteriological Code 
currently had more than 500 rules and regulations 
regarding name proposals for novel species names 
(which are periodically being updated; the up-
dates are published in IJSEM) [36]. As the “intel-
lectual capital” (i.e. available empirical and exper-
imental data) available for the scientists submit-
ting the candidate names for consideration con-
stantly grows, so does the scientific accuracy of 
the bacterial names. The etymology (the study of 

the origin and history of words) of bacterial ge-
nus/species name is very diverse; here are several 
examples on the etymology of some bacterial gen-
era:
−− Famous microbiologists (or scientists): Rothia 

(Genevieve D. Roth), Kingella and Elizabethkingia 
(Elizabeth O. King), Escherichia (Theodor Esche-
rich), Pasterurella (Louis Pasteur), Gaffyka (Georg 
Theodor A. Gaffky), Burkholderia (W.H. Burk-
holder), Ehrlichia (Paul Ehrlich), Serratia (Serafi-
no Serrati, physicist)

−− Mythological names: Cronobacter (Cronos, a ti-
tan), Proteus (Proteus, a prophetic sea-god), Tel-
luria (Tellus, a Roman goddess personifying the 
Earth)

−− Morphological characteristics: Bacillus (rod), 
Streptococcus (spheres with grape-like organiza-
tion), Helicobacter (helical-shaped), Campylobacter 
(curved rod), Clostridium (greek word for spin-
dle)

−− Biochemical characteristics: Achromobacter (has 
no pigment), Acinetobacter (non-motile), Chomo-
bacterium (produces pigment), Anaerococcus 
(strict anaerobe)

−− Geographical (e.g., site of first isolation): Bud-
vicium (Latin name of the city Cěské Budějovice 
where the bacterium was first isolated), Hafnia 
(old name for Copenhagen), Orientia (the Orient, 
the area where the organisms are widely dis-
tributed), Sinorhizobium (which lives in a root in 
China)

−− Distribution: Aerococcus (air), Enterococcus (gut), 
Coprococcus (feces), Leptotrichia (fine hair [of rab-
bits])

−− Disease-causing capability: S. pneumoniae 
(pneumonia), Vibrio cholerae (cholera: watery di-
arrhoea), N. meningitidis (meningitis),  P. multoci-
da (lethal to many)

−− Institutions: Centers for Disease Contol and 
Prevention (CDC): Cedaceae, Armed Forces Insti-
tute of Pathology (AFIP): Apifia
Changes at higher taxonomical levels (e.g., at 

orders and classes) are obviously much less likely 
to occur than in lower units, therefore one of the 
most common conventions on denominations is 
that the family name is based on the name of the 
most typical genus (i.e. a type species) in its do-
main [29-36]. A typical example is the Legionellace-
ae family, where the most characteristic genera is 
the one containing the Legionella species, namely 
L. pneumophila, the causative agent of Legion-
airre’s disease. In contrast, for Enterobacteriaceae, E. 
coli is considered the type species, but the family 
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is not called Escherichiaceae; instead, due to the an-
atomical localization of most of these bacteria in 
the gut flora, they are classified in Enterobacteriace-
ae. Interestingly, the family Enterobacteriaceae con-
tains a genus called Enterobacter, however, if one 
of the members of this genus would be the type 
species in the family, it would need to be called 
Enterobacteraceae [29-37]. The correct writing of 
bacterial taxonomical designations are also strictly 
defined by this convention, e.g. names of the spe-
cies, genera and family are written in italics, how-
ever, at higher taxonomical designations, this is 
not done [29-36].

The use of abbreviations is also common in the 
literature and the routine clinical practice. Al-
though there are official (defined in the Bacterial 
Code) three-letter abbreviations for a variety of 
bacterial genera (e.g., Acp. for Acidophilum, Rsc. for 
Roseococcus) to ease correspondences regarding 
anoxygenic phototrophic bacteria, other “real 
word” examples include mosaic terms derived 
from names of bacterial groups (e.g., GAS: Group 
A Streptococcus; ESKAPE: Enterococcus faecium, S. 
aureus, Klebsiella spp., Acinetobacter baumannii, P. 
aeruginosa, Enterobacter spp.), therapeutic recom-
mendations (e.g., MRSA: methicillin-resistant S. 
aureus) or public health significance (e.g., MSTM: 
multidrug-resistant Stenotrophomonas maltophilia, 
MDRAB: multidrug-resistant A. baumannii) [27, 
38-43]. It must be noted that in medicine (especial-
ly as far as the clinical microbiologist-physician 
relationship is concerned), the use of commonly 
known names is preferred, which are not subject 
to change (irrespective of taxonomic changes), so 
that the doctors reading the reports, e.g., of a sus-
ceptibility test can comprehend them [29-36].

3. Laboratory methods used in bacterial 
taxonomy and identification

The discipline of classification refers to the act of 
arranging bacteria into these group or taxa, based 
on their evolutionary relationships and similarity 
[44]. In the early days of bacterial taxonomy, the 
basis of classification was solely on the determina-
tion of microscopic morphology and phenotypic 
characteristics, which could be observed by a light 
microscope or by organoleptic analysis in liquid 
or solid media [11]. Later on, this was comple-
mented by the detection of the presence or ab-
sence of various enzymes, such as coagulase (dif-
ferentiates between coagulase positive S. aureus 
and coagulase-negative Staphylococcus species), 

catalase (among other things, it differentiates be-
tween Staphylococcus and Streptococcus species), 
oxidase (aids in the differentiation of non-ferment-
ing Gram-negative bacteria, e.g., Pseudomonas and 
Acinetobacter), urease (among other things, it dif-
ferentiates between Ureaplasma and Mycoplasma 
species) and the study of the use of different sug-
ars (i.e. their oxidative or fermentative breakdown) 
[45]. For a very long period of time, these bio-
chemical tests were the mainstay of identification 
in clinical bacteriology. Identification may be con-
sidered as applied taxonomy, during which microbi-
ologists determine whether a particular isolate be-
longs to a recognized taxon (i.e., genus, species or 
subspecies) [1-3]. One of the main utilizers of bac-
terial identification in medicine is the field of clini-
cal microbiology (where bacterial pathogens are 
identified from various clinical samples to estab-
lish the patient’s illness and to guide targeted an-
timicrobial therapy) and public health (the follow-
up of outbreaks caused by bacteria), however, 
companies involved in pharmaceutical research, 
biotechnology, forensics are all relevant stakehold-
ers [21]. 

In the last several decades, pronounced changes 
were brought about in bacterial taxonomy, due to 
the introduction of nucleic acid-based and molec-
ular techniques, thus making phenotypic methods 
less and less relevant [46]. These methods have 
demonstrated that genotypic/phylogenetic relat-
edness does not necessary correlate well with phe-
notypic attributes, such as a Gram-staining pat-
tern, microscopic morphology, oxygen-tolerance 
or fastidious growth characteristics [47]. These 
molecular methods include comparison of DNA-
denaturation or melting temperatures (Tm), char-
acterization of GC (guanine and cytosine) ratios of 
bacterial DNA, DNA-DNA and DNA-RNA hy-
bridization, pulse-field gel electrophoresis (PFGE), 
multi-locus sequence typing (MLST), average nu-
cleotide identity (ANI), MALDI-TOF MS, 16S 
rRNA gene and whole genome sequencing (WGS) 
and next-generation sequencing (NGS) [48-50]. 
The use of these methods in increasingly preva-
lent not only in classification, but also in identifi-
cation thus, revolutionizing the field of microbiol-
ogy in the process [48-50]. The prevalence of their 
use is mainly determined by their accuracy, ro-
bustness and their price. Based on the abovemen-
tioned methods, two bacteria are considered to be 
the same species, if their nucleotide sequences are 
at least 70% identical, and the difference between 
their Tm values is less, than 5% [47]. The analysis 
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of the GC ratio (G+C content) in genomic DNA is 
also a suitable taxonomic method: the GC ratio is 
the most variable in prokaryotic genomes (20-
80%); however, in strains of a specific species, the 
GC content is shown to be constant. It is basically 
defined as percentage of the G and C amino nucle-
otides in the bacterial genome, which was fre-
quently used for the division of various bacterial 
genera (e.g., staphylococci and micrococci highly 
resemble each other, based on phenotypic and 
biochemical characteristics, however, the differ-
ence in their GC ratios has been shown to be pro-
nounced [~30-40% vs. ~65-75%]) [51]. DNA–DNA 
hybridization was considered the gold standard 
for decades: genomic hybridization allows for the 
measurement of the degree of similarity between 
two genomes; this technique is very useful in the 
differentiation of closely-related bacterial species 
[52,53]. In contrast, DNA-RNA hybridization is 
useful in the genetic analysis of two phylogeneti-
cally distant bacteria: this is possible, because ri-
bosomal RNA (rRNA) is transfer RNA (tRNA) 
only represent a minor portion of bacterial genes, 
which evolves in a slower pace (i.e. they are more 
conserved), compared to other genes coding for 
proteins [52,53]. Currently, various nucleic acid 
sequencing methods (of which, WGS and NGS are 
one of the most modern) represent the top-tier 
methods for bacterial classification and the com-
parison of genomic structures [48-50]. Nucleic 
acid (DNA and RNA) sequencing is another mo-

lecular characteristic that helps directly compare 
the genomic structures. The sequencing of 5S 
rRNA (from the 50S prokaryotic ribosomal sub-
unit), 16S rRNA and 16S rDNA (from the 30S pro-
karyotic ribosomal subunit) has received the most 
substantial attention [47-50]. In fact, current rec-
ommendations state that for the submission of a 
novel species, the performance of MLST or se-
quencing (to characterize genomic relatedness) 
and the submission of a preferably full-length 16S 
rRNA gene sequence are recommended [47]. 

Nevertheless, it is now well-known that the 
phenotypic as well as the genotypic characteristics 
of bacteria may be subject to change due to exoge-
nous genetic material (i.e. conjugation, transfor-
mation and transduction), which entails the trans-
fer of plasmid DNA from one species/genus/fami-
ly of bacteria to another. In reality, these proper-
ties may also be useful to characterize relations 
between different bacterial taxa [47-50]. E. coli spe-
cies conjugate well with Salmonella and Shigella 
species (which are more closely related taxonomi-
cally), but not with members of the genera Proteus, 
Providencia or Enterobacter. Similar results were 
found in transformation studies on Rhizobium, Mi-
crococcus, Bacillus and Haemophilus species, show-
ing that transformation events more frequently 
occur with different species of the same genera 
(smaller genomic variation), compared to species 
of different genera (larger genomic variation) [47-
50].

Table III Examples of bacterial species undergone taxonomic revisions in the last 20-year period
Previous taxonomic designation Current taxonomic designation

Actinobaculum schaali Actinotignum schaali
Actinobacillus actinomycetemcomitans Aggregatibacter actinomycetemcomitans

Bacteroides forsythus Tannerella forsythia
Bacteroides gracilis Campylobacter gracilis

Bacteroides melaninogenicus Prevotella melaninogenica
Bacteroides pneumosintes Dialister pneumosintes

Borellia burgdorferi Borelliella burgdorferi
Clostridium difficile Clostridioides difficile

Enterobacter shakazakii Cronobacter shakazakii
Enterobacter aerogenes Klebsiella aerogenes
Enterobacter gergoviae Pluralibacter gergoviae

Enterobacter amnigenus Lelliottia amnigena 
Eubacterium lentum Eggerthella lenta

Klebsiella pnuemonaie ATCC 700603 K. quasipneumoniae subsp. similipneumoniae
Peptostreptococcus micros Parvimonas micra
Propionibacterium acnes Cutibacterium acnes
Streptococcus tigurinus S. oralis subsp. tigurinus

Wolinella rectus Camplyobacter rectus
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4. Practical relevance of taxonomical changes

After the official recognition and acknowledge-
ment of taxonomic alterations or a revised no-
menclature, significant changes may occur in the 
everyday practice of physicians and microbiolo-
gists dealing with infectious diseases, epidemiol-
ogists, university educations and other relevant 
stakeholders [47]. Changes in bacterial taxonomy, 
and nomenclature is usually greeted with con-
servatism and resistance among taxonomists, mi-
crobiologists, healthcare-professionals and scien-
tist alike, for the simple reason that nobody likes 
change [1-3,21,47]. The applications of taxonomic 
changes can be broad ranging: they may impact 
the clinical care of patients, through variations in 
choosing the appropriate antimicrobial suscepti-
bility testing standards or data interpretation, or 
even their clinical relevance and epidemiology 
(commensal/colonizer/pathogen). These changes 
also affect companies supplying laboratories 
with testing equipment and software (i.e. the lab-
oratory information system or LIS) and even ad-
ministrative stakeholders (e.g., accreditation ser-
vices, conformity with legal documentation); of 
course, the clinical relevance of these changes is 
also relative to the isolation frequency and inva-
siveness of the abovementioned bacteria 
[33,36,37,43,44,47]. Some recent changes of inter-
est in bacterial taxonomy are discussed below 
and presented in Table III.

Gram-negative bacteria (especially ones repre-
senting gut bacteria) have seen a plethora of taxo-
nomic revisions since the beginning of the 21st 
century. Among other things, some Vibrio species 
have been reclassified into the genera Photobacte-
rium (e.g., P. damselae) and Grimontia (G. hollisae), 
and the phylogenetically heterogenous members 
of the E. cloacae complex has been reassigned to 
the genera Kosakonia, Lelliottia, and Pluralibacter 
[54-56]. Another relevant change was the one af-
fecting the genus Salmonella, where only Salmonel-
la enterica strains remained in the species status, 
while other serovariants (e.g., Enteritidis, Ty-
phimurium, Typhi) are no longer recognized on 
the species level, therefore their names should no 
longer be italicized [6,57]. However, one of the 
major taxonomical changes affecting Gram-nega-
tive bacteria (and subsequently, the medical com-
munity) is the recent reclassification of the family 
Enterobacteriaceae into the order Enterobacterales, 
containing seven distinct families (namely Entero-
bacteriaceae, Erwiniaceae, Pectobacteriaceae, Yersinia-

ceae, Hafniaceae, Morganellaceae and Budiviciaceae) 
based on recent phylogenetic analyses [58]. Other 
suggestions include the differentiation of all Burk-
holderia species into two distinct groups: the ge-
nus Burkolderia would contain the human patho-
genic species, while a newly designated genus 
Paraburkholderia would hold the non-pathogenic 
species to humans [59]. In contrast, it was pro-
posed that the genera Chlamydia and Chlamydophi-
la (containing C. pneumoniae and C. psittaci) 
should be fused together, eliminating the latter 
genus in the process [60].

Pronounced taxonomic changes have also oc-
cured regarding anaerobic bacteria in the last 30-
40 years [16]. The restriction of the genus Bacte-
roides to B. fragilis and related species has led to 
the relclassification and transfer of numerous 
species to the genera Prevotella and Porphyromon-
as (based on pigmentation, bile-sensitivity and 
saccharolytic properties) and the introduction of 
novel genera [61-64]. Marked changes have also 
occured in the field of Gram-positive anaerobic 
cocci with the introduction of novel species, such 
as Finegoldia, Parvimonas and Peptinophilus, based 
on phylogenetic analysis [16,65-66]. Eubacterium 
species were also subject to taxonomic revisions, 
leading to the introduction of novel genera, such 
as Slackia, Pseudoramibacter, Mogibacterium, Egger-
thella and Cryptobacterium [16,65]. Perhaps the 
most controversial taxonomic revision occured 
regarding the causative agent of antibiotic-asso-
ciated diarrhoea and pseudomembranous en-
terocolitis, namely Clostridium (Clostridioides) dif-
ficile, which may be considered as the prime ex-
ample why taxonomic changes have to be care-
fully considered [67-68]. After the proposal to re-
stric the genus Clostridium to C. butyricum and 
other related species, it was found that C. difficile 
was phylogenetically closest to C. mangenotii 
with a 94.7% similarity, however, this species 
was located in the family Peptostreptococcaceae 
[69]. This would have lead to a nomenclature re-
vision of C. difficile as Peptoclostridium difficile; 
however, due to the significance of this pathogen 
in nosocomial infection and as a public health 
threat, a lot of energy, time and money was put 
into the education of the public and healthcare 
professionals around the globe, regarding the 
dangers of “C. diff” (as it is colloquially known) 
and CDD/CDAD (C. difficile-associated diarrhea), 
with educational campaigns, fliers, books and so 
on [16, 67-69]. The proposed taxonomic change 
would have put forth issues in this educational 
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campaign (a sudden change of “C. diff” to “P. 
diff” and CDAD to PDAD and so on); for this rea-
son, the reclassification as P. difficile was rejected, 
instead, a novel genus Clostridioides gen. nov. 
was proposed for C. difficile (now Clostridioides 
difficile) and C. magnerotii was also reclassified to 
this new genus; therefore previously used, collo-
quial designations for this pathogen (C. diff, 
CDD/CDAD) also remained valid [70,71].

5. Conclusions

Taxonomy is concerned with the classification of 
living organisms, which operates in three distinct 
domains, namely classification, nomenclature 
and identification. Compared to the taxonomic 
trends in the 19th century, current methods and 
technologies allow for more detailed phylogenetic 
analyses, leading to the description of a tremen-
dous amount of novel bacterial species and the 
re-classification of several already described bac-
teria. This ‘explosion’ in microbial taxonomy (fur-
ther aided by the developments in bacterial sys-
tematics) presents an everyday challenge to medi-
cal professionals (e.g., clinical pharmacists, physi-
cians and nurses), pharmaceutical scientists and 
stakeholders in healthcare. However, the up-to-
date knowledge on bacterial taxonomy is impor-
tant as it may significantly impact the everyday 
practice of these healthcare professionals. This is 
especially true for scientists who use various bac-
terial strains for screening of antimicrobial activi-
ty of various compounds or utilizing any kind of 
bacterial model system during laboratory assays. 
The aim of this paper was to aid the abovemen-
tioned healthcare professionals to navigate 
through the ‘maze’ of bacterial taxonomy, to aid 
in finding authentic information regarding the 
description of taxonomic changes and to present 
some examples of changes in bacterial taxonomy 
which proven to be clinically significant. 
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