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ABSTRACT. Let F be a family of n axis-parallel boxes in R? and a € (1—1/d, 1]

a real number. There exists a real number B(cr) > 0 such that if there are (%)

intersecting pairs in F, then F contains an intersecting subfamily of size fn.
A simple example shows that the above statement is best possible in the sense
that if @ < 1 —1/d, then there may be no point in R? that belongs to more
than d elements of F.

1. INTRODUCTION AND RESULTS

According to the classical theorem of Helly [1], if every d + 1-element subfamily
of a finite family of convex sets in R? has nonempty intersection, then the entire
family has nonempty intersection. Although the number d + 1 in Helly’s theorem
cannot be lowered in general, it can be reduced for some special families of convex
sets. For example, if any two elements in a finite family of axis-parallel boxes in
R? intersect, then all members of the family intersect, cf. [2].

Katchalski and Liu [7] proved the following generalization of Helly’s theorem
for the case when not all but only a fraction of d + 1-element subfamilies have a
nonempty intersection in a family of convex sets.

Fractional Helly Theorem. (Katchalski and Liu [7]) Assume that o € (0,1] is
a real number and F is a family of n convex sets in R, If at least a(dil) of the

(d+41)-tuples of F intersect, then F contains an intersecting subfamily of size %=

o

The bound on the size of the intersecting subfamily was later improved by Kalai
[6] from 55 n to (1 — (1 — @)t/ (@+D)n and this bound is best possible.

In this paper, we study the fractional behaviour of finite families of axis-parallel
boxes, or boxes for short. We note that the boxes can be either open or closed,
our statements hold for both cases. Our aim is to prove a statement similar to the
Fractional Helly Theorem.

The intersection graph G of a finite family F of boxes is a graph whose vertex
set is the set of elements of F, and two vertices are connected by an edge in Gr
precisely when the corresponding boxes in F have nonempty intersection.

Recall that for two integers n > m > 1, the Turdn-graph 7 (n,m) is a complete
m-partite graph on n vertices in which the cardinalities of the m vertex classes are

This is not the same as the final published version of the paper. The pa-
per was published in Computational Geometry:  Theory and Applications 48 (2015),
no. 3, 221-224. DOI 10.1016/j.comgeo.2014.09.007 The paper is available at

https://www.sciencedirect.com/science/article/pii/S0925772114001072?via%3Dihub
(© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.

1



2I. BARANY, F. FODOR, A. MARTINEZ-PEREZ, L. MONTEJANO, D. OLIVEROS, AND A. POR

as close to each other as possible. Let t(n,m) denote the number of edges of the
Turén graph 7 (n,m). It is known that ¢(n,m) < (1 — %)%2, and equality holds if
m divides n. Furthermore,

lim A g1 (1)

n—oo % m

For more information on the properties of Turdn graphs see, for example, the book
of Diestel [3].

The following example shows that we cannot hope for a statement for boxes that
is completely analogous to the Fractional Helly Theorem.

Example 1. Let n > d+ 1 and m, k > 0 be integers such that n = md + k£ and
0<k<d-1. Letny,...,ng be positive integers with n = n; +--- + nyg and
ng = (5] for 1 <i<kandn; = |5] for k+1<i<d. Forl<i<d, consider
n; — 1 hyperplanes orthogonal to the ith coordinate direction. These hyperplanes
cut R¢ into n,; pairwise disjoint open slabs ng,j =1,...,n;. Let C be a large
open axis-parallel box that intersects each slab and let F; consist of the open boxes
Bi; = C'N Bj;. Define F as the union of the F;.

This way we have obtained a family F of n boxes with the property that two
elements of F intersect exactly if they belong to different F;. The intersection graph
of Fis T(n,d) and thus the number of intersecting pairs in F is t(n,d). However,
there is no point of R? that belongs to any d + l-element subfamily of F. Thus,
(1) shows that in a fractional Helly-type statement for boxes, the percentage a has
to be greater than 1 — é.

Let n > k > d and let T'(n, k, d) denote the maximal number of intersecting pairs
in a family F of n boxes in R? with the property that no k 4+ 1 boxes in F have a
point in common.

Theorem 1. With the above notation,
d—1 , 2k+d
< 2 n” + 2d n.
It is quite easy to precisely determine T'(n, k,d) when d = 1:

Proposition 1. T'(n,k,1) = (k—1)n — ('5)

T(n,k,d)

Theorem 1 directly implies the following corollary.

Corollary 1. Assume that € > 0 is a real number and F is a family of n bozxes in
R?. If at least (% + 5) n? pairs of F intersect, then F contains an intersecting
subfamily of size dne — g + 1.

The proof of Corollary 1 is given in Subsection 2.2. Corollary 1 yields the next
theorem, which is our main result.

Fractional Helly Theorem for boxes. For every a € (1— é, 1] there exists a real
number B(a) > 0 such that, for every family F of n boxzes in R?, if an « fraction
of pairs are intersecting in F, then F has an intersecting subfamily of cardinality
at least Bn.

Kalai’s lower bound f(a) = 1 — (1 — a)'/(@*1 for the size of the intersecting
subfamily in the fractional Helly theorem yields that if « — 1, then S(a) — 1
as well. The same holds for families of parallel boxes as stated in the following
theorem.
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Theorem 2. Let F be a family of n boves in RY, and let a € (1 — d—lz, 1] be a real
number. If at least 04(72’) pairs of boxes in F intersect, then there exists a point that
belongs to at least (1 — dy/1 — a)n elements of F.

Simple calculations show that Corollary 1 does not imply Theorem 2 so we
provide a separate proof for it in Section 2.

2. PROOFS

2.1. Proof of Theorem 1. It is enough to prove that if no k + 1 elements of F
have a point in common, then there are at least "2_2§+d)"
We may assume by standard arguments that the boxes in F are all open, so B € F
is of the form B = (a1(B),b1(B)) X - -+ X (aq(B),ba(B)). We assume without loss
of generality that all numbers a;(B),b;(B) (B € F) are distinct. For B € F we
define deg B to be the number of boxes in F that intersect B.

We prove Theorem 1 by induction on n. The starting case n = k is simple since

n?—2(k+d)n
then > —

non-intersecting pairs.

< 0. In the induction step n — 1 — n we consider two cases.

Case 1. When there is a box B with deg B < (1 — é)n + 21;751'
(”71)272§Z+d)("71) non-intersecting pairs after
removing B from F. Since B is involved in at least (n — 1) — (1—3)n — 228

non-intersecting pairs, there are at least
(n—1)2-2(k+d)(n—1) 14" 2k+1  n?—2(k+dn
2d d 2d 2d

non-intersecting pairs in F, indeed.

By induction, we have at least

Case 2. For every B € F deg B > (1 — 2)n 4 241
We show by contradiction that this cannot happen which finishes the proof.
We define d distinct boxes B, ..., By € F the following way. Set

¢ = min{b;(B) : B € F}

and define By via ¢; = b1(B1). The box By is uniquely determined as all by (B) are
distinct numbers. Assume now that i < d and that the numbers ¢q,...,¢;_1, and
boxes By, ..., B;_1 have been defined. Set

C; = mln{bz(B) . B S .F\ {Bl, .. ~aBi—1}}

and define B; via ¢; = b;(B;) which is unique, again.

Let 7/ = F\{Bu,...,Bq}. We partition F’ into d 4+ 2 parts. Let Fy be the set
of all boxes of F’ that intersect every B;. For ¢ = 1,...,d let F; be the set of all
boxes in F’ that intersect every B; for j # ¢ but do not intersect B;. Let F* be
the set of all boxes of F’ that intersect at most d — 2 of the B; boxes. As this is a
partition of F’ we have

d
\Fol + > | Fil+|F* | =|F|=n—d
i=1
Note that |Fo| < k since every box in Fy contains the point (¢, ..., cq)-

Let N be the number of intersecting pairs between {By,..., By} and F'. Each
B, intersects at least deg B; — (d — 1) boxes from F' as B; may intersect B; for all
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j €[d],j #i. Since every deg B; > (1 — é)n + 2’;—51 we have

d((l—cll)n+2k221—(d—1))§N

Every box in Fy intersects every B, i € [d], every box in F; intersects every B;
except for B; and every box in F* intersects at most (d—2) of the B;. Consequently

d
N < d|Fo|+ (d—1) Y | Fil + (d - 2)|F*.
1=1
So we have
d
1. 2k+1 .
a(0- Pt ZoE—@-0) < dFRl+E@- DY IF @ 2)IF

i=1

d
|Fol + (d — 1) <|-7:0| + Z | il + |]:*|> - [F7|
1
= |Fol+(d—1)(n—d)—|F*.
Simplifying the inequality and using |Fo| < k give
b+ 3 < VRl - 1P < k- |
implying |F*| < —%, which is a contradiction.

2.2. Proof of Corollary 1. If no point of R? belongs to dne — % + 1 elements of
F, then by Theorem 1 the number of intersecting pairs of F is smaller than

_ 2(dne — 3) +d _
d=1., (dne —5) + nz(d 1+5>n2,

2d 2d 2d

which yields a contradiction.

2.3. Proof of Theorem 2. Let m; denote the orthogonal projection to the ith
dimension in RY, that is, m;(B) = (a;(B),b;(B)) for B € F. Set ¢ = 1 — a. Define
T; = {m(B) : B € F}; this is a family of n intervals, and all but at most £(})
of the pairs in 7T; intersect. According to the sharp version of the fractional Helly
theorem (cf. [6]), T; contains an intersecting subfamily T) of size (1 — /2)n, let ¢;
be a common point of all the intervals in T/. Define D; = {B € F : ¢; ¢ m(B)}.
Then F \ Uf D; consists of at least (1 — dy/e)n = (1 — dy/1 — a)n boxes and all of
them contain the point (¢, ..., cq).

2.4. Proof of Proposition 1. Let k € {1,...,n} be an integer, and let F be the

family of open intervals (i,7 + k) for i = 1,2,...,n. Thus F counsists of n intervals,
no k+1 of them have a point in common, and there are (k—1)n — (g) intersecting
pairs in F. Consequently T'(n,k,1) > (k —1)n — (’2“)

Next we show, by induction on n that T'(n,k,1) < (k — 1)n — (g) Let F be
a family of n intervals such that no k + 1 of them have a common point. We
assume that these intervals are closed which is no loss of generality. The statement
is clearly true when n = k. Let [a,b] € F be the interval where b is minimal.
Since any interval intersecting [a,b] contains b, there are at most k — 1 intervals

intersecting [a,b]. Removing [a,b] from F and applying induction, we find there
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are at most (k — 1)(n — 1) — (¥) intersecting pairs in F \ {[a,b]}. That is, there are

atmost k— 14+ (k—1)(n—1)— (g) =(k—-1n-— (g) intersecting pairs in F.
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