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Abstract In this paper we present an approach for the PAN 2019 Author Pro-
filing challenge. The task here is to detect Twitter bots and also to classify the
gender of human Twitter users as male or female, based on a hundred select
tweets from their profile. Focusing on feature engineering, we explore the se-
mantic categories present in tweets. We combine these semantic features with
part of speech tags and other stylistic features – e.g. character floodings and the
use of capital letters – for our eventual feature set. We have experimented with
different machine learning techniques, including ensemble techniques, and found
AdaBoost to be the most successful (attaining an F1-score of 0.99 on the devel-
opment set). Using this technique, we achieved an accuracy score of 89.17% for
English language tweets in the bot detection subtask.

1 Introduction

With the increasing use of social media [5], and its growing effect on our lives it is
becoming more and more important to provide automatic methods that are capable
of processing social media content. For one, it is paramount for companies interested
in targeted advertisement to automatically identify certain traits of users, such as age,
location, personality, and gender, even if the users do not report these traits themselves
(although this application admittedly raises many ethical implications and challenges).
More important is however the identification of fake news, and the detection of social
media bots. With the growing role of social media as a primary news source [1], and
the increasing effect of social media bots on political discourse [9] (in particular, their
ability to effectively spread a large amount of misinformation in critical times [18]), it is
vital to have the ability to monitor or even filter out such accounts. This, however, first
requires the ability to efficiently identify such accounts. For this reason, when working
on the bots and gender profiling PAN challenge [23,22], our main area of focus was the
bot detection task.
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1.1 Related Work

Social media analytics has a wide range of applications from understanding customer
sentiment to determining the political orientation of a crowd. Another area of applica-
tion of social media analytics that is growing rapidly is that of bot identification and fake
news detection. The methods deployed in these tasks range from the use of various clas-
sical machine learning algorithms [8] to the more recent deep learning approaches [29].

Decision trees have been a popular choice in the task of bot vs human classifica-
tion. For example, Botometer [30], a popular bot detection tool, uses random forests to
identify twitter bots. Hall et al. [13] also applies random forests to remove bots from
Wikipedia pages. One good quality of decision trees is that they work well with many
languages, as their power to classify stance and gender in Spanish is shown in the works
of Vinayakumar et al. [29] for the Ibereval 2017 task [27]. Besides decision trees, other
well-known machine learning algorithms have also been used for the task, namely Sup-
port Vector Machines (SVMs) [7,29], Logistic Regression [7], and K-Nearest Neigh-
bours [10]. Convolutional Neural Networks (CNNs) [14], Recurrent Neural Networks
(RNNs) [7], and combinations of the two [3] have also been used for opinion detection
in social media.

1.2 Bot and Gender Profiling

The research problem to be undertaken in this work is the PAN 2019 bot and gen-
der profiling task. As the challenge is described in detail in accompanied overview
papers [6,23], we only give a short description of the task here, and for more detail
we refer the reader to the aforementioned publications. In this challenge, each team
performs the task of classifying twitter profiles based on a randomly selected set of
a hundred tweets, as bots or humans. Furthermore, in case an author is identified as
human, the additional task is to identify the gender of said human as male or female.
For submissions and evaluation, the PAN task uses TIRA virtual machines where teams
upload and run their software[21]. The author profiling challenge is organised for both
English and Spanish language tweets, but due to the time restraints, here we only tackle
the problem for English. However, given sufficient time, the methods described in this
paper could also be applied to Spanish language as well.

Data Partitioning While testing is carried out on a held-out dataset that is not pub-
licly available, the training data of 4120 twitter profiles was publicly released, and is
available in xml format. The classes here are balanced, which means that half of the
profiles belong to bots, while the other half belong to human twitter users. Conversely,
half of the human authors are female, and the other half are male. For our experiments
we partition this data into training and validation sets, using a randomly selected 67%
of the data for training purposes, and 33% for meta-parameter optimization, as well as
for validating our trained models.



2 Methods

Motivated by the positive results of classical machine learning approaches mentioned
in Section 1.1, we explore how these methods would fit the task at hand. In our final
submission we rely only on our best performing model (i.e. AdaBoost), however we
find it important for future research in the topic to share our experiments with other
methods as well. Hence, in this section we discuss three widely-used methods, namely
AdaBoost, Random Forest, and Recurrent Neural Networks.

2.1 AdaBoost

Boosting [25,24] is a popular family of algorithms for ensemble learning. The main idea
behind these algorithms is to combine several "weak learners" (i.e. classifiers that may
perform poorly, but still perform better than random guessing) into a "strong learner",
or in other words, a robust classifier. Here, we used one early, successful boosting algo-
rithm published by Freund and Schapire [12]. AdaBoost builds its strong learner on top
of the weak learners by weighting each classifier according to its performance. To com-
pute such weights, weak classifiers are trained on the training set, allowing to calculate
the probability of error. Each classifier is weighted according to such probabilities and
included in the AdaBoost model.

2.2 Random Forest

Random Forest [2] is a supervised machine learning classifier where bootstrapping
method is used to partition features into multiple training subsets. It trains individ-
ual decision trees for each training subset in the training data. The final classification is
given by collecting decisions from all the trees and choosing the final class having max-
imum scores. The scoring can be done by assigning equal votes to the final decisions of
all trees or using a weighted strategy that can be adopted to assign unequal weights to
the final decisions of the resulting trees.

2.3 Recurrent Neural Networks

Deep learning attempts to model high-level abstractions in data. Here, we deploy a pop-
ular deep learning architecture, namely Recurrent Neural Networks (RNNs). RNNs are
particularly suited for tasks where the output is not just dependent on the present in-
put, but also on past input several time steps removed. The contextual meaning within
a tweet and the order of tweets carry some extra information prompting the need to
employ methods that have the potential to exploit these dependencies. As these depen-
dencies may be long term (spanning up to a hundred tweets), a vanilla RNN may face
the issue of vanishing gradient. Because of this, we use the Long Short Term Memory
(LSTM) variant in our work to counter this problem.



3 Features

Based on the results of preliminary experiments using neural networks, our focus was
on combining classical machine learning algorithms with carefully engineered features.
Here, the same set of features are employed for the bot detection and the gender predic-
tion tasks. We calculated most of these features for each tweet independently, then aver-
aged them over a profile. When the computations were carried out differently, we state
this explicitly. During our experiments, we noticed that some features share the same
value for all Twitter profiles. Later on, these features were dropped. Lastly, after feature
extraction we scaled our final set of features using scikit-learn’s StandardScaler [19].

3.1 URL Features

We experimented with several features based on the URLs present in tweets, particu-
larly domain-based features (e.g. the ratio of the most commonly linked domains, the
ratio of links leading to twitter, the ratio of the most commonly linked twitter profiles).
However, as the majority of URLs present in the tweets were first processed by link
shortening services, this required Internet access, which is not available in the TIRA
virtual machine [20,21]. Hence in the final feature set we confine ourselves to the use
of the average number of URLs present in a twitter profile.

3.2 Emoticon Features

Another feature used in our experiments is the number of emoticons (or emojis) present
in each tweet. For the extraction of this feature we use the freely available emoji for
Python project [16]. Following the work of Zhenpeng et al. [4] we have also exper-
imented with the use of more high level features based on the emoji-use of twitter
profiles. This includes both the emoji frequency and emoji preference features of the
original publication (for more details, see [4]). In our preliminary experiments how-
ever, these features did not significantly improve the results of either task. Thus, in our
final submission we only use the average emoticon count per tweet in our feature set.

3.3 Stylistic Features

For each tweet we detect and count character floodings, capital letters, sentences and
tokens. The average number of capital letters per word is also taken into consideration
alongside the Flesch reading-ease score (FRES) [11], calculated as follows:

FRES(text) = 206.835− 1.015

(
#words(text)

#sentences(text)

)
− 84.6

(
#syllables(text)

#words(text)

)
.

Furthermore, on tweet and profile level, we count the number of tokens that are repeated
more than two times and among the repetitive tokens we report the maximum number
of repetitions. For example for the following tweet: “Hairy cats like other cats that are
not hairy. However, hairy dogs like cats that are not hairy.” the tokens that are repeated
more than two times are hairy and cats, so the number of tokens repeated is 2 and the
token hairy is repeated most times, 4 times. Altogether, we have 10 stylistic features.
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(a) Average number of adverbs (e.g. very, to-
morrow, up, who, there) used among bot and
human profiles
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(b) Average number of pronouns (e.g. I, you,
he, myself, themselves, someone) used among
bot and human profiles

0.38 0.71 1.05 1.39 1.73 2.07 2.40 2.74 3.08 3.42
Average ADJ/profile

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

male
female

(c) Average number of adjectives (e.g. big,
nice, green, last) among male and female pro-
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(d) Average number of nouns (e.g.girl, dog,
book, beauty) used among male and female
profiles

Figure 1: Histograms on the average use of a certain type of POS per twitter profile
comparing bots to humans and males to females, respectively

3.4 POS Tags

We count the POS tags for each tweet using spaCy’s POS tagger [15] including a total
number of 19 POS tags. Indeed, the average number of POS tags per profile could be
important – Figures 1a and 1b illustrate that humans tend to use more pronouns and
adverbs than bots in their tweets. Furthermore, as Figures 1c and 1d indicate, females
on average include more adjectives and nouns in their tweets than males do.

3.5 Topic Features

Our motivation is to explore the semantic topics and categories an author tends to tweet
about. For this reason, we employ the SEMCAT [26] and the SemCor [17] datasets on
lemmatized words. The SEMCAT (SEMantic CATegories) dataset contains more than
6,500 English words grouped under 110 semantic categories describing diverse types of
relations. SemCor is a WordNet-annotated corpus that captures, among others, seman-
tic category annotations for verbs and nouns. We use the SemCor dataset constructed



category sample words
car auto buggy car hybrid jeep limo
clothes apparel bikini fashion fur jeans ring
family children engaged engagement family love

wife
food breakfast carbohydrate chocolate cook hun-

gry restaurant
money atm bank currency euro investor withdraw
weather biosphere cyclone degree humidity meteo-

rology unstable

(a) SEMCAT

category sample words
animal cow dog eggs fur horn tail
body artery bathe neck nucleus relax shave
commu-
nication

counsel debate description horn inter-
view session

food beer honey lamb leg produce ration
location aegean area baltimore china location

neighborhood
time 0 acceleration calendar future youth yr

(b) SemCor
Table 1: Representative categories and their 5 sample words from two datasets

by Tsvetkov et al. [28], where words appearing less than 5 times are omitted. This
leaves us with more than 4,000 words and 41 categories. Table 1 shows representative
SEMCAT and SemCor categories and their sample words. The categories (and their
words) are not differentiated based on their source datasets, which means that we work
with a total number of 133 topic features. As illustrated in Figure 2a, there are more
bot profiles that use a lot of computer related words on average, whereas, as Figure 2b
shows, humans tend to tweet more about emotions. By comparing males with females,
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Figure 2: Histograms on the average number of words related to a certain type of se-
mantic category per twitter profile comparing bots with humans and males with females



Figure 2c indicates that females describe more christmas related words in their tweets,
while males tweet more about baseball, as shown in Figure 2d.

4 Results and Discussion

After concatenating all features, each twitter profile was described by a 159 dimensional
feture vector. As discussed in Section 1.2, to carry out our experiments we first split the
dataset into a train and validation set in a 2:1 ratio. We thus created a train set with 2760
examples, and a validation set with 1360 examples. We split these data sets further, to
create separate training and validation sets for the two sub-tasks, namely bot detection
(a two-class classification task with bot and human labels) and gender classification (a
two-class classification task with male and female labels). Lastly, we combined the two
models to perform a three class classification task with bot, male, and female labels.
In this section we discuss experimental results in this order. First, the results of the bot
vs human classification task are discussed. This is followed by the discussion of the
results on the gender classification task, and the results of the three class classification
task. Lastly, we conclude this section by presenting the results we attained on the held
out official test set. It should also be noted that the results reported here as well as the
cod for our experiments are available on github1.

4.1 Bot vs Human Classification

We benchmarked the Bot vs Human Classification task using six popular classification
methods. The resulting precision, recall, and F1 scores are listed in Table 2. As can
be seen in Table 2, classical machine learning algorithms performed much better than
Bi-directional LSTMs. Furthermore, all ensemble methods – random forest, AdaBoost,
bagging classifier, gradient boost classifier – resulted in higher scores than those at-
tained using SVMs. Table 2 also shows that the best performance was achieved when
using one of the two boosting methods, AdaBoost performing slightly better. For this
reason in the remaining tasks our focus was on ensemble tasks, and we did not carry
out experiments with LSTMs or Support Vector Machines.

Classifiers Precision Recall F1 Score
Random Forest 97 97 97

AdaBoost 99 99 99
Bagging Classifier 97 97 97

Gradient Boost Classifier 98 98 98
Support Vector Machines 94 94 94

Bi-directional LSTM - - 83
Table 2: Precision, Recall and F1-score (in percent) average score on Bot vs Human
Classification Task on the validation set using various classification methods.

1 https://github.com/purvanshi/Gender-and-bot-detection



Class Precision Recall F1-score
female 83 84 83
male 81 87 84

weighted average 83 85 83

(a) Random Forest Classifier

Class Precision Recall F1-score
female 88 92 90
male 90 89 89

weighted average 88 91 89

(b) AdaBoost Classifier

Class Precision Recall F1-score
female 84 85 84
male 80 87 83

weighted average 83 86 83

(c) Bagging Classifier

Class Precision Recall F1-score
female 82 85 84
male 83 84 84

weighted average 82 85 84

(d) Gradient Tree Boosting
Table 3: Precision, Recall and F1-score (in percent) of the gender classification task on
the validation set using various ensemble methods for classification.

4.2 Gender Classification Task (Male vs Female)

A markedly higher performance resulting from the use of decision tress on the initial
bot detection task supported our earlier decision about focusing on classical machine
learning algorithms. Thus for later tasks we only carried out experiments using the
four ensemble methods that provided higher scores. In these further experiments we
first examined the capability of these ensemble methods to differentiate between twitter
profiles that belong to male and female users. The resulting precision, recall, and F1
scores are listed in Table 3.

When comparing the resulting scores in Table 3 to those in Table 2 we see that all
algorithms result in markedly higher scores when applied for bot detection than when
the same algorithms are applied for gender classification. This may suggest that the task
of gender classification is more difficult than that of bot detection. It can also signify,
however, that the two tasks require a different set of features, or different machine learn-
ing methods. Another possible explanation for this phenomenon may be that we have
twice as much data available for the task of bot detection than we do for the task of
gender classification. A more thorough investigation of this question is for future work,
as the present experimental results are not sufficient to provide a definitive answer.

Table 3 also shows that with each classifier we have similar scores – at most 1% F1–
score difference – for the male the female class. It can be observed as well that recall
scores tend to be slightly higher than precision scores with the exception of AdaBoost
where the precision score for the male class is slightly higher than the recall score for
the same class. Lastly, we can also notice that while the weighted average of F1-scores
is very similar for three of the methods, it is significantly higher for AdaBoost. We also
reported higher scores for AdaBoost on the bot detection class as well, the difference
here, however is much more pronounced.



Class Precision Recall F1-score
bot 98 95 96

female 83 83 83
male 81 84 82

weighted average 90 89 89

(a) Random Forest Classifier

Class Precision Recall F1-score
bot 100 98 99

female 88 92 90
male 90 88 89

weighted average 94 94 94

(b) AdaBoost Classifier

Class Precision Recall F1-score
bot 99 94 97

female 84 85 84
male 80 86 83

weighted average 90 90 90

(c) Bagging Classifier

Class Precision Recall F1-score
bot 98 97 98

female 82 84 83
male 83 83 83

weighted average 90 90 90

(d) Gradient Tree Boosting
Table 4: Classification results on Three class classification task.

4.3 Three Class Classification Task (Bot vs Male vs Female)

As a final experiment on the validation set, we evaluated the performance of decision
tree classifiers on the three class classification task (bot vs male vs female). The result-
ing scores are listed in Table 4, which indicates that for each classifier the bot class has
significantly higher scores – above 90%, while the male and the female classes have
scores around 80–85% may indicate male vs female classification being more difficult
than the bot detection task. The resulting scores in Table 4 also show that AdaBoost can
attain a markedly higher performance than the other three decision tree based classifi-
cation methods we used in our experiments.

4.4 Discussion

In all three experiments, we found the F1 scores provided by the AdaBoost Classifier to
be the highest (producing +3% higher scores on average than the average score gotten
using the other decision tree based classifiers). Another interesting observation is the
similar performance of the other three decision tree based methods used which we sus-
pect may be an indication that no one feature is generally better than the other. We have
also found that deep learning based methods (bidirectional LSTMs, in particular) did
not perform well on the task. This might be due to the limited amount of data available.
This issue was accentuated by the restrictions of the competition that limited the use
of extra data for the competition, which prevents the use of transfer learning that may
alleviate the problem of data scarcity.

4.5 TIRA Evaluation

Lastly, we evaluated our best performing method (AdaBoost) on the official test set of
the competition. Given that according to the regulations of the competition, the results
of only one (the last) run were to be shared by the organisers, here we used AdaBoost
only (as in our preliminary experiments on the development set it was the best perform-
ing method).



Task Validation Test
Bot detection 99.04% 89.17%

Gender classification 93.75% 35.87%
Table 5: Accuracy scores got using AdaBoost for the bot detection and gender classifi-
cation task, using our development set, and the official test set

The resulting accuracy scores are listed in Table 5, which indicates there is a marked
drop in performance from the validation set to the test set. This drop in performance is
less pronounced on the task of bot detection, as the performance of AdaBoost on the
Test set is still close to 90%. One possible explanation for this can be if the bots in the
two sets were of different domain. In Section 3.5 for example we discuss the prevalence
of computer related topic words in the tweets of bot profiles, this however may be due
to the overrepresentation of bots in the training set that advertised positions in the IT
industry. The drop is much more striking in the case of gender classification. We should
note here, however that due to an error in the process of generating output (the algorithm
mistakenly outputs a male or female label for the gender task, even if it identified the
profile as a bot bofore), our ceiling here is only 50%, and thus we do not think this
score is representative of the generalisation capabilities of our model. Overall, we can
say however that as it pertains to the generalisation ability of our model, there is much
room for improvement still.

5 Conclusions and Future Work

In this paper we proposed an efficient way to extract semantic and syntactic features
from twitter profiles. For this we take use of the URLs, emoticons, tokens, and capital
letters used in the tweets as different features. The syntactic features were extracted
using POS tags. We used semantic categories employing the SEMCAT and semcor
datasets which altogether capture 133 categories. We present the results on binary (hu-
man - bot, male - female) and multi label (bot, male, female) classification tasks using
various machine learning and deep learning techniques. The use of languages in tweets
could be analyzed or can be used as another feature. In this work we used the same fea-
tures for bot and gender detection, although different semantic features could be used.
The topic modelling task could also be combined with the emotions used in the tweets.
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