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Abstract: Phenolic compounds and extracts with bioactive properties can be obtained from many
kinds of plant materials. These natural substances have gained attention in the food research as
possible growth inhibitors of foodborne pathogenic and spoilage bacteria. Many phenolic-enriched
plant extracts and individual phenolics have promising anti-quorum sensing potential as well and
can suppress the biofilm formation and toxin production of food-related pathogens. Various studies
have shown that plant phenolics can substitute or support the activity of synthetic food preservatives
and disinfectants, which, by the way, can provoke serious concerns in consumers. In this review, we
will provide a brief insight into the bioactive properties, i.e., the antimicrobial, anti-quorum sensing,
anti-biofilm and anti-enterotoxin activities, of plant phenolic extracts and compounds, with special
attention to pathogen microorganisms that have food relation. Carbohydrase aided applications to
improve the antimicrobial properties of phenolic extracts are also discussed.

Keywords: phenolic antioxidants; antimicrobials; quorum sensing; biofilm; enterotoxin; foodborne
pathogens; spoilage bacteria; carbohydrase aided extraction

1. Introduction

Phenolic compounds are secondary metabolites in plants and are considered as important natural
molecules due to their bioactive properties. Phenolics are eliminators of free radicals and metal
chelators. They can inhibit the lipid peroxidation and exhibit various physiological activities as
antioxidants. In plants, these substances contribute to the defense mechanisms, and adaptation and
pigmentation processes. Concerning human health, they have potential in the prevention and treatment
of certain chronic diseases such as cardiovascular disease, diabetes and cancer [1]. In addition, plant
phenolics and extracts rich in such substances can be excellent inhibitors of many foodborne pathogenic
and spoilage bacteria [2,3]. Various food-related bacteria have biofilm-forming ability and can cause
serious contaminations in the food industry. Quorum sensing, as a mechanism of bacterial cell-to-cell
chemical communication, plays an important role in biofilm formation, antibiotic resistance, survival,
proliferation and toxin production of the pathogens. Inhibition of this signaling process can contribute
to the biological control of pathogenic organisms and bacterial toxins causing food deterioration and/or
poisoning [4].
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Byproducts of antioxidative plants generated through agro- and food industrial processes are
excellent sources of bioactive phenolic materials with antimicrobial effects [5]. Physical and chemical
extractions are common methods to obtain these active compounds from plants, but solid-state
fermentation and enzyme assisted extraction procedures using carbohydrase active microorganisms or
enzymes, can also be useful approaches [6–8].

Due to the growing knowledge on their bioactive values, use of plant phenolics as natural
additives has recently gained interest in the food industry. Several studies demonstrated the potential
of these antioxidant and antimicrobial compounds as food preservatives as well as functional food
ingredients [9–11]. In this respect, phenolic acids, flavonoids and tannins have gained special attention
over the last decades [2,12].

This review emphasizes the importance of using plant phenolics as natural alternatives of synthetic
compounds to eliminate pathogens and spoilage bacteria from food environments. Also, this review
deals on the inhibitory potential of phenolic antioxidants against the quorum sensing system, biofilm
formation and enterotoxin production of food-related microorganisms. Some studies to improve the
phenolic-related antimicrobial activity of plant extracts by using carbohydrases are also highlighted.

2. Foodborne Pathogens and Food Spoilage Organisms

Foodborne diseases constitute a global health problem. During the infection, pathogenic bacteria
and/or microbial toxins produced enter to the human body through the contaminated food or water.
Pathogenesis varies according to the host’s health conditions, the type of microorganisms and the
amount of the agent to which the host is initially exposed. Common examples of food and waterborne
outbreaks are the Staphylococcus aureus food poisoning and the Salmonella Typhimurium infection,
which cause toxic symptoms and gastrointestinal infection. Table 1 presents some common foodborne
pathogenic bacteria, their sources and produced toxins as well as the diseases caused.

Table 1. Most common foodborne pathogenic bacteria, their produced toxins and diseases caused.

Foodborne Pathogen
Bacteria Toxin Production Type of Disease Main Food Sources of

Infection Reference

Bacillus cereus Emetic toxin,
diarrheal toxin

Emetic syndrome,
diarrhea Rice, pasta, noodles, pastry [13]

Campylobacter coli,
Campylobacter jejuni

Cytolethal
distending toxin Campylobacteriosis Poultry products,

unpasteurized milk [14,15]

Clostridium botulinum Botulinum toxin Botulism Improperly processed
canned foods [13]

Escherichia coli O157:H7 Shiga-toxin Hemorrhagic
colitis

Ground meats, raw or
under-pasteurized milk,

sprouts
[13,15]

Listeria monocytogenes Listeriolysin O Listeriosis
Soft cheeses from

unpasteurized milk,
ready-to-eat products

[15,16]

Salmonella Typhi,
Salmonella

Typhimurium,
Salmonella Enteritidis

Enterotoxin
Typhoid fever,
salmonellosis

(gastroenteritis)

Any type of food: meat,
poultry, fish, milk, eggs,

vegetables, water
[13,15]

Staphylococcus aureus Heat stable
enterotoxins

Gastrointestinal
symptoms

Meat, dairy products,
salads [13]

Vibrio cholerae, Vibrio
parahaemolyticus, Vibrio

vulnificus
Cholera toxin Cholera,

gastroenteritis

Raw/undercooked
shellfish, meat,

contaminated water
[13]

Certain food pathogens can survive under adverse environmental factors such as cold, heat, acidic
and high salt conditions and have the capacity to form biofilms on biotic or abiotic surfaces. These
properties can facilitate their growth and spread on food contact surfaces as well.



Antioxidants 2020, 9, 165 3 of 21

On the other hand, the consumption of raw products, such as fruits and vegetables, packaged
salads and ready-to-eat products has increased. This can cause diseases by exposing consumers to a
greater variety of products potentially contaminated with food pathogens [17]. Moreover, the misuse
and overuse of anti-infective drugs against pathogenic microorganisms has generated greater resistance
to clinical antibiotic therapy, acquiring the ability to survive at high drug concentration that cause
serious diseases and/or chronic infections [18,19].

Microbiological deterioration of foods adversely affects their physico-chemical properties and
thereby the sensory characteristics. Texture softening, slime production, off-odors, off-flavors and
colorization are the main signs of food spoilage. The main spoiling microbes in animal-derived
products (e.g., milk, dairy, meat and poultry) are Enterobacteriaceae, lactobacilli, Pseudomonas, Proteus
and Brochotrix species [20]. Yeasts and molds, i.e., Saccharomyces, Candida, Pichia, Aspergillus, Penicillium,
Botrytis and Fusarium species, and bacteria such as pseudomonads, clostridia, bacilli and Erwinia are
common spoilers in plant-derived products [20–22].

Prevention and control of foodborne pathogens and spoilers require their detection in the
food. Conventional methods rely on culturing of microorganisms on special media allowing their
identification and enumeration. These methods are precise but time- and labor-consuming. Some
rapid detection method based on nucleic acids sequencing, metabolomics and proteomics have been
developed in the recent decades [23,24]. Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) can be used for the identification of pathogens through analysis of
the whole cell proteome. Metabolites produced by pathogens or spoilers are detected by means of
gas chromatography-mass spectrometry (GC-MS) or electronic nose [25]. Immunological methods,
such as the enzyme-linked immunosorbent assay (ELISA), are also used for rapid detection of certain
pathogens (e.g., Salmonella) [23]. For prevention and control of foodborne microorganisms, physical
and chemical methods, like sterilization, pasteurization, irradiation, high hydrostatic pressure or
preservatives can be used.

Some of these foodborne pathogenic and spoilage microorganisms became tolerant against the
conventional food preservation and conservation methods [2]. There is a significant industrial demand
for novel preservation techniques because of the common food losses due to microbial deterioration.
Moreover, the consumers’ concern against the chemical preservatives in foods is growing, which
also encourages the researchers to find natural alternatives with high antimicrobial potential. These
substances then can be used as preservative agents to improve the shelf life of food products. Plant
phenolic substances can be promising candidates for these studies.

3. Antimicrobial Activity of Plant Phenolics

Plant-derived phenolics, such as phenolic acids, flavonoids, stilbenes and tannins, can inhibit the
growth and activity of many microorganisms, including food-related pathogens as well as clinically
important bacteria, fungi and protozoa [26–28]. Since the different molecules vary in their structure and
chemical composition (Figure 1), they can display various antimicrobial effects, such as permeabilization
and destabilization of the plasma membrane or inhibition of extracellular enzymes [29]. Moreover,
these mechanisms of action differ from those of the traditional antibiotics, which could make plant
phenolics effective against drug-resistant pathogens [29].
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Figure 1. Groups of plant-derived phenolics, and some representative antimicrobial compounds with
their chemical structure.

Extracts of grape pomace, grape seed, apple, and various exotic fruit and medicinal plant samples
are frequently examined for their potential antimicrobial activity. In a pilot research, for instance,
the influence of grape pomace extract on the growth of 14 pathogenic and spoilage bacteria was
investigated [30]. In agar well diffusion tests, the order of the effective extract concentrations were
found to be 20 > 10 > 5 > 2.5 > 1% (w/v), while in serial dilution assays, the sample at 0.5% (w/v)
concentration had a bacteriostatic activity against Escherichia coli O157:H7 and S. aureus. In another
study, red grape pomace possessed a strong bactericidal effect against E. coli and S. aureus at 12 mg/mL
concentration [31]. The growth inhibitory effect, tested at concentrations from 0.5 to 2 mg/mL, varied
in a dose dependent manner, and the S. aureus was more susceptible to the grape pomace extract than
the E. coli strain tested. Grape seed extracts were also proved to be effective growth suppressors of
other food-related bacteria such as S. Typhimurium, Listeria monocytogenes, Bacillus spp., Pseudomonas
aeruginosa and Campylobacter spp. [32–34]. Among exotic fruits, extracts and betacyanin fractions of red
pitahaya exhibited a good antimicrobial spectrum against Gram-positive and Gram-negative bacteria,
yeasts and molds at concentrations from 7.8 µg/mL to 50 mg/mL [35,36]. Table 2 summarizes some
additional examples about the antimicrobial activity of plant phenolic extracts, indicating the type of
extraction and major antimicrobial activity indices.
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Table 2. Antimicrobial activity of plant phenolic extracts, some examples.

Plant Materials Type of Extraction Target Organism Antimicrobial Activity Reference

Fruit samples

Red wine grape pomace 70% acetone/0.1% HCl/29.9%
water (v/v/v)

Escherichia coli, Listeria innocua
Pinot Noir-pomace and skin MIC 1: E. coli, 3% and 6%; L. innocua,

2% and 7% [37]
Merlot-pomace and skin MIC: E. coli, 9%; L. innocua, 8%

Apple peel Ethanol
Lactobacillus acidophilus, Lactobacillus bulgaricus,
Lactobacillus plantarum, Lactobacillus rhamnosus,

E. coli, Bacillus cereus, Staphylococcus aureus

Extract concentration: 2-20 µg/disk

[38]B. cereus and E. coli: inhibition haloes of 6 to 14 mm
Probiotic lactobacilli: no inhibition

S. aureus: no inhibition

Red and white grape
pomaces Acetone

Listeria monocytogenes, S. aureus, E. coli O157:H7,
Salmonella Typhimurium

MIC (mg/mL): L. monocytogenes, 4.69–18.8; S. aureus, 40.6–250

[39]MBC 2 (mg/mL): L. monocytogenes, 9.38–37.5; S. aureus, > 250
E. coli: no inhibition

S. Typhimurium: no inhibition

Cinnamon bark and Ajowan
fruit

Acetone, ethanol Pseudomonas sp., Bacillus subtilis, E. coli, S.
aureus

MIC values (µg/mL): [40]
ethanol extract of cinnamon, 32–64; ethanol extract of Ajowan,
32–64; acetone extracts of cinnamon, 16–64; Acetone extract of

Ajowan, 64–128

Blackberry and blueberry
pomaces 10% methanol, 10% ethanol Campylobacter jejuni MIC (mg/mL GAE): blackberry, 0.6; blueberry, 0.4 [41]

MBC (mg/mL GAE): blackberry, 0.8; blueberry, 0.5

Blueberry puree 75% ethanol L. monocytogenes, Salmonella Enteritidis MIC (mg/mL): L. monocytogenes, 300–750; S. Enteritidis, 400–1200 [42]

Apple pomace Ethyl acetate S. aureus, E. coli MIC (mg/mL): S. aureus, 1.25; E. coli, 2.50 [43]

Black grape pomace, apple
and pitahaya residues

10% ethanol after enzyme-aided
extraction

B. subtilis, B. cereus, L. monocytogenes, S. aureus,
methicillin-resistant S. aureus, E. coli, S.

Typhimurium, Pseudomonas putida, P. aeruginosa
MICs: from 12.5 to ≥ 100 mg/mL [3]

Bayberry Ethanol
S. aureus, L. innocua, β-hemolytic Streptococcus,

S. Enteritidis, Salmonella typhi, Shigella
dysenteriae

Diameter of inhibition (mm): [44]
S. aureus, 22.9; L. innocua, 21.5; β-hemolytic Streptococcus, 22.7; S.

Enteritidis, 20.1; S. typhi, 13.3; S. dysenteriae, 19.3

Grape pomace 50% methanol, 50% ethanol S. aureus, E. coli, P. aeruginosa, Candida albicans

Extract concentration: 1 mg/disk

[45]Diameter of inhibition (mm):
C. albicans, 12–13

S. aureus, E. coli, P. aeruginosa: no inhibition

Grape residues
Ultrasound-assisted extraction,
methanol:acetone: water:acetic

acid (30:42:27.5:0.5)

Clostridium perfringens, B. cereus, L.
monocytogenes, S. aureus, Sarcina lutea,

Micrococcus flavus, E. coli, P. aeruginosa, S.
Enteritidis, Shigella sonnei, Klebsiella pneumoniae,

C. albicans

Extract concentration: 30 µg/disk
[46]Diameter of inhibition (mm):

C. perfringens, 15.9–17.7; B. cereus, 15.2–17.1; L. monocytogenes,
16.4–18.5; S. aureus,16.5–18.5; S. lutea, 17.3–19.7; M. flavus, 14.8-16.9;
E. coli, 12.1–15.7; P. aeruginosa, 13.5–15.9; S. Enteritidis, 13–15.4; S.

sonnei, 15.6–17.7; K. pneumoniae, 15–16.6; C. albicans, 13.1–15.5



Antioxidants 2020, 9, 165 6 of 21

Table 2. Cont.

Plant Materials Type of Extraction Target Organism Antimicrobial Activity Reference

Grape marc waste Aqueous extraction and
Amberlite FPX-66 purification E. coli, S. aureus, C. albicans MBC (%, w/v): E. coli, 2; S. aureus, 0.125; C. albicans, no effect [47]

Apple phenolic fractions Acetone:ethanol (1:3), solid
phase extraction

L. monocytogenes, S. aureus, E. coli, S.
Typhimurium

Extract concentration: 10–5000 µg/disk
[48]Diameter of inhibition (mm):

L. monocytogenes, 3.7–14.6; S. aureus, 10.9–17.6; E. coli, 7.5; S.
Typhimurium, 4.5–7

Medicinal plants and herbs

Punica granatum L. var.
pleniflora flowers Ethanol

S. aureus, B. cereus, L. monocytogenes, E. coli, S.
dysenteriae, S. typhi

Extract concentration: 50 mg/well
[49]Diameter of inhibition (mm):

S. aureus, 32; B. cereus, 28; L. monocytogenes, 32; E. coli, 22; S.
dysenteriae, 30; S. typhi, 27

Ziziphus and eucalyptus
leaves

Aqueous and ethanol B. subtilis, E. coli, S. aureus, P. aeruginosa,
Streptococcus sp.

Extract concentration: 50–100 mg/mL
[50]Diameter of inhibition (mm):

B. subtilis, 11–19; E. coli, 10–16; S. aureus, 8–17; P. aeruginosa, 9–16;
Streptococcus sp., 11–18

Marsilea minuta leaf Methanol, hexane: methanol B. subtilis, Enterococcus faecalis, K. pneumoniae, P.
aeruginosa MICs: from 125 to 250 µg/mL [51]

Roselle, rosemary, clove and
thyme Aqueous and ethanol B. cereus, S. aureus, E. coli, S. Enteritidis, Vibrio

parahaemolyticus, P. aeruginosa, Candida albicans MICs: from 0.313 to 20% (w/v) [52]

Pelargonium sidoides DC. Methanol (85%), acetone (80%)
C. perfringens, S. aureus, Shigella flexneri, E. coli

O157, S. Typhimurium, C. albicans
Diameter of inhibition (mm): [53]

C. perfringens, 8–35; S. aureus, 13–29.7; S. flexneri, 13-35.3; E. coli,
16–36; S. Typhimurium, 11.3–30; C. albicans, 12–30

15 Mediterranean medicinal
plants Ethanol:water (80:20)

Camplyobacter coli, E. coli, Salmonella Infantis, B.
cereus, L. monocytogenes, S. aureus

Lowest MIC values (mg/mL): [54]
C. coli, 0.83 (e.g., bearberry); E. coli, 1.67 (bearberry); S. Infantis, 1.67
(bearberry); B. cereus, 1.67 (e.g., bearberry); L. monocytogenes, 1.67

(e.g., bearberry); S. aureus, 0.35 (bearberry)

Ginger rhizomes Aqueous, ethanol, n-hexane K. pneumoniae, S. typhi, Shigella spp., P.
aeruginosa, E. coli, S. aureus

Extract concentration: 10 µg/mL
[55]Diameter of inhibition (mm):

K. pneumoniae, 0.8–15.4; S. typhi, 13.2–16.2; Shigella spp., 12.3–17.7; P.
aeruginosa, 12.6–16; E. coli, 14.7–17.2; S. aureus, 13.3–18.3

Ruta chalepensis Methanol S. aureus, E. coli, P. aeruginosa
Extract concentration: 10 mg/disk

[56]Diameter of inhibition (mm):
S. aureus, 12.3–16.3; E. coli, 13–17.3; P. aeruginosa, 7.7–17.7

Syzygium polyanthum L.
leaves

Ethanol
E. coli O157:H7, K. pneumoniae, L. monocytogenes,
Proteus mirabilis, P. aeruginosa, S. Typhimurium,

S. aureus, Vibrio cholerae, V. parahaemolyticus

Extract concentration: 100 µg/disk

[57]
Diameter of inhibition (mm):

E. coli, 7; K. pneumoniae, 9.3; L. monocytogenes, 9.6; P. mirabilis, 6.6; P.
aeruginosa, 7; S. Typhimurium, 6.6; S. aureus, 9.3; V. cholerae, 8.3; V.

parahaemolyticus, 6.6;
MICs: from 0.63 to 1.25 mg/mL
MBCs: from 0.63 to 2.5 mg/mL

1 MIC, minimum inhibitory concentration. 2 MBC, minimum bactericidal concentration.



Antioxidants 2020, 9, 165 7 of 21

Studies were also done using plant phenolic extracts as natural preservatives in food systems.
The work of Sagdic et al. [58], for instance, was oriented towards in situ studies where they tested
the antimicrobial activity of grape pomace extracts in beef patties. Samples from five grape varieties
were incorporated to beef patties and the growth of Enterobacteriaceae, coliforms, Salmonella, S. aureus,
total aerobic mesophilic count, yeast and molds, lactobacilli and micrococci pathogens was studied
in different storage periods. Each pomace extract inhibited the microorganisms in a concertation
dependent manner. Pathogenic bacteria, yeasts and molds were completely inhibited by 5 and 10%
of the extracts. In another experiment performed in vegetable soup environment, the grape pomace
extract showed antibacterial activity in a dose dependent manner against S. aureus and E. coli, due to its
high proanthocyanidin content [59]. In meat paté, experiments of Hayrapetyan et al. [60] showed that a
flavonoid-rich pomegranate (Punica granatum) peel extract could inhibit the growth of L. monocytogenes
by 4.1 log at 4 ◦C during 46 days, but the inhibitory effect was less effective at higher temperatures
(i.e., at 7 and 12 ◦C), demonstrating the influence of temperature on the inhibitory effect. Ahn et al. [61]
added grape seed and pine bark extracts and oleoresin rosemary to ground beef and, after cooking,
samples were inoculated with strains of foodborne pathogens (E. coli O157:H7, L. monocytogenes, S.
Typhimurium and Aeromonas hydrophila). Pine bark extract at 1% concentration was the most effective
against the growth of pathogens after 9 days of storage. Apart from the above studies, there were
several experiments on the application of plant phenolic extracts as antimicrobials in various foods
(these studies have recently been summarized by Bouarab Chibane et al. [62]).

Individual phenolic compounds of plant extracts have been shown to affect the growth of
food-related microorganisms. In the study of García-Ruiz et al. [63], the antimicrobial activity of
18 phenolic compounds, i.e., hydroxycinnamic and hydroxybenzoic acids, stilbenes, flavan-3-ols,
flavonols and phenolic alcohols, was evaluated against lactic acid bacteria wine isolates of Oenococcus
oeni, Lactobacillus hilgardii and Pediococcus pentosaceus. Among the tested phenolics, the flavonols
and stilbenes exhibited the strongest inhibitory effect on bacterial growth. In another experiment,
Pastorkova et al. [64] investigated the antimicrobial potential of 15 phenolic compounds (i.e., phenolic
acids, stilbenes and flavonoids) naturally occurring in grapes against wine spoilage yeasts and acetic
acid bacteria. Pterostilbene, resveratrol and luteolin presented the major inhibitory effects on all
tested microorganisms. Phenolic acids, i.e., myricetin, p-coumaric and ferulic acids, showed selective
antimicrobial activity depending on the yeast and bacteria species tested. Activity of lignans and
flavonoids were tested against E. coli, L. monocytogenes, P. aeruginosa, Klebsiella pneumoniae, Enterobacter
cloacae, S. aureus and Enterococcus faecalis in the study of Favela-Hernández et al. [65]. Dihydroguaiaretic
acid, 4-epi-larreatricin, 3′-Demethoxy-6-O-demethylisoguaiacin and 5,4′-dihydroxy-7-methoxyflavone
compounds showed high growth inhibitory potential towards some of the tested strains, with a MIC
range from 12.5 to 50 µg/mL. MIC values of 500–1000 µg/mL were reported for the 7-hydroxycoumarin
(umbelliferone) against S. aureus, methicillin-resistant S. aureus (MRSA), E. coli and P. aeruginosa [66].
Table 3 shows other experiments from the last decade testing antimicrobial activity of individual
phenolic compounds.
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Table 3. Antimicrobial activity of individual phenolic compounds, some examples.

Compounds Type of Solvent Target Organism Antimicrobial Activity Reference

Coumarin, quercetin Dissolved in dimethyl sulfoxide
(DMSO)

Escherichia coli, Enterobacter aerogenes, Salmonella
infantis, Salmonella Typhimurium

Coumarin: MIC 1, 0.625–5 mg/mL; MBC 2, ≥ 5 mg/mL [67]
Quercetin: no effect

Gallic acid, catechin Dissolved in DMSO E. coli Inhibition haloes of 12 and 14 mm in the presence of 2.5 and 15
mg/well gallic acid and catechin, respectively. [68]

Ellagic acid,
quercetin-3-galactoside,

chlorogenic acid, quercetin
Tryptic soy broth Listeria monocytogenes, Salmonella Enteritidis Effective concentrations: chlorogenic acid, 500 µg/mL; quercetin

and quercetin-3-galactoside, 200 µg/mL; ellagic acid, 44 µg/mL [42]

Phloridzin, phloretin Ethanol Staphylococcus aureus, E. coli MIC: S. aureus 0.50 and 0.10 mg/mL, E. coli 1.50 and 0.75 mg/ml [43]

Thymol Dissolved in ethanol L. monocytogenes MIC: 2 mg/mL [69]

11 phenolic compounds Dissolved in 10% ethanol
Bacillus subtilis, Bacillus cereus, L. monocytogenes,
S. aureus, methicillin-resistant S. aureus, E. coli,

S. Typhimurium, Pseudomonas putida,
Pseudomonas aeruginosa

MICs: from 125 to ≥ 500 µg/mL [3]
Cinnamic acid and resveratrol, 125 µg/mL; p-coumaric acid, 250

µg/mL; quercetin, 500 µg/mL against B. subtilis, B. cereus,
respectively. Resveratrol, 250 and 500 µg/mL against P. aeruginosa

and P. putida, respectively.

17 phenolic compounds Dissolved in absolute ethanol
19 S. aureus strains, including enterotoxin

producers
Compound concentration: 200 µg/disk [70]

Hydroquinone, thymol, carvacrol, butylated hydroxyanisole, octyl
gallate, and tannic acid inhibited the growth of all strains tested.

1 MIC, minimum inhibitory concentration; 2 MBC, minimum bactericidal concentration.
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The phenolic compounds can express their microbicide effect through different mode of action.
These molecules can suppress several microbial virulence factors (e.g., by inhibition of biofilm
formation, reduction of host ligand adhesion and neutralization of bacterial toxins), reduce the fluidity
of membrane, inhibit the synthesis of nucleic acids and the cell wall or energy metabolism [29,71].
In addition, many phenolics could show synergy with antibiotics enhancing their effectiveness and
reducing the dose of use [72–74]. The presence and number of hydroxyl groups in phenolic compounds
is responsible for their antioxidant properties. In addition, changes in the position of the hydroxyl
group could play an important role in the antimicrobial activity [75] and the interactions with cell
membrane structures [76]. In case of carvacrol, for instance, presence of the hydroxyl group and the
delocalized electron system are thought to be responsible for the cytoplasmic membrane destabilization
and the collapse of the proton motive force that finally led to death of Bacillus cereus cells [77]. Phenolic
hydroxyl groups can form hydrogen bonds with active site of enzymes inhibiting their catalytic
activity [78].

Antimicrobial action of phenolics may vary from molecule to molecule. In the study of
Engels et al. [79], gallotannins isolated from mango kernel inhibited the growth of Bacillus subtilis
and other foodborne pathogens such as S. aureus and E. coli. The inhibitory effects of gallotannins
may be attributed to their iron-complexing properties and ability to interact with proteins and inhibit
enzyme activities [79]. At the same time, flavonoids have a series of antibacterial actions with different
mechanisms of action, such as inhibition of nucleic acid synthesis [80], induction of cytoplasmic
membrane damage [81,82] and inhibition of energy metabolism [83], biofilm formation [3] and bacterial
toxin production [84]. The flavonoid catechin can penetrate the lipid bilayers of the membrane resulting
in leakage of intramembranous materials and liposome aggregation [85,86]. Moreover, in synergy
tests, the catechin-rich fraction of green tea (Camellia sinensis) extracts could reverse the resistance to
methicillin in MRSA [87].

On the other hand, it is possible to increase the antimicrobial activity of plant extracts by certain
processes. An ecofriendly way is the treatment with carbohydrase enzymes that can hydrolyze the
phenolic glycosides improving the antimicrobial potential of the samples. For instance, Pectinase 62L
(10 U polygalacturonase equivalent activity) treatment for two hours at pH 5.0 and 37 ◦C caused a
decrease in the minimum inhibitory concentration (MIC) values of bergamot peel extracts against
Salmonella enterica, Pseudomonas putida, E. coli and B. subtilis, compared to the enzyme-free control [88].
The antimicrobial effect against different types of bacteria may depend on the enzyme cocktail(s) used
for the treatment as well. In the study of Puupponen-Pimiä et al. [89], different pectinase treatments
affected differently the inhibition potential of bilberry extracts against Salmonella and Staphylococcus
bacteria. Pectinex Smash, Pectinex BE 3-L and Biopectinase CCM treated samples exhibited the
highest antimicrobial activity against the Staphylococcus strains, while Pectinex Ultra SP-L, Pectinex
3 XL and Pectinex BE XXL treatments were superior in case of the Salmonella isolates. For pumpkin
and flaxseed extracts, treatment using a mixed cocktail of immobilized Aspergillus oryzae α-amylase,
and Aspergillus niger β-glucosidase and β-glucanase enzymes (in a ratio of 1:1:1) resulted in elevated
antimicrobial activity against pathogenic bacteria compared to the enzyme-free sample [90]. Red grape
pomace subjected to cellulase-assisted extraction efficiently inhibited the growth of E. coli and S. aureus
pathogens in the study of Kabir et al. [31].

4. Quorum Sensing Systems and Biofilm Formation in Food Related Bacteria

The quorum sensing system is responsible for the formation of many food deterioration
phenotypes [91]. The mechanism regulates important cellular functions such as biofilm formation,
sporulation, expression of virulence genes, conjugation, competition, bioluminescence and the
production of toxins and pigments. Since the quorum sensing is a density dependent communication
mechanism, appearance of the controlled pathological events is related to the density of bacterial cells.
The bacterial cells produce and secrete signal molecules, known as autoinducers that accumulate until
reaching a sufficient local concentration of bacteria (a quorum) and start a series of population responses,
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including biofilm formation [92]. The autoinducers secreted by the Gram-negative bacteria are mainly
N-acylhomoserine lactone (AHL) molecules (autoinducer-1). The autoinducers in Gram-positive
bacteria are peptide compounds (i.e., autoinducer peptides, AIP). Furthermore, both Gram-negative and
Gram-positive bacteria could secrete autoinducer 2 (AI-2), which are furanosyl borate diester and similar
molecules. Other signaling factors, such as p-coumaroyl-homoserine lactone [93], unsaturated fatty
acids [94] and alkylquinolones are also known [95]. Effective quorum sensing inhibition approaches
could be the blocking of the synthesis and the secretion of the autoinducers, the enzymatic degradation
of the signal molecules, and the receptor antagonism, in which the antagonist prevents the binding
of the signal molecules to response regulator proteins (e.g., to LuxR). However, according to recent
investigations, resistance could be developed against certain anti-quorum sensing treatments [96].
Furanones are well-known natural antimicrobials that show destructive activity against the quorum
sensing system of both Gram-negative and Gram-positive bacteria [97,98].

Biofilms are microbial communities attached to biotic and abiotic surfaces and embedded in a
matrix of extracellular polysaccharides, lipids, proteins and nucleic acids, the so called extracellular
polymeric substances (EPS) that are produced by the microbial community itself. Inside the biofilm, the
cells display different metabolic activity and physiological, gene expression and morphological patterns
compared to the planktonic cells. They become more resistant to environmental adverse factors, such
as the lack of nutrients and oxygen and changes in the pH condition. Biofilm bacteria are less sensitive
to the action of antimicrobial agents causing a potential risk in food industry environments [99]. In
addition, the antimicrobial substances at subinhibitory concentration can act as environmental signals
activating the formation of biofilms [100], thereby, leading to the failure of the drug treatment [101].
However, an effective quorum sensing inhibitor could inhibit the biofilm formation of foodborne
pathogenic and spoilage bacteria as well [102–104]. Therefore, in agreement with today’s consumer
demands, there are food preservative developments focusing on the screen and extensive analysis of
natural inhibitory systems.

5. Anti-Quorum Sensing and Antibiofilm Effects of Plant Phenolics

Certain plant phenolic substances, including phenol-rich crude extracts, could exhibit anti-biofilm
and/or anti-quorum sensing activities [105–107]. The phenolic compounds suppress the bacterial
biofilm formation by the inhibition of different regulatory mechanisms without affecting growth:
they can block the quorum sensing as mentioned above, reduce the bacterial motility altering their
performance [108], decrease the superficial adhesion [109] and inhibit the expression of virulence
factors associated with pathogenic behaviors [110,111].

In the study of Vattem et al. [112], the anti-quorum sensing effect of aqueous phenolic extracts
from common dietary fruits, herbs and spices was investigated, using the purple pigment violacein
producer Chromobacterium violaceum CVO26/CV 31532 bioassay system. The violacein synthesis is
under quorum sensing regulation, mediated by AHL autoinducers. Among the fruit extracts tested,
raspberry, blueberry and grape samples inhibited the AHL activity, and blueberry had the highest
effect on the AHL synthesis. Moreover, blueberry extract was outstanding in the inhibition of quorum
sensing related swarming motility in P. aeruginosa and E. coli O157:H7 pathogens. Berry phenolic
extracts, namely those from raspberry and cloudberry, were the most effective C. violaceum AHL
signaling inhibitors in the study of Priha et al. [113]. In addition, the cloudberry extract reduced the
biofilm formation of the common brewery contaminant bacterium, Obesumbacterium proteus at the
concentrations of 25 and 50 mg/L. A bioactive phenol-rich extract from apple peel was also tested for
its anti-quorum sensing effect in the C. violaceum agar-diffusion test system by Fratianni et al. [38]. The
whole extract exhibited quorum sensing inhibiting activity, which, however, was not detected for the
single phenolic compounds of the apple peel. Here, the authors pointed out on possible synergistic or
combinatory effects between the molecules in the extract, resulting in anti-quorum sensing activity for
the crude sample. In a C. violaceum based liquid test, significant inhibition of violacein production was
recorded for syringic acid, vanillic acid, (+)-catechin and resveratrol compounds (10 µg/mL), that can
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be found at different concentrations in black grape, apple and pitahaya extracts [3]. The yield of some
of these phenolics, obtained via carbohydrase-assisted extraction, showed positive association with
the anti-quorum sensing activity of the crude extracts tested. In the same research, all single phenolic
compounds tested, i.e., 4-hydroxybenzoic, syringic, gallic, vanillic, cinnamic and p-coumaric acids,
(+)-catechin, (−)-epicatechin, quercetin, polydatin and resveratrol, inhibited the biofilm formation of L.
monocytogenes, S. aureus, MRSA, E. coli, S. enterica, P. putida and P. aeruginosa pathogens in vitro, at 100
µg/mL concentration [3].

In addition, many other studies have addressed the ability of phenolic compounds and different
plant extracts to modulate the quorum sensing system and the biofilm formation in foodborne
pathogenic and spoilage bacteria. For instance, catechin [114], naringenin [115] and quercetin [116]
depicted strong anti-quorum sensing property against P. aeruginosa. Additionally, flavonoid fraction of
guava (Psidium guajava L.) leaves extract inhibited the quorum sensing system of C. violaceum, and the
biofilm formation, pyocyanin production, proteolytic and elastolytic activities and swarming motility
in P. aeruginosa PAO1 [117]. It was shown that the quercetin and quercetin-3-O-arabinoside components
of the flavonoid extract were responsible for the anti-quorum sensing activity.

There were several investigations concerning the inhibition of pathogenic E. coli biofilms by
phenolics. In the study of Lee et al. [118], the flavonoid phloretin, a major compound in apple
and strawberry extracts, has inhibited the formation of E. coli O157:H7 biofilms without affecting
the growth of planktonic cells. Two furocoumarins isolated from grapefruit juice, bergamottin and
dihydroxybergamottin, suppressed the biofilm formation of E. coli O157:H7 in a range of 71.9 and
58.3%, respectively [119]. Furthermore, naringenin, quercetin, sinensetin and apigenin were effective
quorum sensing antagonists and biofilm suppressors in E. coli O157:H7 strain [120]. For non-O157
Shiga toxin producing E. coli strains, Sheng et al. [121] found that the grape seed extract inhibited well
the quorum sensing system.

Many phenolic acids proved to be effective against S. aureus biofilms as well. With this
context, the gallic [122], ginkgolic [123], ellagic [124] and rosmarinic acids [125] have been found
to be promising inhibitors in the research of the past decade. The phenolic glycoside compound,
1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose, purified from Eustigma oblongifolium extract, inhibited the
formation of S. aureus biofilms by blocking the synthesis of cell-to-cell adhesion compounds, thereby,
preventing the primary attachment to solid surfaces [126]. It was also shown that methanol extract
from pomegranate, rich in ellagic acid, inhibited the biofilm formation of S. aureus, MRSA, E. coli and C.
albicans [124]. Red wines, extensively recognized for their high flavonoid (e.g., quercetin, kaempferol,
apigenin, chrysin, fisetin and luteolin) and stilbenoid (e.g., trans-resveratrol) content have proven to
be potent inhibitor of S. aureus biofilms [127]. Among the compounds tested, the quercetin exhibited
the highest biofilm inhibitory potential. In addition, phenolic extracts from muscadine grape were
also able to inhibit and eradicate the S. aureus biofilm in the study of Xu et al. [128]. A summary of
some recently published researches about antibiofilm activity of plant extracts against food-related
microorganisms is presented in Table 4.
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Table 4. Antibiofilm activity of plant extracts against food pathogen microorganisms, examples from
recent studies.

Source/Residue Solvent of
Extraction Target Biofilm Percent Biofilm Inhibition Reference

Black Cardamom
(Amomum tsao-ko)

extract
80% ethanol Staphylococcus aureus, Salmonella

Typhimurium, Pseudomonas aeruginosa 45.2–51.9% (4 mg/mL cc.) [129]

Propolis and bud
poplar resins 85% ethanol P. aeruginosa 50–60% (100 µg/mL cc.) [130]

Butia odorata extract acetone S. aureus 99.9% (11.4–22.8 mg/mL cc.) [131]

Onion extracts methanol P. aeruginosa, S. aureus 27.3–61.5% (50 µg/mL cc.) [132]

Olive leaves methanol

P. aeruginosa, methicillin-resistant
Staphylococcus aureus (MRSA), S. aureus,

Bacillus subtilis, Escherichia coli,
Enterococcus faecalis, Candida albicans

29.3–98% (32-512 µg/mL cc.) [133]

Populus nigra and
Populus alba bud

extracts
methanol MRSA, S. aureus >70% for P. nigra, >50% for

P. alba [134]

Opuntia ficus-indica
cladodes 80% methanol S. aureus 71–85% (1–1.5 mg/mL cc.) [135]

Eugenia and
Syzygium leaf

extracts
acetone P. aeruginosa, S. Typhimurium, S. aureus,

E. faecalis, E. coli, Bacillus cereus
>50% for several samples

(1 mg/mL cc.) [136]

Potentilla visianii
extracts

methanol, ethyl
acetate

Salmonella enterica, E. coli, S. aureus,
B. subtilis >50% (1.1–10 mg/mL cc.) [137]

Gentiana asclepiadea
extracts

water, ethanol,
acetone S. aureus, P. aeruginosa, Proteus mirabilis >50% (2.1–37 mg/mL cc.) [138]

6. Anti-Enterotoxin Effect of Plant Phenolics

Many phenolic compounds and extracts even at concentrations below the MIC can inhibit the
production and/or the activity of bacterial enterotoxins [139]. These anti-enterotoxin properties are
being intensively tested for foodborne pathogens, especially in case of S. aureus. The staphylococcal
enterotoxins and enterotoxin-like molecules are low-molecular weight proteins with a globular
structure. They have superantigenic activity and are varied in their emetic potential [140]. Among
them, the enterotoxin A is responsible for most staphylococcal food poisoning outbreaks [141]. Phenolic
compounds can affect the enterotoxin production through several mode of action, including translation
and/or transcription inhibition, disruption of secretory mechanisms, inhibition of quorum sensing
regulatory systems, and toxin inactivation [142,143]. Various plant derived phenolic substances have
been described as effective inhibitors of the staphylococcal enterotoxin production and activity (Table 5).
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Table 5. Anti-staphylococcal enterotoxin effect of plant phenolic extracts and compounds.

Phenolic
Extract/Compound

Target Staphylococcal
Enterotoxin Anti-Enterotoxin Activity Reference

Licochalcone A
Enterotoxins A (SEA)

and B (SEB)
Effective concentration: 0.25 mg/mL [144]

Secretion inhibition; Inhibition of regulatory gene (agrA)
transcription

Carvacrol and thymol Not specified Total inhibition of secretion at 0.3 and 0.15 µL/mL concentrations [145]

Cinnamaldehyde,
citronellol, eugenol,

geraniol and terpineol

SEA, SEB, Enterotoxins C
(SEC) and D (SED)

Concentrations: 120–1300 µg/mL [142]
SEA: eugenol, citronellol and geraniol reduced the production; SEB:
terpineol and eugenol inhibited the production; SEC: most sensitive

to the phenolics; SED: no inhibition

16 phenolic compounds SEA

Inhibition of SEA protein level (penta-galloyl-glucose, corilagin,
punicalagin, castalagin and procyanidin B2 at 0.25 mg/mL) and
activity (penta-galloyl-glucose, tannic acid, persimmon tannin,

corilagin, punicalagin, eugeniin, sanguiin H-6, geraniin,
pedunculagin and castalagin, 3–25 µg/mL), interaction with SEA

(eugeniin, castalagin, punicalagin, pedunculagin, corilagin,
geraniin, penta-galloyl-glucose and sanguiin H-6 at 0.25 mg/mL)

[146]

14 phenolic food
additives

SEA

SEA production decrease: Tannic acid AL, Purephenon 50 W and
Polyphenon 70A at 0.25 mg/mL; Gravinol®-N, Blackcurrant

polyphenol AC10 and Resveratrol-P5 at 1.0 mg/mL
[147]

Inhibition of sea gene expression (mg/mL): Tannic acid, 0.3;
Gravinol®-N, 1; Blackcurrant polyphenol AC10, 1; Resveratrol-P5, 2

Tea catechin Enterotoxin I (SEI) Inhibition of sei gene expression at 0.4 g/L concentration [148]

Apple juice and apple
polyphenols SEA

Activity inhibition:
[149]Red Delicious at 0.025%

Apple Poly phenol-rich extract at 0.06–0.3%

Witch-hazel and green
tea extracts

SEA
Witch-hazel: inhibition of SEA production at 0.015 mg/mL GAE

concentration [143]
Green tea: no effect

Pomegranate extract SEA Inhibition of SEA production at 0.05% (v/v) concentration [150]

Oleuropein SEB Inhibition of SEB production at > 0.2% (w/v) concentrations [151]

Activity of phenolics on AB-type protein toxins, e.g., cholera toxin, Shiga toxins, E. coli heat-labile
toxin, P. aeruginosa exotoxin A, has also been extensively studied. These toxins consist of an A catalytic
subunit and a B cell-binding subunit. Grape extracts inhibited the cholera intoxication in cultured cells
and intestinal loops through various actions, including the elimination of the pre-bound toxin from the
cell surfaces, and disruption of the unfolding, transport and catalytic activities of the dissociated A
subunit [152]. In a later study, the function of 20 individual phenolic constituents of grape extracts in
cholera toxin inhibition was assessed [153]. Among others, inhibitory functions affecting the toxin
binding and the enzyme activity have been associated with the mode of action of individual phenolic
compounds. For instance, resveratrol disrupted the toxin internalization and activity, epigallocatechin
gallate and procyanidin blocked the toxin binding and occupied the binding sites, and kaempferol
and quercitrin could directly inhibit the activity of the catalytic subunit. Grape seed and grape
pomace extracts effectively disrupted the action of the Shiga toxin 1 and 2, and the heat-labile toxin as
well [152,154].

7. Conclusions

Many phenolic compounds and phenol-rich plant extracts have promising activity to inhibit the
growth of both the planktonic form and the biofilms of food related pathogens. Investigation of this
property is particularly important as bacterial biofilm layers are commonly formed on foods and/or food
contact surfaces, resulting in a microbial community more resistant to the traditional disinfectant agents.
Moreover, their inhibitory properties against the production and activity of bacterial enterotoxins can
make many plant phenolics effective in preventing food poisoning symptoms. Plant phenolics could
have anti-quorum sensing activity as well. The quorum sensing mechanism regulates the biofilm
formation and toxin production of pathogenic bacteria; therefore, discovery and analysis of substances
suppressing this system has also occupied a prominent field in the current researches. In conclusion,
the summarized studies emphasize not only the importance of plant phenolic extracts as sources
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of natural preservatives but provide alternatives for ecofriendly utilization of some agro- and food
industrial byproducts and enzyme aided extraction processes as well.
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