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Abstract: Worldwide, 50 million people suffer from dementia, a group of symptoms affecting 

cognitive and social functions, progressing severely enough to interfere with daily life. Alzheimer’s 

disease (AD) accounts for most of the dementia cases. Pathological and clinical findings have led to 

proposing several hypotheses of AD pathogenesis, finding a presence of positive feedback loops 

and additionally observing the disturbance of a branch of tryptophan metabolism, the kynurenine 

(KYN) pathway. Either causative or resultant of dementia, elevated levels of neurotoxic KYN 

metabolites are observed, potentially upregulating multiple feedback loops of AD pathogenesis. 

Memantine is an N-methyl-D-aspartate glutamatergic receptor (NMDAR) antagonist, which 

belongs to one of only two classes of medications approved for clinical use, but other NMDAR 

modulators have been explored so far in vain. An endogenous KYN pathway metabolite, kynurenic 

acid (KYNA), likewise inhibits the excitotoxic NMDAR. Besides its anti-excitotoxicity, KYNA is a 

multitarget compound that triggers anti-inflammatory and antioxidant activities. Modifying the 

KYNA level is a potential multitarget strategy to normalize the disturbed KYN pathway and thus 

to alleviate juxtaposing AD pathogeneses. In this review, the maintenance of KYN metabolism by 

modifying the level of KYNA is proposed and discussed in search for a novel lead compound 

against the progression of dementia. 

Keywords: dementia; Alzheimer’s disease; kynurenines; kynurenic acid; neuroprotective agents; 

antioxidant molecules; multitarget agents 

 

1. Introduction 

Dementia, currently known as major neurocognitive disorder (NCD) in the Diagnostic and 

Statistical Manual of Mental Disorders Fifth Edition (DSM-5), is an acquired cognitive decline of six 

discrete cognitive domains including complex attention, executive function, learning and memory, 

language, perceptual-motor function, and/or social cognition. Alzheimer’s disease (AD) is the most 

common form of NCDs accounting for 60% to 70%, while other etiological causes include 

frontotemporal neurocognitive disorder, Lewy bodies, vascular cognitive disorder (VCD), traumatic 

brain injury, substance or medication, HIV infection, prion disease, Parkinson’s disease (PD), 

Huntington’s disease (HD), another medical condition, or multiple etiologies [1]. About 50 million 

people suffer from dementia in the world, and there are nearly 10 million new cases every year. Five 

to 8% of the population aged more than 60 years old suffers from dementia. The total number of 

patients with dementia is estimated to 82 million in 2030 and 152 million in 2050, and much of the 

increase is attributed to low- and middle-income countries. Dementia causes not only dependency 
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and disability among the elderly, but it also imposes a physical, psychological, social, and economic 

burden to people with dementia as well as their families, caregivers, and society [2]. 

Initially identified by Alois Alzheimer in 1906 and later named by Emil Kraepelin in 1910, AD is 

an irreversible chronic neurodegenerative disease beginning with the gradual onset of memory loss, 

mood disturbance, or changes in language or thinking skills and progressing to disturbance of 

personality and behaviors. The electron microscopic discovery of neurofibrillary tangles (NFTs) in 

brain biopsies was followed by findings of other positive lesions including amyloid beta (Aβ), 

neuropil threads, and dystrophic neurites containing hyperphosphorylated tau accompanied by 

astrogliosis. Negative lesions include losses of neurons, neuropils, and synaptic elements, which are 

largely associated with tangle formation [3]. The neurodegenerative lesions of postmortem brain 

samples of AD patients correlate well with imaging studies. Shrinkage of the hippocampus in the 

early stage and the significant shrinkage of many brain regions in the later stage are shown by 

structural imaging studies including magnetic resonance imaging (MRI) and computerized 

tomography (CT) [4]. Regional patterns of the brain shrinkage may help identify affected cognitive 

domains and diagnose other causes of dementia. Low uptake and the reduced level of glucose in the 

cognitive domains of the brain in the early stage can be revealed by functional brain imaging such as 

positron emission tomography (PET) and functional MRI (fMRI) [5]. 

The pathological and clinical discoveries have led to propose several hypotheses of AD 

pathogenesis and thus, much effort has been devoted to design drugs painstakingly to target at 

etiological entities such as Aβ, tau proteins, neurotransmitter receptors, etc. In the meantime, some 

AD hypotheses have been realized to align in a pathological sequence to merge as a series of harmful 

cellular and neural events in a cascade and furthermore, to potentiate the pathological consequence 

in a vicious cycle by the presence of positive feedback loops. 

This review article presents an alignment of proposed hypotheses in the cascade of AD, the 

presence of positive feedback loops, and a systematic review on the status of bioactive kynurenines 

(KYNs) in major NCD to support the concept of KYNs as participants of new positive feedback loops 

in AD. In association with N-methyl-D-aspartate (NMDA) receptors (NMDARs) modulator 

memantine, which is an AD drug so far approved for clinical use, a multitarget kynurenic acid 

(KYNA) is discussed and proposed as a novel lead compound for the maintenance of KYN 

metabolism, which potentially leads to alleviate the vicious pathological cycles of AD. 

A literature search was employed in PubMed/MEDLINE and Google Scholar, using appropriate 

search terms and filters according to a theme of each section, and a systematic review was conducted 

to synthesize studies of human samples regarding the status of KYNs in neurodegenerative diseases 

and psychiatric disorders that affect cognitive domains, as described in detail in Appendix A. 

2. Convergence of Alzheimer’s Disease Pathogenesis 

Neurodegenerative atrophy of the brain in dementia has been associated with amyloid plaques 

and NFTs derived from hyperphosphorylated tau in AD pathogenesis [6,7]. The pathological 

landmarks of AD were also observed in age-related mitochondrial dysfunction, proposing a 

mitochondrial cascade hypothesis that mitochondrial dysfunction activates downstream cellular 

events including Aβ amyloidosis, neuroinflammation, oxidative stress, tau phosphorylation, 

synaptic loss, and finally neurodegeneration in late-onset AD [8]. More comprehensive AD 

pathophysiology advocates the inflammation hypothesis. Injury elicits a recruitment of leukocytes to 

the site of lesion and a subsequent activation of the brain microglia and astrocytes, resulting in 

neuroinflammation [9]. Biomarkers associated with both the innate and adaptive immune system are 

increased in blood, serum, plasma, and cerebrospinal fluid (CSF) of AD patients. Unresolved and 

prolonged reactions lead to a disruption of pro-inflammatory and anti-inflammatory cytokine 

balance, causing chronic inflammation. Pro-inflammatory interleukin (IL)-1β, IL-6, tumor necrosis 

factor (TNF)-α and anti-inflammatory cytokines, IL-1 receptor antagonist, and IL-10 are elevated both 

in the plasma and CSF of AD patients [10]. It is worth noting that the levels of anti-inflammatory 

cytokines are elevated in AD, PD, and HD, but they are reduced in VCD [11–15]. Numerous evidences 

suggest that in addition to neuroinflammation, dementia is associated with systemic inflammation, 
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which is responsible for a risk factor, component, and progression of dementia [16]. Furthermore, an 

imbalance in the gastrointestinal microbiota has been described to induce inflammation that is 

associated with neurodegenerative disorders such as AD and PD [17]. 

A dominant model of AD, the amyloid cascade hypothesis, holds that an abnormal accumulation 

of Aβ plaques in the interneurons of the brain triggers a cascade of events: microglia and astrocytes 

activation, chronic inflammation, increased glutamate levels, elevated intracellular calcium, 

oxidative stress, synaptic dysfunction, tangle formation by tau hyperphosphorylation, neuronal loss, 

and finally dementia [18]. The Aβ accumulation and deposition in the interneurons lead to microglial 

activation, cytokine release, reactive astrocytosis, and an induction of inflammation [19]. Aβ 

oligomers also cause the proteasome-dependent degradation of cadherin 1 (Cdh1), which is 

responsible for downregulation of glutaminase: an enzyme that converts glutamine to glutamate [20]. 

Glutaminase has been found to be elevated in the prefrontal cortex of AD patients [21]. Glutamate 

also decreases Cdh1 to inactivate antigen-presenting cell (APC)/C-Cdh1, leading to a further 

accumulation of glutaminase, creating a positive feedback loop [20]. Increased glutamate causes a 

sustained low-level activation at the glutamate receptors, including NMDARs. This chronic 

excitotoxic insult leads to neuronal death and cognitive impairment, which has been proposed by 

glutamate hypothesis [22]. The elevated glutamate level increases the intraneuronal Ca2+ level, which 

is another pathway leading to neuronal apoptosis [23]. Aβ oligomers can directly trigger Ca2+ flux 

through the plasma membrane, increasing intracellular Ca2+ concentration. Ca2+ signaling plays 

important roles in cellular function as a second messenger, involving entry and release channels, 

clearance mechanisms, and intracellular stores [24]. Increased Ca2+ levels can also lead to 

mitochondrial Ca2+ overload, superoxide radicals-induced oxidative stress, and pro-apoptotic 

mitochondrial proteins production, as proposed in calcium homeostasis hypothesis [25] (Figure 1). 

The activation of excitatory glutamatergic neurotransmission is critical for synaptic plasticity. 

The synaptic NMDAR activation initiates plasticity, but the activation of extrasynaptic NMDAR 

impairs neuroplasticity and results in cell death [26]. Neuroplasticity is the dynamic morphological 

and functional changes of remodeling the synapses, axons, and dendrons including neurogenesis and 

synaptogenesis, forming new connections, pathways, and circuits. The process accounts for memory, 

learning, cognitive functions, and compensation initiated by injury and disease [27]. A higher level 

of neuroplasticity was observed in the hippocampus, neocortical areas, and cholinergic basal 

forebrain responsible for the regulation of higher brain functions [28]. The brain regions with elevated 

neuronal plasticity are the most vulnerable in aging and in AD, as proposed by neuroplasticity 

hypotheses [29]. A disproportion between synapse formation and elimination can be responsible for 

defective plasticity during aging and neurodegenerative disease. Defective mechanisms controlling 

the plasticity may contribute to inefficient plasticity processes [27]. Memory deficits in AD could be 

related to early events that come before neurodegeneration, such as synaptic loss and dysfunction. A 

cholinergic hypothesis was proposed by both anatomical findings of selective cholinergic neuron loss 

in the basal forebrain and clinical improvement in AD patients treated with acetylcholine (Ach) 

esterase inhibitors [30]. A deficient neurotrophic hypothesis was proposed by the selective loss of 

cholinergic neurons and the discovery of neurotrophic factors such as nerve growth factor [31]. 

The exacerbation of oxidative stress leads to abnormally increased phosphorylated tau proteins 

polymerizing to form NFTs. Tau proteins are microtubule-associated proteins, which play an 

important role in the assembly of microtubules and stability of microtubules network in neurons. The 

dysfunction of tau proteins affects the structural and regulatory functions of the cytoskeleton, leading 

to abnormal axonal transport, synaptic dysfunction, impaired neuroplasticity, and 

neurodegeneration [32]. A tau knockout mouse (tau−/− mice) study showed that the absence of tau 

leads to a decrease in functional extrasynaptic NMDARs in the hippocampus, and it was proposed 

that tau deficiency causes the extrasynaptic NMDAR impairment contributing to neuroprotective 

effects [33]. 

AD hypotheses have been proposed according to anatomical, clinical, and medicinal findings, 

but a single hypothesis fails to elucidate AD pathogenesis. Numerous failed clinical trials have led to 

assume a presence of multiple heterogenous etiologies of AD genotypes and phenotypes, eventually 
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converging to a common pathological and clinical vignette. Neurodegeneration can be reached along 

different pathways in AD subtypes [34]. Nevertheless, each hypothesis is closely connected, and 

many positive feedback loops exist to exacerbate the disease process. The amyloid cascade, 

inflammation, tau phosphorylation, and neuroplasticity hypotheses lie in one downward cascade, 

and the glutamate and calcium hypotheses lie in another branched cascade of pathological events, 

leading to dementia. One positive feedback loop is located between inflammation and increased Aβ 

accumulation, and the other loop bridges increased oxidative stress and increased Aβ accumulation. 

Another positive feedback loop occurs between increased glutamate and decreased Cdh1, leading to 

a further accumulation of glutaminase. The presence of multiple positive feedback loops may 

contribute to exacerbate the pathological consequences in AD [35] (Figure 1). 

 

Figure 1. Positive feedback loops of amyloid β hypothesis of Alzheimer’s disease in connection with 

disturbance of the kynurenine pathway. The amyloid beta (Aβ) cascade, inflammation, tau 

phosphorylation, and neuroplasticity hypotheses lie in one downward cascade, and the glutamate 

and calcium hypotheses lie in another branched downward cascade of pathological events leading to 

dementia. Positive feedback loops are located between inflammation and increased Aβ accumulation, 

between increased oxidative stress and increased Aβ accumulation, and increased glutamate and 

decreased cadherin 1 CDh1). Kynurenine (KYN) pathway enzymes are activated by inflammation: 

the tryptophan dioxygenase (TDO) by the glucocorticoid stress hormone, cortisol and indolamine-

2,3-dioxygenase (IDO1) by pro-inflammatory cytokines, interferon (IFN)-α, interleukin (IL)-1β, IFN-

γ, and tumor necrosis factor (TNF)-α. IFN-γ also activates formamidase and kynurenine-3-

monooxygenase (KMO) in human microglia and macrophages. KYN pathway metabolites, 3-

hydroxykynurenine (3-HK) and quinolinic acid (QUIN) are highly reactive free radicals. In addition, 

QUIN is an N-methyl-D-aspartate receptor (NMDAR) agonist, causing excitotoxicity. Thus, 

disturbance of the KYN pathway potentiates inflammation, oxidative free radical attack, and 

excitotoxic glutamate production (partly adopted from Doig, 2018). 

  



Molecules 2020, 25, 564 5 of 27 

 

3. Multiple Positive Feedback Loops via Kynurenine Metabolites 

Dementia patients have been associated with the disturbance of tryptophan (TRP) metabolism 

and its downward catabolic branch, the KYN pathway. Low circulating TRP levels, elevated 

neurotoxic KYN metabolites, and a reduced neuroprotective KYN metabolite are observed in elderly 

patients with neurodegenerative disease such as AD, PD, and HD [36]. Either causative or resultants 

of AD pathogenesis, the aberrant KYN pathway lies not only in a close connection with AD 

pathophysiology but also may play a critical role in potentiating the multiple positive feedback loops 

of AD pathology. 

The KYN pathway transforms over 95% of TRP into a series of small bioactive molecules with 

neurotoxic, neuroprotective, oxidative, or antioxidative properties. Inflammation activates several 

key enzymes in the pathway [37]. The indole ring of TRP is oxidized to produce N-formyl KYN by 

the TRP dioxygenase (TDO) in the liver, the indolamine-2,3-dioxygenase (IDO) 1 in the brain, and 

peripheral tissues and IDO 2 in the liver, kidney, and antigen-presenting cells [38]. TDO is activated 

by the glucocorticoid stress hormone, cortisol; IDO1 is activated by the pro-inflammatory cytokines, 

interferon (IFN)-α, IL-1β, IFN-γ, and TNF-α, and it is inhibited by the anti-inflammatory cytokines, 

IL-2, IL-4, IL-10, and transforming growth factor-β (TGF-β) through IFN-γ. IDO2 knockout mouse 

(IDO2−/− mice) revealed that IDO2 has a pro-inflammatory role and contributes to autoantibody 

production [39]. Thus, stressful events and inflammatory responses activate the rate-limiting TRP 

enzymes to cascade down in the KYN pathway. 

N-formyl KYN is converted by formamidase to L-KYN, which is a substrate of three 

downstream metabolites: anthranilic acid (AA) by kynureninase, 3-hydroxy-KYN (3-HK) by KYN-3-

monooxygenase (KMO), and KYNA by pyridoxal 5′-phosphate (PLP)-dependent KYN 

aminotransferases (KATs) [40]. AA and its metabolite, 3-hydroxy-AA (3-HAA), are found to suppress 

pro-inflammatory cytokine IFN-γ, T and B lymphocyte cell proliferation, and Th1 cell activity and 

invoke anti-inflammatory cytokine, IL-10 [41]. 3-HK generates highly reactive free radicals. An 

elevation of 3-HK levels has been shown to be related to excitotoxic injury and is observed in patients 

with neurodegenerative diseases [42]. 

A KAT isoform, KAT II, functions in the physiological pH range and may be responsible for 

most of the KYNA synthesis in the brain. KATs also convert 3-HK to xanthurenic acid (XA) [43]. 

KYNA is an antagonist at ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA), NMDA, kainate glutamate receptors, and the α7 nicotinic Ach receptor [44]. However, 

the role of KYNA at the α7 nicotinic Ach receptor remains controversial [45]. KYNA binds to the G 

protein-coupled receptor (GPR) 35 (GPR35) expressed in glia, macrophages, and monocytes to reduce 

glutamate release in brain and pro-inflammatory cytokine release in cell lines. KYNA also binds to 

aryl hydrocarbon receptor (AhR) to alleviate adaptive immune responses [46]. 

3-HK and AA are converted by 3-hydroxyanthranilate oxidase to highly redox-active 3-HAA, 

which may play a role in the regulation of oxidative stress. 3-HAA suppresses cytokine and 

chemokine production and neurotoxicity induced by IL-1 or IFN-γ [47]. 3-HAA is converted by 3-

hydroxyanthranilate dioxygenase to 2-amino-3-carboxymuconate semialdehyde, which is further 

transformed into picolinic acid (PIC) and an excitotoxic and free-radical metabolite, quinolinic acid 

(QUIN). The pro-inflammatory cytokine IFN-γ stimulates IDO, formamidase, and kynurenine-3-

monooxygenase (KMO) activities in human microglia and macrophages, leading to increased QUIN 

synthesis. The activation of macrophages and glial cells induces the increased production of QUIN 

[48]. Anti-inflammatory steroid agents such as dexamethasone suppress QUIN concentrations in the 

brain following immune stimulation [49]. Finally, QUIN is metabolized in subsequent steps into 

nicotinic acid dinucleotide (NADH) (Figure 2). 
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Figure 2. Kynurenine Branch of Tryptophan Metabolism. More than 95% of tryptophan is 

metabolized in the kynurenine (KYN) pathway except for serotonin metabolism and protein 

synthesis. Tryptophan (TRP) is converted to KYN by the hepatic rate-limiting tryptophan 2,3-

dioxygenase (TDO) and ubiquitous rate-limiting indoleamine 2, 3-oxygenase (IDO) 1, each of which 

is induced by cortisol, and interferon (IFN)-α, IFN-γ, and tumor necrosis factor (TNF)-α, respectively. 

KYN is converted to anthranilic acid (AA) by the kynureninase, 3-hydroxy-L-kynurenine (3-HK) is 

converted by the KYN-3-monooxygenase (KMO), and kynurenic acid (KYNA) is converted by KYN 

aminotransferases (KATs). KYNA is an antagonist at the NMDA receptor. AA and 3-HK are 

converted to 3-hydroxyanthranillic acid (3-HAA) and further to picolinic acid (PIC) and quinolinic 

acid (QUIN). 3-HK and QUIN are agonists at the NMDA receptor. QUIN is converted to nicotinamide 

adenine dinucleotide (NAD+), which is a feedback inhibitor of TDO. Neurotoxic KYNs are shown in 

orange, and neuromodulartory KYNs are shown in green. 
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4. Systematic Review on Kynurenines in Major Neurocognitive Disorders 

A systematic review was conducted on the status of KYNs in major NCD. Inclusion criteria, 

exclusion criteria, selection process, data extraction, assessment of the methodological quality, and 

the risk of bias assessment are described in Appendix A. A total of 30,004 articles matched our 

database search. Out of 586 articles 10 meta-analysis and systematic reviews, a total of 212 articles 

were assessed for eligibility. Finally, 23 articles were deemed for synthesis in this systematic review. 

The methodological quality and risk of bias assessment are shown in Table 1. Evidence levels of 

neurotoxic and neuromodulatory KYN levels were assessed at low risk of bias for MDD; high risk of 

bias for AD, PD, and HD; unclear of bias for VCD, bipolar disorder (BP), generalized anxiety disorder 

(GAD), and autism spectrum disorders (ASD) (Table 1). 

Table 1. Studies included for systematic review synthesis, study designs, and risk bias assessment. 

Diseases Study Types 

Reference Numbers 

or Sample Numbers 

(Disease/Control) 

Samples 
Risk of 

Bias 

Neurodegenerative diseases 

Alzheimer’s disease 

   Guillemin et al., 2005 [51] case-control study 6/4 brain tissue 

High risk 
   Bonda et al., 2010 [52] case-control study 12/7 brain tissue 

   Gulaj et al., 2010 [53] case-control study 34/18 serum 

   Schwarcz et al., 2013 [54] case-control study 20/19 serum 

Parkinson’s disease 

   Hartai et al., 2005 [57] case-control study 19/17 plasma, RBC 

High risk    Lewitt et al., 2013 [58] case-control study 48/57 CSF 

   Chang et al., 2018 [59] case-control study 118/37 plasma 

Huntington’s disease 

   Reynolds and Pearson, 1989 [64] case-control study 12/11 postmortem brain tissue 

High risk 
   Beal et al., 1992 [62] case-control study 14–30/25–40 postmortem brain tissue 

   Jauch et al., 1995 [63] case-control study 17/17 postmortem brain tissue 

   Stoy et al., 2005 [61] case-control study 15/11 plasma 

Vascular Cognitive Dementia    

Unclear    Darlington et al., 2007 [65] case-control study 50/35 serum 

   Yan et al., 2015 [66] case-control study 28/20,11 serum, CSF 

Psychiatric disorders 

Major depressive disorder    

Low risk 

   Ogawa et al., 2014 [67] meta-analysis 10 plasma 

   Réus et al., 2015 [68] systematic review 29 plasma, blood, serum, 

CSF, urine, brain tissue 

   Ogyu et al., 2018 [69] meta-analysis 22 plasma 

Bipolar disorder 

   Birner et al., 2017 [75] case-control study 143/101 blood 

Unclear    Wang et al., 2018 [76] meta-analysis 16 CSF 

   Arnone et al., 2018 [77] meta-analysis 5 serum 

Generalized anxiety disorder 

   Orlikov et al., 1994 [78] case-control study 16/15 plasma 
Unclear 

   Altmaier et al., 2013 [79] case-control study 386/116 serum 

Autism spectrum disorder 

   Lim et al., 2016 [80] case-control study 15/12 blood 
Unclear 

   Bryn et al., 2017 [81] case-control study 30/30 serum 
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4.1. Kynurenines in Neuodegenerative Diseases 

Increased KYN, KYNA, and QUIN in serum and CSF were associated with aging [50]. Altered 

levels of KYN metabolites have been observed in patients with AD, PD, HD, and VCD. An increased 

KYN/TRP ratio of the plasma and CSF, increased levels of IDO in the brain, and immunoreactivity 

for both IDO and QUIN in the microglia, astrocytes, and neurons of hippocampal tissue were 

observed in AD [51–54]. It has been suggested that KYNs are involved in the regulation of glutamate 

neurotransmission, neuroprotection, and immune responses in AD. Furthermore, an increased CSF 

3-HK/KYN ratio was correlated with t-tau and p-tau, while plasma KYN and PIC inversely correlated 

with p-tau and t-tau, respectively [55]. KYNA levels are decreased in the plasma, witnessing the shift 

toward neurotoxic metabolites over neuroprotective ones in AD [53]. Higher and lower levels of KYN 

were associated with a higher Neuropsychiatric Inventory (NPI) total score, and a lower KYN/KYNA 

ratio indicated risk for hallucination in AD and Lewy bodies dementia [56]. 

The plasma samples of PD patients showed significant lower activities of KAT I and KAT II with 

a decreasing tendency of plasma KYNA levels [57]. A metabolomic profiling study of CSF from PD 

patients showed increased 3-HK levels [58]. A metabolomic evaluation showed that a lower 

KYNA/KYN ratio, higher QUIN level, and higher QUIN/KYNA ratio were observed in the plasma of 

PD patients, suggesting a shift toward neurotoxic QUIN and away from neuroprotective KYNA 

synthesis [59]. The alterations in KYN metabolite levels may contribute to pathogenesis in PD, and 

the KYN pathway intervention was proposed to alleviate PD symptoms through neuroprotection 

[60]. 

The KYN/TRP ratio was higher, while the KYNA/KYN ratio was lower in the plasma of HD 

patients than controls [61]. A postmortem brain study showed decreased KYN levels in the middle 

and inferior cortex, decreased KYNA levels in the precentral gyrus, frontal, and temporal cortex, and 

decreased 3-HK levels in the inferior temporal cortex [62]. Another study also showed decreased 

KYNA levels in the caudate nucleus and lower KAT I and KAT II in the putamen of HD patients [63]. 

However, 3-HK levels were significantly higher in the frontal and temporal cortex in HD brain 

samples [64]. A significant reduction in TRP levels was found at several days after stroke onset, and 

the KYN/TRP ratio was elevated much higher in stroke patients [65]. KYNA levels were higher in 

patients who died within 21 days after stroke [66]. 

Many studies have presented disturbance of KYN metabolism in patients with dementia. 

Increased levels of neurotoxic KYNs were observed in AD, PD, HD, and VCD. It is intriguing that 

levels of neuroprotective KYNA were decreased in AD, PD, and HD, but increased in VCD. Further 

study is expected to uncover the status and change of neurotoxic and neuroprotective KYN 

metabolites under progression of the diseases (Table 2). 

Table 2. Systematic synthesis of kynurenine levels in neurodegenerative diseases and psychiatric 

disorders. ↑: increase; ↓: decrease; ?: unclear or unknown. 

Diseases 
Neurotoxic  

Kynurenines 

Neuromodulatory  

Kynurenines 

Neurodegenerative diseases   

     Alzheimer’s disease ↑ ↓ 

     Parkinson’s disease ↑ ↓ 

     Huntington’s disease ↑ ↓ 

     Vascular cognitive dementia ↑ ↑ 

Psychiatric disorders   

     Major depressive disorder ↑ ↓ 

     Bipolar disorder  ? ? 

     Generalized anxiety disorder ↓ ? 

     Autism spectrum disorder ↑ ? 
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4.2. Kynurenines in Psychiatric Disorders 

Cognitive domains are also affected in psychiatric disorders such as major depressive disorder 

(MDD), bipolar disorder (BD), generalized anxiety disorder (GAD), and autism spectrum disorders 

(ASD). Lower levels of plasma TRP, KYN, and KYNA were observed in MDD. A higher level of QUIN 

immunoreactivity was detected in the prefrontal cortex and hippocampus of the postmortem samples 

of MDD patients [67–69]. Chronic stress has been linked in MDD to structural brain damages 

including a loss of dendritic spines and synapses, reduced dendritic arborization, and diminished 

glial cells in the hippocampus [70]. A possible relationship between KYN metabolism and suicide 

ideation has been investigated in psychiatric patients, including non-MDD patients. Higher levels of 

CSF QUIN, a higher ratio of CSF QUIN/KYNA, and lower levels of CSF KYNA have been associated 

with suicide attempts in psychiatric patients [71]. Lower levels of PIC, lower ratio of PIC/QUIN, and 

a higher ratio of KYN/TRP were reported in patients with suicide attempts. However, studies have 

not reached a consensus on the upregulation or downregulation of TDO/IDO enzymes among the 

suicide-prone population [72]. 

Cognitive deficits of verbal/visual memory and executive tasks have been observed during 

depressive episodes in BD, while executive dysfunction and attention deficits have been reported 

during manic episodes in BD [73,74]. A case-control study reported increased 3-HK/KYN and 3-

HK/KYNA ratio and decreased KYNA levels in BD [75]. A meta-analysis reported an increased level 

of KYNA in the CSF of bipolar patients [76]. However, another meta-analysis reported no significant 

difference of TRP and KYN levels, nor KYN/TRP and KYNA/QUIN ratios in serum from BD patients 

[77]. Further intensive study is expected on the status of the KYN metabolites in manic and depressive 

phases of BD patients. In patients with GAD, decreased levels of plasma KYN were observed in 

endogenous anxiety and normalized after treatment [78]. Significantly lower levels of KYN have been 

associated with Type D personality, which has been characterized by negative affectivity and social 

inhibition [79]. 

The status of KYN metabolites has not reached a consensus in ASD. The blood KYN and QUIN 

levels and KYN/TRP ratio were found significantly higher, PIC levels were significantly lower, and 

KYNA levels were unchanged in ASD [80]. The serum KYNA level was significantly lower, while the 

KYN/KYNA ratio was significantly higher in children with ASD [81]. The results have not reached 

consensus, which is most probably due to a small number of studies and the heterogenous etiologies 

of ASD (Table 2). 

It is intriguing that lower levels of KYNA is associated with psychiatric disorders affecting 

cognitive domains, but higher levels of KYNA is observed in patients suffering from schizophrenia, 

which barely exhibits cognitive symptoms [76,82]. Further investigation is expected on the 

relationship between KYN metabolism and psychiatric disorders. Disturbance of TRP and KYN 

metabolisms has been observed in patients suffering from major NCD and is found to be closely 

linked to AD pathogenesis and dementia in which multiple positive feedback loops through an 

imbalance of KYN metabolites may potentially contribute to the exacerbation of dementia (Figure 3). 
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Figure 3. Disturbance of Kynurenine Metabolism Wires Multiple Positive Feedback Loops of 

Alzheimer’s Disease. Hypotheses of Alzheimer’s disease (AD) pathogenesis derived from anatomical, 

clinical, and medicinal findings are closely connected to each other, and many positive feedback loops 

exist to exacerbate the disease. Disturbance of a branch of tryptophan metabolism, kynurenine (KYN) 

pathway lies in a close connection with various pathogeneses of dementia. Increased neurotoxic KYN 

metabolites and decreased neuroprotective kynurenic acid (KYNA) may potentiate multiple feedback 

loops of AD pathogenesis. 

5. Tolerogenic Shift of Adaptive Immune Response by Kynurenine Metabolites 

Besides excitotoxic, inflammatory and oxidative insults, disturbance of KYN metabolism directs 

the adaptive immune response to tolerogenic status. Activation of the KYN pathway suppresses 

effector T cells and induces regulatory T cells (Tregs), leading immune status to a tolerogenic state 

[83]. Upon IDO activation by stress and inflammatory response, TRP depletion activates the stress 

response kinase, general control non-depressible 2 (GCN2) by binding to uncharged tRNA. GCN2 

activation leads to downregulation of the CD3 zeta (ζ)-chain in CD8+ T cells, blockage of T helper (Th) 

17 cell (Th17) cell differentiation and cell cycle entry by T cell receptor-activated T cells, and activation 

of resting CD4+ Tregs [84]. TRP depletion also inhibits the nutrient-sensing mammalian target of 

rapamycin 1 pathway to inhibit T effector cell function and growth [85]. 

IDO-activated cells can transform the function of APCs producing pro-inflammatory cytokine, 

IL-12, into anti-inflammatory cytokines including TGF-β and IL−10 [86]. IDO increases the level of 

KYN, which mediates the inhibition of IL-2 signaling to reduce CD4 T-cell survival [87]. Binding to 

AhR, KYN induces the dendritic cell and macrophage differentiation, which initially induces a highly 

inflammatory CD4+ T-cell subset, Th17 cells, and then further differentiate into Tregs during the 

resolution of inflammation [88]. In addition, KYNA and XA are endogenous human AhR ligands. 

KYN, KYNA, and XA direct the adaptive immunity toward immune suppression [89]. 

IDO-expressing cells promote the differentiation of CD4+ T cells into Treg cells expressing CTLA-

4, which is a protein receptor that functions as an immune checkpoint and downregulates immune 

responses [90]. In addition, higher KYNA production and lower KMO expression are associated with 

another regulatory immune mechanism, contributing to dysfunctional effector CD4+ T-cell response 

[87]. NAD+ induces the apoptosis of naïve CD4+ T-cells and reduces the number of Tregs, but it 

protects differentiated Th1, Th2, Th17, from CD4+ T-cells and induced Treg against apoptosis [91]. 

Thus, KYN metabolites and enzymes generally convert local immunogenic T cell functions to 

tolerogenic ones. 

Meanwhile, a population-based cohort study showed that doubling of the derived granulocyte-

to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic immune–inflammation index were 

associated with an increased dementia risk, suggesting an imbalance in the immune system and 
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dominance of the innate over adaptive immune system in the pathogenesis of dementia [92]. Thus, a 

dominant innate immune response with a tolerogenic shift of adaptive immune response may help 

perpetuate chronic inflammation. 

6. NMDA Receptor Modulator, Memantine 

New drug candidates under clinical trials are targeting Aβ, cholinergic neurotransmission, 

NMDARs, tau proteins, neurovasculation, inflammation, or virus [93]. Memantine belongs to the 

NMDAR modulators, which is one of only two classes of medications so far approved for the 

treatment of AD [94]. Thus, it is worth exploring new lead compounds among NMDAR antagonists. 

Initially synthesized and patented in 1968 for the treatment of diabetics, an adamantane 

derivative, memantine, failed to lower blood sugar levels, but it was found to improve the cognitive 

performance of severely demented patients in a Phase III human clinical trial in 1999. Memantine is 

now approved to use for the treatment of moderate to severe AD, and combination therapy with 

cholinesterase inhibitors offers better outcomes including cognitive and behavioral symptoms [95]. 

Anti-NMDAR property had been discovered in 1980s. The NMDAR is essential for processes 

such as learning and memory. An excessive activation of NMDAR was shown to be associated with 

neuronal damage and loss contributing to various acute and chronic neurological disorders, 

including dementia. Nevertheless, physiological NMDAR activity is essential for normal neuronal 

function, and any agents that block all NMDAR activity have unacceptable clinical side effects [96]. 

The glutamatergic receptor modulators are under intensive study for the development of novel drugs 

against mood disorders such as BP [97]. 

NMDARs are tetramers consisting of two GluN1 and two GluN2 or GluN3 subunits. Four 

subtypes of GluN2 (A–D) and two subtypes of GluN3 (A–B) are identified. The subunits composition 

constantly changes during development and according to neural activity, determining the distinct 

biophysical, pharmacological and signaling properties of NMDAR. For example, tri-heteromeric 

GluN1/GluN2A/GluN2B receptors are responsible for long-term potentiation induction at adult 

CA3–CA1 synapses [98]. Pathologic overstimulation of the NMDAR causes a chronically active state 

initiating excitotoxicity and has been implicated in neurodegenerative diseases such as strokes, AD, 

HD, and amyotrophic lateral sclerosis [98]. 

Memantine, a noncompetitive, low-affinity, voltage-dependent antagonist of NMDARs 

preferentially enters the receptor-associated ion channel to prevent calcium current flow when it is 

excessively open but does not interfere with normal synaptic transmission. Thus, it prevents or 

protects against further damage from neuronal cell death induced by excitotoxicity. The fast on-and-

off neurotransmission and low–moderate affinity are the keys to memantine action because it blocks 

the effects of excessive glutamate while preserving the physiologic activation of NMDARs required 

for learning and memory [99]. 

Memantine was reported to inhibit the extrasynaptic NMDAR more effectively than synaptic 

NMDAR [100]. Furthermore, the preferential NMDAR inhibition of the memantine subpopulation 

has been studied. The NMDAR subunit GluN2A abundant in the synaptic NMDAR, mediate the 

neuroprotective pathway, while the GluN2B subunit, which is abundant in the extrasynaptic 

NMDAR, mediates the neurotoxic pathway. It was also proposed that a higher mobility of the 

NMDAR subunit GluN2B-containing NMDAR enhances availability in the extrasynaptic sites than 

less mobile GluN2A-containing NMDAR [101]. However, the distribution of subunits is not strictly 

limited to the synaptic or extrasynaptic sites. It was also proposed that an increased occupancy of 

GluN1-2A by memantine induces NMDAR desensitization by intracellular Ca2+ accumulation, 

contributing to the inhibition of NMDAR subpopulations. Thus, memantine inhibition depends upon 

Ca2+ concentration, NMDAR subtype, and the intensity of NMDAR activation [102]. However, little 

is known about the exact mechanism of memantine to alleviate AD symptoms, and thus further 

investigation is expected. 

Memantine is also an antagonist at the nicotinic Ach and serotonergic (5-HT) type 3 (5-HT3) 

receptors. A majority excreted unchanged in urine (75%–90%), but three polar metabolites, the N-



Molecules 2020, 25, 564 12 of 27 

 

gludantan conjugate, 6-hydroxy memantine, and 1-nitroso-deaminated memantine, possess minimal 

NMDAR antagonist activity [100,103]. 

Other NMDAR antagonists and modulators have been investigated and entered clinical trials. 

Gavestinel (GV150,526A), an NMDAR antagonist that binds selectively to the glycine site on the 

NMDAR complex, was found to be a potent neuroprotective agent in animal models of stroke such 

as permanent middle cerebral artery occlusion in the rat. It reached Phase III clinical trials; however, 

it was concluded to show no efficacy in treating ischemic stroke [104]. AVP-786 (trade name 

Nuedexta), a combination drug of a weak NMDAR antagonist dextromethorphan hydrobromide and 

quinidine sulfate, enhances its calming effect. It is approved by the FDA for the treatment of 

pseudobulbar affect and is under clinical trial for the treatment of agitation in patients with dementia 

of AD. However, it was reported to have no benefit in three Phase 3 trials against the agitation of AD 

[105]. AXS-05 is a combination drug of bupropion (a norepinephrine–dopamine reuptake inhibitor 

and nicotinic Ach receptor antagonist) and dextromethorphan (a sigma-1 receptor agonist, NMDAR 

antagonist, and serotonin–norepinephrine reuptake inhibitor) for the treatment of treatment-resistant 

MDD and agitation in AD [106]. BI425809 is a potent and selective glycine transporter 1 (GlyT-1) 

inhibitor that modulates the level of glycine, a co-agonist of NMDAR, for the treatment of cognitive 

impairment of AD and schizophrenia [107]. DAOI is an NMDAR modulator under Phase 2 clinical 

trials, which is hypothesized to have better efficacy than the placebo for cognitive function in patients 

with AD [108] (Table 3). 

Table 3. NMDAR modulators approved for clinical use and under clinical trials. Only memantine is 

approved for clinical use for Alzheimer’s disease (AD). Gavestinel failed to show efficacy against 

ischemic stroke. AVP-786, AXS-05, B1425809, and DAOI are under clinical trials. NMDAR: N-methyl-

D-aspartate glutamatergic receptor, MDD: major depressive disorder. 

NMDAR 

Modulators 
Modes Status Ref. 

Memantine NMDAR antagonist Approved for moderate to severe AD [96] 

Gavestinel 

(GV150,526A) 
NMDAR antagonist No efficacy in ischemic stroke under Phase 3 trials 

[105] 

AVP-786 

(Nuedexta) 
NMDAR antagonist 

Approved for the treatment of pseudobulbar affect 

No benefit in three Phase 3 trials against agitation of AD 

[106] 

AXS-05 
NMDAR antagonist 

Combination drug 
Treatment-resistant MDD and agitation in AD 

[106] 

BI425809 NMDAR agonist Cognitive impairment of AD and schizophrenia [107] 

DAOI NMDAR modulator Cognitive impairment of AD under Phase 2 clinical trials [108] 

Either with a combination of other bioactive compounds, the new drug candidates under clinical 

trials possess a broad range of biological activities besides NMDAR modulation. Rational drug 

design better focuses on multitarget strategy in addition to specific etiological targets of dementia to 

tune the nervous activities properly. Furthermore, the NMDAR target strategy may well benefit from 

focusing on compounds with modulatory NMDAR properties. Memantine is not strictly a NMDA 

antagonist. It is a NMDAR modulator with weak agonistic activity and multiple target sites including 

5-HT3 receptor and nicotinic Ach receptor activities. A search for multitarget molecules may be of 

great value to discover possible lead compounds against dementia. 

7. Maintenance of Kynurenine Metabolism to Alleviate Multiple Positive Feedback Loops 

Modifying a level of KYNA to balance a disturbed KYN pathway may help alleviate the multiple 

positive loops of AD pathogenesis. Patients with AD, PD, HD, and MDD has been found to have 

decreased levels of KYNA, which has multiple targets and actions including anti-excitotoxic, anti-

inflammatory, antioxidant, and immunomodulatory activities. 

Firstly, the neuroprotective effects of KYNA are attributed to the inhibition of glutamate 

excitotoxicity. KYNA binds to the strychnine-insensitive glycine-binding site of the NR1 subunit at 

lower concentration (EC50 = 7.9 to 15 μM), while at higher concentrations, it blocks the glutamate-

binding site to the NR2 subunit of NMDAR (EC50 = 200 to 500 μM) [109,110]. KYNA was reported to 
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inhibit the presynaptic α7 nicotinic Ach receptors (IC50 = ~7 μM), but it has not been confirmed by an 

in vivo study. More evidences support the view that KYNA may not influence nicotinic Ach receptors 

[45,111]. Furthermore, KYNA exhibits a dual effect at AMPA receptors in a dose-dependent manner: 

KYNA inhibits at micromolar concentrations, but at nanomolar concentrations, it evokes facilitation 

through allosteric modulation of the AMPA receptor [112]. 

Secondly, KYNA has been observed to have anti-inflammatory actions under inflammatory 

conditions. KYNA reduces TNF expression and secretion, diminishes high-mobility group box 1 

protein secretion, inhibits α-defensin human neutrophil peptides 1–3 secretion, reduces IL-4 release 

in invariant natural killer-like T cells, reduces lipopolysaccharide-induced IL23 expression of 

dendritic cells, and inhibits Th17 cell differentiation in vitro [89]. 

Thirdly, KYNA has been shown to activate GPR35 signaling, through which it reduces 

glutamate release in the brain, reduces pro-inflammatory cytokines release in the glia and 

macrophages, and exerts the analgesic effects in inflammatory models. GPR35 activation induces N-

type calcium channel inhibition, which contributes to the regulation of neuronal excitability and 

synaptic transmitter release [113]. In addition, GPR modulators are an emerging class of novel drugs 

under clinical trials against various diseases including diabetics, cardiovascular diseases, and 

psychiatric disorders such as depression, bipolar disorder, and schizophrenia [114]. 

Fourthly, another target of KYNA is a xenobiotic receptor, the AhR, which plays roles in the 

regulation of cellular differentiation, cellular adhesion and migration, and immune response. AhR 

controls adaptive immunity by modulating T-cell differentiation and function directly and indirectly 

[115]. The expression of IDO is sustained by an autocrine loop in the presence of AhR and KYNA in 

tumor infiltrating tolerogenic DCs and a positive feedback loop controlled by AhR drives IL-6 

expression, and it sustains IDO expression and KYN production in tumor cells. AhR activation by 

KYNA is considered an important regulator of immunotolerance via the IL-6-dependent pathway in 

tumors. Furthermore, LPS-induced immune response was limited by AhR [116]. 

Fifthly, KYNA is an antioxidant that possesses reactive oxygen species (ROS) scavenging 

activities observed in various in vitro models and can prevent tissue damage triggered by 

overshooting inflammation. KYNA (100 μM) can abolish ROS production produced by FeSO4, which 

is a molecule with a mechanism of toxicity primarily involving O2− and OH production [117]. 

Decreased levels of KYNA may provoke an inadequate anti-inflammatory response, resulting in 

enhanced tissue damage and exceeding cell proliferation during inflammatory in AD, PD, and HD 

[41]. Increased production of KYNA may be compensatory to limit the inflammatory reaction in AD. 

Finally, an increased KYNA level stimulates the kynureninase A, which converts KYN to AA, 

resulting in an elevation of AA [118]. AA may possess potential anti-inflammatory properties either 

by itself or via its 5-hydroxylated metabolites. AA is metabolized to 3-HAA by a microsomal 

hydroxylase in mammalian liver. An expected anti-inflammatory reaction AA is derived from the 

fact that AA is a precursor of some nonsteroidal anti-inflammatory drugs such as mefenamic acid 

and diclofenac [119]. AA suppresses pro-inflammatory IFN-γ, T and B lymphocyte cell proliferation, 

and Th1 cell activity, while it increases anti-inflammatory cytokine IL-10 [120]. In addition, the KYNA 

level may be influenced by the substrate availability, KAT enzyme activity, and its degradation rate. 

The induction of other branches of TRP metabolism may also be relevant for the synthesis of serotonin 

and melatonin, both of which are also immune regulators (Table 4). 
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Table 4. Targets of kynurenic acid. Kynurenic acid (KYNA) has multiple targets including NMDA 

receptor (NMDAR), inflammatory cells, G protein-coupled receptor 35 (GPR35), aryl hydrocarbon 

receptor (AhR), reactive oxygen species (ROS), and kynureninase A. Its actions include anti-

excitotoxic, anti-inflammatory, antioxidant, and immunomodulatory activities. AMPA: α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid. 

Targets Ref. 

1. NMDA Receptor (NMDAR) 

-Inhibits strychnine-insensitive glycine-binding site of the NR1 subunit of NMDAR 

-Inhibits glutamate-binding site to the NR2 subunit of NMDAR 

-Inhibits the presynaptic α7 nicotinic Ach receptors (controversial) 

-Stimulates/inhibits at the AMPA receptor in a dose-dependent manner 

[45] 

[109] 

[110] 

[11] 

[112] 

2. Inflammatory Cells 

-Reduces TNF expression and secretion 

-Decreases high-mobility group box 1 protein secretion 

-Inhibits α-defensin human neutrophil peptides 1–3 secretion 

-Reduces IL-4 release in invariant natural killer-like T cell 

-Reduces lipopolysaccharide-induced IL-23 expression  

-Inhibits Th17 cell differentiation 

[89] 

3. G Protein-Coupled Receptor 35 (GPR35) 

-Activates GPR35 signaling 

-Reduce pro-inflammatory cytokines release  

-Analgesic effects in inflammatory models 

-N-type calcium channel inhibition 

[113] 

[114] 

4. Aryl Hydrocarbon Receptor (AhR) 

-Regulates cellular differentiation, cellular adhesion and migration, and immune response 

-Induces adaptive immunity by modulating T-cell differentiation and function  

[115] 

[116] 

5. Reactive Oxygen Species (ROS) 

-Abolishes ROS production produced by FeSO4 

[41] 

[117] 

6. Kynureniase A 

-Stimulates the production of AA, which suppresses pro-inflammatory IFN-γ, T and B lymphocyte 

cell proliferation, and Th1 cell activity, while it increases anti-inflammatory cytokine IL-10 

[118] 

[119] 

[120] 

8. Kynurenic Acid-Targeted Approaches: Strategies, Alternatives, and Considerations 

The blood–brain barrier (BBB) is poorly permeable to KYNA. The design of KYNA precursors 

that are highly penetrable across the BBB and convertible to an active form upon the entry has been 

under consideration. Another strategy is the administration of KYNA analogues that are highly 

penetrable to the BBB. The halogenation and conjugation of various side chains enables KYNA to 

cross the BBB easily, and the KYNA analogues have been shown to be more potent NMDAR 

inhibitors. Meanwhile, inadequate nutritional status has been observed in patients with dementia. 

An active form of vitamin B6, PLP is a cofactor of KAT enzymes, which are responsible for KYNA 

production. Therefore, vitamin B6 supplementation may be of important value to increase a level of 

KYNA in the brain. L-KYN is not only a precursor of KYNA, which is also produced at least partly 

from indole pyruvic acid (IPA) through redox reactions or the transamination of TRP. Little is studied 

about other routes of KYNA production and its influence on whole KYN metabolism. In addition, D-

enantiomers of amino acids and D-amino acid oxidase (DAAO) have been observed to contribute to 

L-amino acid concentration. D-TRP and D-KYN supplements and balancing the gastrointestinal 

microbiota responsible for conversion to L-enantiomers may be potential strategies to regulate KYN 

metabolism and maintain an adequate L-KYNA reservoir. 

8.1. Prodrugs 

The peripheral administration of KYNA precursor, KYN was found to lead to neuroprotection 

in hypoxic-ischemic animal models [121]. The peripheral administration of 4-chloro-KYN or 4,6-

dichloro-KYN leads to the formation of 7-chloro-KYNA or 5,7-dichloro-KYNA in the brain and more 

potent antagonists at the glycine site of NMDARs than KYNA [122]. An orally active L-4-Cl-KYN 
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known as AV-101 showed efficacy in animal models of HD and neuropathic pain [46,123]. However, 

a Phase II clinical trial had shown negative results against MDD in 2019 [124]. The development of 

other BBB-penetrating prodrugs is expected to be explored. 

8.2. Kynurenic Acid Analogues 

More potent NMDAR-modulating KYNA derivatives have been synthesized in the search for 

promising new neuroprotective agents [125]. Halogenated KYNA analogues presented significantly 

lower IC50 values than the parent compound, and chlorination in position 7 of KYNA increased the 

affinity for the Gly site of the NMDARs [126,127]. Fluorination in position 5 and chlorination in 

position 5, 7, or 5 and 7 increased potency in the antagonism of glutamate-induced ileal contraction 

and for [3H]Gly binding assay [128]. Hippocampal and entorhinal cortical applications of 7-Cl-KYNA 

attenuated magnesium-induced seizures in vitro. Intrahippocampal 5,7-di-Cl-KYNA injection 

prevented the behavioral and the electrographic manifestations in a rat model of status epilepticus 

[129]. The microinfusion of 5,7-di-Cl-KYNA suppressed the effect of both glutamate- and glycine-

induced seizures of freely moving rats [130]. Bilateral 5,7-di-Cl-KYNA injection into the rostral 

striatum inhibited the haloperidol-induced muscle rigidity in rats, which is an animal model of 

parkinsonian-like muscle rigidity [131]. 4-trans-2-carboxy-5,7-dichloro-4-

phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline, 5,7-di-Cl-KYNA, and 7-Cl-KYNA showed 

neuroprotective effects against glutamate-induced excitotoxicity in rat cortical neurons [132]. 

Thiokynurenates are also potent non-competitive antagonists of the NMDARs. Substitution of a thio 

group for the hydroxyl group in position 4 of KYNA increased the potency and chlorination of 

position 7 or 5 and 7 of 4-thio-KYNA and further increased potency in ileal myenteric plexus and for 

[3H]Gly binding [133]. 4-urea-5,7-di-Cl-KYNA derivatives exerted anticonvulsant activity in maximal 

electroshock, subcutaneous pentylenetetrazole, and threshold tonic extension tests in mice [133]. 

BBB-penetrating KYNA derivatives have been synthesized by esterization. The methyl ester of 

diphenylureido-di-Cl-KYNA appeared to be protective against audiogenic seizures in DBA/2 mice 

[134]. D-Glucose or D-galactose esters of 7-Cl-KYNA penetrate the BBB and are converted to 7-Cl-

KYNA or KYNA by astrocytes and neurons in the brain. D-Glucose esters of 7-Cl-KYNA and D-

galactose esters of 7-Cl-KYNA attenuated the NMDA-induced seizures probably by increasing the 

BBB penetration [135]. The intraventricular and intravenous administration of glucose-KYNA 

induced stereotyped behaviors and ataxia and transient reductions of the amplitude of the 

somatosensory-evoked cortical potentials, suggesting that glucose-KYNA possesses similar activities 

to KYNA and crosses the BBB [136]. A KYNA amide derivative, N-(2-N,N-dimethylaminoethyl)-4-

oxo-1H-quinoline-2-carboxamide hydrochloride showed electrophysiological properties similar to 

KYNA in vitro and showed a neuroprotective effect in models of cerebral ischemia (four-vessel 

occlusion) and an HD model of transgenic mice [47,137]. 

Nanotechnology-based approaches are under intensive study to overcome the blood–brain 

barrier and deliver the appropriate amount of drug to the specific brain site. Organic nanocarriers 

include polymeric nanoparticles, liposomes, dendrimers, and micelles, while inorganic nanocarriers 

include gold nanoparticles, silica nanoparticles, and carbon nanotubes [138]. Further research is 

expected to understand the blood–brain barrier crossing mechanisms and to improve the efficiency 

of brain delivery methods using nanotechnology. 

8.3. KAT Enzyme Potentiation 

KYN metabolism can be shifted toward KYNA production by enhancing KAT enzyme activity. 

KATs catalyzes the irreversible transamination of KYN to produce KYNA. The enzyme requires a 

cofactor, PLP, the active form of vitamin B6, and a cosubstrate, α-ketoacid. The kinetics of KATs 

depends on local KYN availability ascribed to its low affinity for their substrate. The active form of 

vitamin B6, PLP, is a cofactor in many enzymes [139]. A main source of PLP is food and degraded 

PLP-dependent enzymes by salvage pathway enzymes in humans. Genetic dysfunction of the 

salvage pathway enzymes and drug interactions of PLP or pyridoxal kinase results in convulsions 

and epileptic encephalopathy, and a lower level of PLP has been associated with neurological 

https://en.wikipedia.org/wiki/Vitamin_B6
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disorders including AD, PD, and epilepsy [140,141]. About 20% of the elderly have been observed to 

have lower dietary vitamin B6 intakes and other nutrients, and a daily intake of 20 mg vitamin B6 

improves vitamin B6 status in healthy older men and vitamin B6 supplementation improves cognitive 

performance in elderly men. It has been hypothesized that folate and vitamins B6 and B12 are related 

to cognitive performance [142,143]. Vitamin B6 emerged as a good predictor of cognitive performance 

across cognitive domains, but whether B6 supplementation can improve cognitive performance is still 

to be demonstrated through ongoing longitudinal clinical trials. A correlation between blood levels 

of B vitamins and cognitive function has been documented, and high vitamin B6 concentration has 

been correlated with better performance in memorization tests [144]. 

Nutrition status is relevant to the onset of dementia. Vitamin B6 deficiency is prevalent in 

patients with AD, but it is not clear how low vitamin B6 status directly influences AD pathogenesis 

or progression. Patients with AD are more likely to have low plasma PLP concentrations [145]. 

Combined high vitamin B6 and magnesium supplementation was reported to improve verbal 

communication, non-verbal communication, interpersonal skills, and/or physiological function in 

children with autism spectrum disorders, but a systematic review concluded that the efficacy was 

inconclusive [146]. Further studies are expected regarding vitamin B6 status, KAT activity, and a 

KYNA level in patients with dementia. 

8.4. Indole-3-Pyruvic Acid Precursor and Reactive Oxygen Species 

KYNA is also formed at least partly from IPA, which is the transamination product of TRP by 

the TRP transaminase. It was reported that IPA administration increased 5-HT, 5-hydroxyindole-3-

acetic acid, TRP, and KYNA levels in the brain [147]. IPA increases a KYNA level through TRP 

formation; furthermore, IPA can be converted to KYNA by redox reactions without enzymes. IPA is 

present in keto or enol tautomer. The latter cleaves the pyrrole ring by reactive oxygen radicals to 

form KYNA by spontaneous cyclization. IPA tautomerase increases the enol tautomer, favoring a 

greater formation of KYNA in the presence of free radicals [148]. 

In addition, KYNA is also produced from L-KYN in the presence of oxidants and peroxidase. 

KYN donates hydrogen, forming an unstable imino acid, which is the hydrolyzed to 2-oxo acid and 

ammonia. The 2-oxo acid spontaneously cyclizes to form KYNA [149]. The reaction takes place in the 

physiological pH ranges in the presence of H2O2. [150]. D-KYN was observed to produce KYNA with 

an interaction with hydroxyl radical and peroxynitrite in cerebellum homogenates. In vivo 

microdialysis studies showed that the KYNA level increases by intracerebellar infusion of L- or D-

KYN, peroxynitrite infusion, and intracerebellar infusion of L- or D-KYN after peroxynitrite infusion. 

KYNA production from D-KYN was not influenced in the presence of a KAT inhibitor, 

aminooxyacetic acid, compared to one from L-KYN, suggesting that KAT is less responsible for 

KYNA production from D-KYN [151]. 

In the presence of peroxynitrite and aminooxyacetic acid, KYNA production from L-KYN 

decreased by 20%, but no significant change was observed with D-KYN. It suggests a minimal 

participation of KAT in the persistence of ROS. Furthermore, KYNA productions decreased from 

both enantiomers by 50% in the presence of an antioxidant, nordihydroguaiaretic acid, suggesting 

the oxidizing environments that facilitate KYNA production [152]. Both L-KYN and D-KYN are good 

ROS scavengers and lead to the production of KYNA. Oxidizing environments are in favor of 

producing KYNA, which may have relevance in brain development and aging and in neurological 

diseases that show redox environment alteration. 

8.5. Amino Acid Oxidase and D-Amino Acids 

DAAO oxidizes D-amino acids to the corresponding amino acids, producing ammonia and 

hydrogen peroxide. D-Serine is a physiological agonist at the NMDAR in the brain [153]. D-

Enantiomers of amino acids are present at high concentrations in humans and to have biological 

functions. Derived from microorganisms or L-D racemization, D-amino acids are a pool of L-isomers 

that are necessary for protein synthesis and antagonists for L-isomers at biological sites. Bacterial 

pathogens and immune activation may cause an imbalance of D-amino acid concentrations [154]. 
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D-TRP can be usable to promote growth in a TRP-deficient diet, and D-TRP and L-TRP were 

found to be equally effective in the growth of rats. D-TRP and D-KYN were metabolized slower than 

their L-enantiomers in rat liver. Small amounts of L-KYN, D-KYN, and KYNA were found converted 

from D-TRP [152]. KYNA and IPA were excreted from D-TRP or D-KYN-supplied rabbits [155]. D-

Formyl-KYN was found to be the intermediate of D-TRP to D-KYN conversion, which was inhibited 

by L-TRP, and KYNA can be converted from D-KYN by DAAO in kidney homogenates [156]. Thus, 

KYNA can be produced from a D-TRP enantiomer. The intraperitoneal administration of D-TRP or D-

KYN increased plasma KYNA levels in rats, which was inhibited by a DAAO inhibitor, 5-

methylpyrazole-3-carboxylic acid [157]. KYNA was found to be produced from D-KYN in human 

brains, the KYN production being the highest in the cerebellum [158]. Microdialysis studies showed 

that increase in KYNA levels were observed after the intraperitoneal (i.p.) administration of D- or L-

TRP or the infusion of D-KYN in the prefrontal cortex, which was inhibited by the DAAO inhibitor. 

In vitro studies showed that the KAT inhibitor inhibited KYNA production from D-KYN by 30% and 

the DAAO inhibitor inhibited it by 70% [152]. I.p. injection of D-TRP increased L-TRP levels in the 

plasma, forebrain, and cerebellum, confirming D-TRP to L-TRP conversion. KYNA levels were 

decreased by DAAO inhibitor in cerebellum, suggesting that DAAO takes a main role in KYNA 

production in cerebellum [159]. D-TRP and D-KYN are normally present in normal conditions by food 

intake and conversion by gastrointestinal microorganisms [152]. Thus, D-enantiomers influence a 

level of L-KYNA which may be affected by alteration of the cerebral DAAO activity in inflammation 

and neurological disorders. 

9. Conclusions 

New AD drugs have been explored allosterically to approach the etiological targets, including 

Aβ, cholinergic neurotransmission, NMDARs, tau proteins, neurovasculation, inflammation, or 

virus. More than 190 compounds have been tested, and more than 400 clinical trials are currently 

taking place. The failed clinical trials have been attributed to the possible heterogenous etiology of 

AD, which converges though different routes into a common pathological and clinical vignette: 

neurodegeneration and dementia. Only two classes of drugs have been approved so far for clinical 

use for the treatment of AD, one of which is the NMDA antagonist, memantine. Memantine is indeed 

a NMDAR modulator with weak agonistic activity and multiple target sites. Thus, it may be worth 

exploring novel lead compounds with similar biological activities to that of memantine. On the other 

hand, the disturbance of TRP metabolism has been observed in the plasma and CSF of patients with 

dementia, and a branch of TRP metabolism, the KYN pathway, has been found to be closely linked 

to AD pathogenesis in which multiple positive feedback loops through disturbed KYN metabolites 

may potentially contribute to the exacerbation of dementia. 

One of the KYN metabolites, KYNA, is an endogenous NMDAR inhibitor with multiple targets 

and actions against neuroexcitotoxicity, inflammation, and ROS. Being an active antioxidant 

compound on its own right, KYNA triggers neuromodulatory actions through multiple routes 

including the NMDAR, GPR35, and AhR. In addition, KYNA exhibits excitatory and inhibitory dual 

actions at AMPA receptors in a dose-dependent manner. It has been observed that levels of 

neurotoxic KYN metabolites are increased and those of neuroprotective KYNA are decreased in 

patients with AD, PD, HD, and MDD. Thus, modifying KYNA levels may be a potential approach to 

normalize TRP metabolism and potentially alleviate positive feedback loops connecting to multiple 

AD pathogeneses and dementia. 

Possible strategies and relevant mechanisms to modify a level of KYNA are reviewed, including 

the design of BBB-permeable prodrugs metabolized to KYNA upon the entry to brain; the design of 

highly BBB-permeable KYNA analogues with halogenation, conjugation, and nanotechnology; and 

KAT enzyme potentiation. Furthermore, another KYNA formation pathway from IPA and KYNA 

production in the absence of enzymes, and potential roles of D-enantiomers and DAAO are also 

discussed. 

The delivery of KYNA prodrugs, administration of KYNA analogues and vitamin B6 

supplements, maintenance of adequate D-enantiomer reservoir, and monitoring of DAAO activities 
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of the gastrointestinal microbiota may of benefit to counteract the disturbance of the KYN pathway 

and thus potentially alleviate the exacerbation of multiple feedback loops of AD pathogenesis and 

dementia. The design of multitargeting KYNA derivatives in a holistic approach to heterogenous 

targets of dementia to alleviate positive feedback loops by regulating KYN metabolism may be of 

great value in the search for novel lead compounds against dementia. 
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Appendix A 

In Section 1, 2, 5–8, a literature search was employed in PubMed/MEDLINE and Google Scholar, 

which ranged from database inception to December 2019, and the relevant keywords including their 

synonyms and combinations were used search terms such as “dementia”, “alzheimer disease”, 

“kynurenine”, “kynurenic acid”, “tryptophan”, “indoleamine 2,3 dioxygenase”, “tryptophan 2,3-

dioxygenase”, “kynurenine aminotransferase”, “kynurenine 3 monooxygenase”, “antagonists, 

glutamate”, “NMDA receptors”, “memantine”, “clinical trial”, “drug design”, etc. The search filters 

include “English”, “review”, “systematic review”, “meta-anlysis”, etc. In Section 4, a systematic 

review methodology was adopted from Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) [160]. A literature search was employed in PubMed/MEDLINE and Google 

Scholar. M.T. searched and assessed eligibility, and further extracted data (Figure A1). 

1. Inclusion Criteria 

Articles included in the review article were selected according to the following criteria: (1) 

articles published as an original article; (2) articles providing sufficient information of diseased 

populations healthy controls; (3) articles written in English; and (4) articles retrievable online. 

Studies of patients under medications were included. 

2. ExInclusion Criteria 

Articles excluded were the following: (1) articles of no original data; (2) articles of animal 

studies; and (3) articles of no controls except for longitudinal cohort study. 

3. Selection Process 

The search ranged from database inception to December 2019, and the relevant keywords 

including their synonyms and combinations were used as search terms of “neurodegenerative 

diseases”, “psychiatry”, “dementia”, “alzheimer disease”, “parkinson disease”, “huntington 

disease”, “vascular dementia”, “disorder, major depressive”, “bipolar disorder”, “anxiety disorder”, 

“autism spectrum disorder”, “tryptophan”, “kynurenine”, “kynurenic acid”, etc. After excluding 

duplicates and reviewing titles and abstracts, the full texts of articles were assessed. The search 

priority was given in the following order: meta-analysis, systematic review, case-control study, 

cohort study, and review. If no meta-analysis or systematic review was found in the search, the full-

text articles of case-control studies, cohort studies, and reviews were assessed for eligibility. 
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Figure A1. Flow diagram of qualitative synthesis adopted from Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA). 

4. Data Extraction 

Data from eligible articles were extracted into a table for qualitative analysis and critical 

assessment. Data collected from each study include year of publication, study design, the number of 

articles or diseased and healthy populations, and sample types. 

5. Assessment of the Methodological Quality 

The methodological quality was assessed for each neuropsychiatric disease according to the 

presence and number of study design. 

6. Risk of Bias Assessment 

Risk of bias assessment was adopted and conducted from the Cochrane Handbook for 

Systematic Reviews of Interventions [161]. The criteria of diagnosis and levels of neurotoxic KYNs 

and modulatory KYNs were assessed according to availability of studies, study types, and study 

results, and evidence levels were judged into high risk, low risk, or unclear (Table A1). 

Table A1. Neurotoxic and modulatory KYN levels were assessed according to the criteria of 

availability of meta-analysis or systematic review, study types, and with or without conflicting 

results, in order to judge evidence levels of high risk, low risk, or unclear. 

Risk of 

Bias 

Criteria 

High risk 
No meta-analysis or systematic review, less than five case-control and/or cohort studies, or 

presence of only expert review 

Low risk Presence of at least one meta-analysis or systematic review, without conflicting results 

Unclear 
Presence of only case-control study or cohort study, meta-analysis with conflicting results, or 

case-control studies with conflicting results 

 

 

 

Yes 

Full-text 

assessment     

N = 147 

 

Electronic Database searches: PubMed/MEDLINE, Google Scholar                                           

N = 30004 

 

Systematic reviews or meta-analyses were found                           

 

Studies included for qualitative synthesis                                                     

N = 23 

 

No 

Full-text 

assessment    

N = 10 

 

Excluded 

N = 134 

 

Titles, 

abstracts 

reviewed                   

N = 10 

 

Titles, abstract 

assessment of case-

control, cohort study 

or expert review                    

N = 441 

 

Excluded 

N = 294 
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