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Abstract. The Separation Problem, originally posed by K. Bezdek in [1], asks

for the minimum number s(O,K) of hyperplanes needed to strictly separate
an interior point O in a convex body K from all faces of K. It is conjectured

that s(O,K) ≤ 2d in d-dimensional Euclidean space. We prove this conjecture
for the class of all totally-sewn neighbourly 4-dimensional polytopes.

1. Introduction

The Gohberg-Markus-Hadwiger Covering Problem is a well-known unsolved prob-
lem in convex geometry. It seeks the minimum number h(K) of smaller homothetic
copies of a convex body K (compact convex set in Rd with non-empty interior)
whose union covers K. It is conjectured that h(K) ≤ 2d, and that equality holds
only for affine d-cubes. The Gohberg-Markus-Hadwiger Covering Problem is solved
completely only in two dimensions, cf. [7]. In higher dimensional spaces there are
only partial results. For a detailed overview of this topic we refer to [7] and [10].

In this article we consider the Separation Problem which was raised by K. Bezdek
[1]. Let K be a convex body in Rd and O ∈ intK an interior point. The separation
number s(O,K) of O in K is defined as the minimum number of hyperplanes that
strictly separate O from all faces of K. Bezdek proved in [1] that s(O,K) is equal
to the covering number h(K∗) of the polar K∗ of K, therefore, it is conjectured
that s(O,K) ≤ 2d.

The evaluation of the separation number seems especially important for poly-
topes. There are only a few special classes of polytopes for which this has been
accomplished. In particular, we mention here that in [2] and [3] it was shown that
s(O,P ) < 2d in the case that P is a cyclic d-polytope.

The celebrated Upper Bound Theorem of McMullen [11] states that among all
d-polytopes with a fixed number of vertices, the neighbourly d-polytopes have the
maximum number of facets. Thus, it is natural to investigate s(O,P ) for neigh-
bourly d-polytopes P . Since interesting neighbourly polytopes exist only in Rd for
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d ≥ 4, it is also natural to first restrict our attention to neighbourly 4-polytopes.
Although a lot of information is known about neighbourly polytopes in general, only
a few constructions yield infinite families of such polytopes. The most well-known
such construction is the “sewing” operation introduced by Shemer [12]. Starting
from a cyclic d-polytope, the sewing procedure of Shemer produces an infinite fam-
ily of neighbourly d-polytopes each of which is obtained from the previous one by
adding one new vertex in a suitable way. Neighbourly d-polytopes obtained from a
cyclic d-polytope by a sequence of sewings are called called totally-sewn. Totally-
sewn neighbourly 4-polytopes constitute a positive percentage of all neighbourly
4-polytopes with n vertices although this percentage decreases as n increases, cf.
[12]. Moreover, each neighbourly 4-polytope has totally-sewn subpolytopes and this
may yield a method of extending the present result to all neighbourly 4-polytopes.

The conjecture that s(O,P ) ≤ 9 for neighbourly 4-polytopes was formulated in
[4]. This (stronger) conjecture was verified in [6] for those P that have at most
ten vertices or that have the property that their vertices form a special configu-
ration that resembles a “pentagram”. It was demonstrated in [8] that semi-cyclic
4-polytopes possess this special pentagram property (for the definition of semi-
cyclic 4-polytopes see, for example, page 125 in [5]). It was also shown in [6] that
there exist totally-sewn neighbourly 4-polytopes that do not have the pentagram
property.

In [5], it was proved that s(O,P ) ≤ 16 for a special class of totally-sewn neigh-
bourly 4-polytopes that have the so-called decreasing universal edge property, cf.
Section 3 of [5]. In this paper we build on the ideas developed in [5] and extend
them to the whole class of totally-sewn neighbourly 4-polytopes. Our main result
is the Separation Theorem (Theorem 5.1), which asserts that if P is a totally-sewn
neighbourly 4-polytope, then s(O,P ) ≤ 16 for any point O in the interior of P .
However, it still remains open whether the stronger conjecture [4] that s(O,P ) ≤ 9
holds for all totally-sewn neighbourly 4-polytopes.

The rest of the paper is organized as follows. In Section 2, we introduce vertex
sewing and vertex types. In Section 3, we examine the universal edge types and
the vertex types of P . We consider the separation of an interior point O of P from
facets of P based upon the location (specific in Section 4, and generic in Section 5)
of O in P .

2. Definitions

In this paper, we will work in R4. The convex hull and the affine hull of a set
X ⊂ R4 will be denoted by [X] and 〈X〉, respectively. We will use the following
notations for the vertices, edges, and facets of a polytope P : V(P ), E(P ), and
F(P ), respectively. For x ∈ V(P ), the vertex figure of P at x will be denoted by
P/x. If E = [x, y] ∈ E(P ), then the quotient polytope P/E is a vertex figure of
P/x at the vertex that corresponds to E in P/x.

A 4-dimensional polytope P is neighbourly if for any x, y ∈ V(P ), x 6= y, the
segment [x, y] is an edge of P . It is known that 4-dimensional neighbourly poytopes
are simplicial. From now on, the symbol P will always denote a convex neighbourly
4-polytope. For basic geometric and combinatorial properties of neighbourly poly-
topes we refer to [9] and [12].

An edge E = [x, y] ∈ E(P ) is universal if for any z ∈ V(P ) \ {x, y}, the triangle
[E, z] is a 2-face of P . The set of universal edges of P will be denoted by U(P ).
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Lemma 2.1 (cf. [12] and [13]). If |V(P )| ≥ 7, then the following are equivalent:

• E = [x, y] ∈ U(P ).
• [E, z] is a 2-face of P for any z ∈ V(P ) \ {x, y}.
• x and y lie on the same side of every hyperplane determined by vertices of
P .
• The quotient polytope P/E is a convex polygon with |V(P )| − 2 vertices.

Since P/E is convex polygon, there is a readily understandable description of all
the facets of P that contain a universal edge E and how these facets are related to
one another. We use this property and the fact that the vertices of any universal
edge are not separable to determine the location of the vertices of P relative to the
hyperplanes that contain E.

Next, we describe the sewing procedure of Shemer [12] in R4. Assume that P
has n vertices and E = [x, y] is a universal edge. Let F(E,P ) denote the set of
facets that contain E. By Lemma 2.1, F(E,P ) has n − 2 elements. We label the
vertices V(P ) \ {x, y} = {z1, z2, . . . , zn−2} in such a way that

F(E,P ) = {[E, zi, zi+1] | i = 1, . . . , n− 2 and zn−1 = z1}.
To keep the notation simple, we denote the edge determined by [E, zi, zi+1] in P/E
by [zi, zi+1].

Let F = [E, zi, zi+1] ∈ F(E,P ), and let F(E,F, P ) = F(E,P ) \ {F} be the set
of facets of P that contain E and are different from F . Then there exists a point
x ∈ R4 (cf. [12]) which is beyond each facet in F(E,F, P ) and beneath all other
facets of P . The polytope P = [P, x] is neighbourly (cf. [12]), and it is clear from
the location of x that V(P ) = V(P ) ∪ {x}. We say that P is obtained from P by
sewing x through F(E,F, P ). The universal edges of P were characterized in [12]
as follows:

U(P ) = U0(P ) ∪ {[x, x], [x, y]},
where U0(P ) = {E0 ∈ U(P ) | E0 ∩ F = ∅ or |E0 ∩ {zi, zi+1}| = 1}.

A polytope P with n ≥ 8 vertices is totally-sewn if there exist subpolytopes
P7, . . . , Pn of P with the property that |V(Pm)| = m and Pm+1 is obtained from
Pm by sewing. Since P7 is cyclic (cf. [12]), we may label its vertices such that
P7 = [x1, x2, . . . , x7] and the vertices satisfy Gale’s Evenness Condition in the order
x1 < · · · < x7. Then it is easy to check that

U(P7) = {[xi−1, xi] | i = 1, . . . , 7 and x0 = x7}.
Assume that Pm+1 = [Pm, xm+1] and xm+1 is sewn through F(Em, Fm, Pm) for
8 ≤ m ≤ n. Then P = [x1, x2, . . . , xn] and the sewing order determines an ordering
on the vertices of P by x1 < x2 < · · · < xn. Note that there may be more than
one sequence of sewings that produce the same polytope P from P7. Once we fix a
sequence of sewings, then we also fix the corresponding ordering of the vertices of
P . If 1 ≤ i < j ≤ n, then we may say that the vertex xj is after the vertex xi with
respect to this ordering.

It is a great advantage of the sewing process that the universal edges and the
facial structure of the new polytope can be completely characterized. The universal
edges and facets of Pm+1 constructed in the sewing process are described by the
following statement.

Lemma 2.2 (cf. [6]). Let Pm+1 = [Pm, xm+1] and xm+1 be sewn through
F(Em, Fm, Pm) with Em = [xa, xb]. Then
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• {[xa, xm+1], [xm+1, xb]} ⊂ U(Pm+1),
• any F ∈ F(Pm+1) \ F(Pm) contains [xa, xm+1] or [xb, xm+1], and
• there is a labeling z1, z2, . . . , zm−2 of V(Pm) \ {xa, xb} so that

F(Em, Pm) = {[Em, zi, zi+1] | i = 1, . . . ,m− 2 and zm−1 = z1},
and if Fm = [xa, xb, z1, zm−2], then

F(Pm+1) \ F(Pm) = {[xa, xb, xm+1, z1], [xa, xb, xm+1, zm−2],

[xa, xm+1, zi, zi+1], [xb, xm+1, zi, zi+1] | i = 1, . . . ,m− 3}.
We will frequently use in our arguments the representations of the quotient

polytopes depicted in Figure 1. The first drawing describes the location of (the
projection of) xm+1 in P/[xa, xb], and the second and third figures indicate the
locations of xb and xa in P/[xa, xm+1] and P/[xb, xm+1], respectively.

The most important ingredient in our proof is the concept of type of a vertex
and a universal edge. This notion was introduced in [5]; below we recall the precise
definition.

Let 6 ≤ k < v ≤ n, and let xv be sewn through F(Ev−1, Fv−1, Pv−1) with
Ev−1 ∈ U(Pv−1). Then either Ev−1 ∈ U(Pk) or Ev−1 = [xt, xu] with xt < xu and
xu > xk. In the latter case xu is sewn through F(Eu−1, Fu−1, Pu−1) and either
Eu−1 ∈ U(Pk) or Eu−1 = [xr, xs] with xr < xs and xs > xk. Iterating the above
argument, we arrive at the conclusion that the vertex xv originates from a unique
universal edge E ∈ U(Pk) through a sequence of vertices that are sewn after xk and
before xv. Let U(Pk) = {E1, . . . , El}. Then E = Eα for some 1 ≤ α ≤ l and we
say that xv (Ev−1) is a vertex (universal edge) of type α with respect to Pk. We
note here that throughout the paper we use lower-case Greek letters to denote the
vertex and universal edge types in P . We also recall from [5] the notations

V αk = {xi ∈ {xk+1, . . . , xn} |xi is type α with respect to Pk},
and

V αk (m) = V αk ∩ {xm, . . . , xn} for m > k.

In order to explain the importance of vertex (end edge) types, we used in [5] the
similitude of sewing n coloured buttons on shirt. The buttons are the vertices and
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the colours are the vertex types of P . Once all the buttons are sewn in the order
x7, . . . , xn, it turns out that the groupings of the colours are more important than
the actual order of sewing.

Lemma 2.3 (Deletion process). Let 7 ≤ s ≤ n and [xp, xq, xr, xs] ∈ F(Ps) with
Es−1 = [xr, xt] and xt 6∈ {xp, xq, xr, xs}. Then [xp, xq, xr, xt] ∈ (F(Pu)∩F(Ps−1))\
F(P ) with u = max{p, q, r, t}.
Proof. The assertion is a direct consequence of Lemmas 2.1 and 2.2. �

Note that the deletion process can be iterated if the facet [xp, xq, xr, xt] does not
contain the sewing edge Eu−1. In subsequent arguments we will iterate the deletion
process in order to obtain facets at intermediate steps of the sewing process.

3. General properties of totally-sewn neighbourly 4-polytopes

Lemma 3.1. Let 6 ≤ m < s < w ≤ n, xs ∈ V αm, and let xw ∈ V βm with Ew−1 ∈
U(Ps). Then Ew−1 ∈ U(Ps−1) and Ew−1 ∩ Es−1 ⊆ Eα ∩ Eβ.

Proof. Clearly, Ew−1 = Eβ or Ew−1 is a β type edge with respect to Pm. Since
xs ∈ V αm, no new β type universal edge is constructed when xs is sewn. Hence,
Ew−1 ∈ U(Ps) yields that Ew−1 ∈ U(Ps−1).

Let xb be a common vertex of Es−1 and Ew−1. If xb 6∈ Pm, then Es−1 6= Eα

which yields that xb ∈ V αm, and Ew−1 6= Eβ which yields that xb ∈ V βm. This
contradicts the fact that V αm ∩ V βm = ∅. Thus, xb ∈ Pm and xb ∈ Eα ∩ Eβ . �

Lemma 3.2. Let 6 ≤ k < m < u < w ≤ n, xm ∈ V αk , xu ∈ V βk , xw ∈ V δk and

{xm, xu, xw} ⊂ F ∈ F(Pw), α 6= β 6= δ 6= α. Then in U(Pk), Eβ ∩ Eδ 6= ∅ and
Eα ∩ (Eβ ∪ Eδ) 6= ∅.
Proof. From F ∈ F(Pw) and Lemma 2.2 it follows that there exists a vertex xt ∈ F
such that [xt, xw] ∈ U(Pw), xt ∈ Ew−1 ∈ U(Pw−1). Let Ew−1 = [xs, xt]. Ew−1 =
Eδ or Ew−1 is a δ type edge with respect to Pk. {xs, xt} ∩ {xm, xu} = ∅ implies
that F = [xm, xu, xt, xw].

Application of the deletion process (cf. Lemma 2.3) to the facet F yields that

F̃ = [xm, xu, xs, xt] ∈ F(Pj) for j = max{m,u, s, t}. If xj ∈ V δk , then we iterate
this deletion process. Hence, we may assume that, after a necessary number of

iterations, F̃ ∈ F(Pu). Then [x̃, xu] ∈ U(Pu) is a β type edge for some x̃ ∈
{xm, xs, xt}. Since V αk ∩ V βk = ∅, it follows that x̃ 6= xm, and we may assume that

x̃ = xs. Now, by Lemma 3.1, xs ∈ Eβ ∩ Eδ.
Since F̃ = [xm, xt, xs, xu] ∈ F(Pu) and [xs, xu] ∈ U(Pu), there exists a ver-

tex xr such that Eu−1 = [xr, xs]. Then F̂ = [xm, xt, xs, xr] ∈ F(Pj) with j =
max{m, t, r}. Now, we may assume that, after a necessary number of iterations of

the deletion process, F̂ ∈ F(Pm). Then [x̂, xm] ∈ U(Pm) for some x̂ ∈ {xt, xs, xr}.
Since {xs} = Eβ ∩Eδ, it follows that x̂ 6= xs. If x̂ = xr, then {xr} = Eα ∩Eβ , and
if x̂ = xt, then {xt} = Eα ∩ Eδ by Lemma 3.1 �

In summary, if F ∈ F(P ) is a facet that satisfies the conditions of Lemma 3.2,
then the universal edges Eα, Eβ and Eδ form a path of length three in U(Pk) in
one of the following ways:

◦ Eα ◦ Eβ ◦ Eδ ◦ or ◦ Eβ ◦ Eδ ◦ Eα ◦.
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Lemma 3.3. Let 6 ≤ m < v < n, xm+1 ∈ V αm, xv+1 ∈ V βm with {xv+1} = V βm ∩
{xm+1, . . . , xv+1} and assume the (Pv/Ev, zi)-configuration. Let 1 ≤ i < j ≤ v− 2,
{zi, zj} ⊂ V αm, zi = xr, zj = xt and [Ev, zi, zj ] ∈ F(Pt). Then (with suitable
labeling) {zi+1, . . . , zj−1} ⊂ V αm.

Proof. We note that Em = Eα, Ev = Eβ , Em ∩ Ev ⊂ Pm and Ev ∈ U(Pw) for
m ≤ w ≤ v. Clearly, we may assume that i+ 1 < j. Then

[Ev, zi, zj ] ∈ F(Pt) \ F(Pv)

and there is a t < u ≤ v such that

[Ev, zi, zj ] ∈ F(Pu−1) \ F(Pu).

Then xu = zk for some i < k < j, Eu−1 ⊂ [Ev, zi, zj ] 6= Fu−1 and either Eu−1 = Ev
or Eu−1 = [zi, zj ] or |Eu−1 ∩ Ev| = 1 = |Eu−1 ∩ [zi, zj ]|. We note that Eu−1 = Ev
yields that xu = xv+1; a contradiction. If Eu−1 = [zi, zj ] = [xr, xt], then xt ∈ V αm
implies that Eu−1 is an α type edge with respect to Pm and zk = xu ∈ V αm.

If Eu−1 = [xe, xr] with xe ∈ Ev = Eβ , then xr ∈ V αm implies that {xe} =
Eα ∩ Eβ . Furthermore, Eu−1 is α type and again zk = xu ∈ V αm.

Since [Ev, zi, zj ] ∈ F(Pu−1) \ F(Pu) clearly implies that

{[Ev, zi, zk], [Ev, zk, zj ]} ⊂ F(Pu),

the assertion of the Lemma readily follows from iterations of the argument above
for {zi, zk} and {zk, zj}. �

In summary, Lemma 3.3 states that the α type vertices of Pv+1 determine a
connected arc in the polygon Pv/Ev.

4. Separation in totally-sewn neighbourly 4-polytopes

In this section we develop the basic tools that will be used in the proof of the
main theorem. Some of the following statements are quoted from [5], and some are
new. The arguments of the proofs are based on the lemmas of the previous section.
The following statement is a direct consequence of Lemma 2.1.

Lemma 4.1. Let 6 ≤ k < n, H ⊂ R4 be a hyperplane spanned by the vertices of
Pk and x be a point of R4.

4.1.1 If H strictly separates x and an endpoint of Eλ ∈ U(Pk), then H strictly
separates x and V λk .

4.1.2 If H strictly separates x and xu ∈ V λk , then H strictly separates x and
V λk (u).

Lemma 4.2 (cf. [5]). Let Q be a 4-dimensional subpolytope of P and O be a point
of (intP )∩ ∂Q. Then O is strictly separated from any F ∈ F(P )∩F(Q) by one of
at most three hyperplanes.

Lemma 4.3. Let 6 ≤ m < u, v ≤ n, xm+1 ∈ V αm, {xu, xv} ⊂ V βm and xc ∈
V(Pm)\Eα such that 〈Eα, xc, xm+1〉∩ [xu, xv] = ∅. Then 〈Eα, xc, xg〉∩ [xu, xv] = ∅
for all xg ∈ V αm.

Proof. Let xg ∈ V αm such that [xm+1, xg] ∈ U(Pg), and suppose, on the contrary,
that 〈Eα, xc, xg〉∩ [xu, xv] 6= ∅. Then 〈Eα, xc, xg〉 strictly separates xu and xv, and
we may assume that 〈Eα, xc, xv〉 strictly separates xm+1 and xg.
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Let S denote the open region of R4 bounded by 〈Eα, xc, xm+1〉 and 〈Eα, xc, xg〉,
that contains xv. We note that if xi ∈ S, then 〈Eα, xc, xi〉 strictly separates xm+1

and xg. In addition, xu 6∈ S and by Lemma 4.1 S∩V(P ) ⊂ {xg+1, . . . , xn}. Without
loss of generality, we may assume that S ∩ V βm ⊂ {xv, . . . , xn}.

Let Ev−1 = [xr, xs]. Then {xr, xs} ⊂ V βm ∪V(Eβ), and both [xr, xv] and [xs, xv]
are universal edges of Pv and thus neither 〈Eα, xc, xm+1〉 nor 〈Eα, xc, xg〉 strictly
separates xv from xr or xs. Since {xr, xs} ⊂ cl(S) and cl(S)∩V βm = S∩V βm, it follows
from {xr, xs} ⊂ {xr, . . . , xv−1} that {xr, xs} ∩ V βm = ∅ and Ev−1 = [xr, xs] = Eβ

and thus xv is the first β type vertex with respect to Pm. Therefore, xu > xv and
xv ∈ S yield that xu ∈ S. This is a contradiction, and hence 〈Eα, xc, xg〉∩[xu, xv] =
∅.

The statement of the lemma follows from iterations of the above argument. �

The following lemma is the cornerstone of our argument.

Lemma 4.4. Let 6 ≤ k ≤ m < n, O ∈ intPm, xm+1 ∈ V αk and {xm+1} =

V αk ∩ {xk+1, . . . , xm+1}. Let F̃ ∈ F(P ) such that F̃ ∩ V αk (m + 1) 6= ∅. Then O is

separated from any F̃ by one of at most five hyperplanes spanned by vertices of P .

Proof. Note that V αk (m + 1) = V αk . Let Em = [xa, xb] = Eα, Q = [V αk ], and
assume the (Pm/Em, yi)-configuration. By Lemma 4.1, O is (strictly) separated

from Q by each hyperplane 〈F̂ 〉 for F̂ ∈ F(Em, Pm)\{Fm}, and so there are vertices

xg and xh of Q such that O is separated from any F̂ by one of the hyperplanes
H1 = 〈Em, yl, xg〉, H2 = 〈Em, yl, yl+1〉, H3 = 〈Em, yl+1, xh〉 for some 1 ≤ l ≤ m−3,
see Figures 2 and 3. The location of O in intPm determines the choice of l.

xm+1

Q = [V αk ]

H1 H3

y1 ym−2

yl yl+1H2

xgxh

O

Figure 2. Pm/Em

We examine first the facets F̃ via the Deletion (process) and then consider the

separation of F̃ from O based upon the location of O.
We note that if Eλ ∈ U(Pk) ∩ U(Pm), then V λk = V λk (m + 1) = V λm, and if

Eλ ∈ U(Pk) \ U(Pm), and Eθ, . . . , Eψ are the λ types in U(Pm) with respect to
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Pk, then V λk (m + 1) = V θm ∪ · · · ∪ V ψm . Thus, F̃ ∩ V αm 6= ∅, and F̃ contains at
most two other types of vertices with respect to Pm by Lemmas 3.1 and 3.2. Let
X = {xm+1, . . . , xn} and Y = {y1, . . . , ym−2}.
i) Let F̃ ∩X ⊂ V αm. Then F̃ ∩ Y ⊆ {yj , yj+1} for some 1 ≤ j ≤ m− 3.

Proof of i). Let |F̃ ∩ Y | ≥ 2, xu ∈ F̃ ∩ V αm ⊆ {xm+1, . . . , xu} and Eu−1 = [xr, xs].

Since xu ∈ V αm and Eα ∩ Y = ∅, it follows that Eu−1 ∩ Y = ∅, Eu−1 6⊂ F̃ ,

|F̃ ∩ Y | = 2 and xr or xs is in F̃ ∩ (V αm ∪ {xa, xb}). Now, Deletion yields that there

is an F ′ ∈ F(Pm+1) such that F ′ ∩ Y = F̃ ∩ Y and xm+1 ∈ F ′. By Lemma 2.2,
F ′ ∩ Y ⊆ {yj , yj+1} for some 1 ≤ j ≤ m− 3. �

ii) Let F̃ ∩ X ⊂ V αm ∪ V λm and α 6= λ. Then either Eλ = [yj , yj+1] for some

1 ≤ j ≤ m− 3 and F̃ ∩ Y ⊂ Eλ or Eλ = [Eλ ∩Eα, y] for some y ∈ {y1, ym−2} and

F̃ ∩ Y is contained in {y1, y2} or {ym−3, ym−2}.
Proof of ii). Since Eλ ∈ U(Pm) ∩ U(Pm+1), we have that either Eλ ∩ Eα = ∅,
[Eλ, Eα] ∈ F(Pm) (cf. Theorem 3.4, [12]) and Eλ = [yj , yj+1] for some 1 ≤ j ≤
m− 3 or Eλ ∩ Eα 6= ∅ and Eλ = [x, y] for some x ∈ {xa, xb} and y ∈ {y1, ym−2}.

Let xp ∈ F̃ ∩ V αm ⊆ {xm+1, . . . , xp} and xv ∈ F̃ ∩ V λm ⊆ {xm+1, . . . , xv}. Since
Ep−1 ∩ Y ⊆ Eα ∩ Y = ∅ and Ev−1 ∩ Y ⊆ Eλ ∩ Y , we may assume that

[Ep−1, xp, xv] 6= F̃ 6= [Ev−1, xp, xv].

Then Ep−1 6⊂ F̃ and Ev−1 6⊂ F̃ , and it follows from Deletion that F̃ ∩ Y ⊆
(Ep−1 ∪ Ev−1) ∩ Y in case Eα ∩ Eλ = ∅.

Let Eα ∩ Eλ 6= ∅ and F̃ = [xp, xv, x̃, yi] with yi 6∈ Eλ. By Deletion, we obtain
that [xm+1, E

α ∩ Eλ, xw+1, yi] ∈ F(Pw+1) with Ew = Eλ and [xm+1, E
λ, yi] ∈

F(Pm+1)∩F(Pw). Hence Lemma 2.2 yields that yi = y2 in case Eλ = [Eλ∩Eα, y1]
and yi = ym−3 in case that Eλ = [Eα ∩ Eλ, ym−2]. �

iii) Let F̃ ∩ V δm 6= ∅ 6= F̃ ∩ V ηm and α 6= δ 6= η 6= α. Then Eδ ∩ Eη 6= ∅ and
Eα ∩ (Eδ ∪ Eη) 6= ∅.
Proof of iii). Let F̃ = [xp, xq, xr, x̃] with xp ∈ V αm, xq ∈ V δm and xr ∈ V ηm. It is

clear that none of Ep−1, Eq−1 and Er−1 is contained in F̃ , so by Lemma 3.2,

{x̃} ∈ {Eα ∩ Eδ, Eα ∩ Eη, Eδ ∩ Eη}
and we need only to verify that Eδ ∩ Eη 6= ∅. Let xu+1 ∈ V δm with Eu = Eδ, and
xt+1 ∈ V ηm with Et = Eη.

If {x̃} = Eα ∩ Eη = Em ∩ Et then q = min{p, q, r} by Lemma 3.2. Now F̃ =
[xp, x̃, xr, xq] and Deletion yields that [xm+1, x̃, xt+1, xq] ∈ F(Pt+1), [xm+1, Et, xq] ∈
F(Pt) ∩ F(Pq) and Eq−1 ∩ Et 6= ∅. By Lemma 3.1, Eq−1 ∩ Et = Eδ ∩ Eη.

If {x̃} = Eα∩Eδ = Em∩Eu then r = min{p, q, r}, [xm+1, x̃, xu+1, xr] ∈ F(Pu+1),
[xm+1, Eu, xr] ∈ F(Pr) ∩ F(Pu) and ∅ 6= Er−1 ∩ Eu = Eη ∩ Eδ. �

iv) Let F̃ = [xp, xq, xr, x̃] with xp ∈ V αm, xq ∈ V δm, xr ∈ V ηm, xu+1 ∈ V δm with
Eu = Eδ = [xa, y1], and xt+1 ∈ V ηm with Et = Eη = [y1, y2]. Then

• x̃ = xa, [xm+1, Eu, xr] ∈ F(Pr) ∩ F(Pu) and t < u, or
• x̃ = y1, and either [xt+1, Eu, xp] ∈ F(Pu) ∩ F(Pt+1) and t < u,

or [xu+1, Et, xp] ∈ F(Pt) ∩ F(Pu+1) and u < t.
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Proof of iv). From the Proof of iii), we have that x̃ ∈ {xa, y1} and that we need
only to verify the consequences of x̃ = y1.

Let F̃ = [xq, y1, xr, xp]. Then p = min{p, q, r} and it follows by Deletion that
F ′ = [xu+1, y1, xt+1, xp] ∈ F(Pu+1) ∪ F(Pt+1). The assertions are now immediate.

�
We now consider the separation of O from F̃ . We note that the location of O is

as indicated on Figure 2 or (due to symmetry) Figure 3. From i), ii), iii) and iv),

we can determine what types of vertices F̃ may possess.

xm+1

Q = [V αk ]

y1 ym−2

y2

xg

xh

O

H3H1

H2

H+
2

Figure 3. Pm/Em

Case 1. For some 2 ≤ l < m/2, O is separated from any F̂ as indicated in Figure 2.

If [yl, yl+1] ∈ U(Pm), then we denote it by Eβ , and if V βm 6= ∅, then let xq ∈ V βm
with Eq−1 = Eβ . From i), ii), iii), and Lemma 4.1, we obtain that H1, H2 or H3

separate O from any F̃ such that F̃ ∩ V βm = ∅.
Let F̃ ∩V βm 6= ∅. Then Eβ ∩{y1, ym−2} = ∅ and iii) yield that F̃ ∩X ⊂ V αm ∪V βm,

and ii) yields that F̃ ∩ Y ⊆ {yl, yl+1}. Since Lemma 4.1 implies that H2 separates

O and F̃ in the case H2 separates O and xq, we may assume that H2 does not
separate O and xq. Then with a (Pq−1/Eq−1, zi)-configuration (cf. Figure 4), we
have that H2 = 〈Em, yl, yl+1〉 = 〈xa, xb, Eq−1〉 is not a supporting hyperplane of
Pq−1, and

z1 ≤ zr = xa < xb = zs ≤ zq−3
for some 1 ≤ r < r + 1 < s ≤ q − 3. Now, Lemma 3.3 yields

V αm ∩ {z1, . . . , zq−3} ⊂ {z1, . . . , zr} ∪ {zs, . . . , zq−3},
and it follows from Lemma 4.1 and F̃ ∩ Y ⊂ Eq−1 that O is separated from any

such F̃ by H4 = 〈Eq−1, xa, xg′〉 or H5 = 〈Eq−1, xb, xh′〉 for suitably chosen xg′ , and
xh′ in V βm.
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In summary, O is separated from any F̃ by one of H1, H2, H3, H4 and H5.

Case 2. O is separated from any F̂ as depicted in Figure 3.

If [xa, y1] ∈ U(Pm) then let Eδ = [xa, y1], and if V δm 6= ∅ then let xu+1 ∈ V δm
with Eu = Eδ. If [y1, y2] ∈ U(Pm) then let Eη = [y1, y2], and if V ηm 6= ∅ then let
xt+1 ∈ V ηm with Et = Eη. Let H+

2 denote the open half-space determined by

H2 = 〈Em, y1, y2〉 = 〈xa, xb, y1, y2〉
that contains O. As in Case 1, we obtain from i), ii), iii) and Lemma 4.1 that

• O is separated from any F̃ by H2 or H3 in the case that H+
2 ∩{xu+1, xt+1} =

∅, or

• O is separated from any F̃ by one of H2, H3 and suitable determined H4

and H5 in the case that |H+
2 ∩ {xu+1, xt+1}| = 1 and V δm = ∅ or V ηm = ∅.

Let |H+
2 ∩ {xu+1, xt+1}| ≥ 1 and V δm 6= ∅ 6= V ηm. Then H2 = 〈Eu, xb, y2〉 =

〈Et, xa, xb〉 and either m < u < t or m < t < u.

xq

[V βm]

zr = xa

xb = zs

H4 H5

z1 zq−3

O

xg′xh′

H2

Figure 4. Pq−1/Eq−1

Let m < u < t and refer to Figures 5 and 6 for configurations (Pu/Eu, zi) and
(Pt/Et, wj). Since Et = [y1, y2] ∈ U(Pu) ∩ U(Pu+1) and Et ∩ Eu = {y1}, it follows
that y2 ∈ {z1, zu−2} and we may assume that y2 = z1. Thus, there is no F ∈ F(P )
such that F ∩ V δm 6= ∅ and {y2, zj} ⊂ F for some i ≤ j ≤ u − 2. For Figure 6, we
note that {xa, xb} = {wi, wj} for some 1 ≤ i < i+ 1 < j ≤ t− 2.

Finally, iv) and u < t yield that if F̃ ∩ V δm 6= ∅ 6= F̃ ∩ V ηm for some F̃ then

[xu+1, y1, y2, F̃ ∩ V αm] ∈ F(Pt) by Deletion. This means that H2 does not separate

xu+1 and F̃ ∩ V αm. Thus, by Lemma 4.1, xm+1 6∈ H+
2 implies that xu+1 6∈ H+

2 .

We note that by i), ii) and Lemma 4.1, O is separated from any F̃ such that

F̃ ∩ (V δm ∪V ηm) = ∅ by H2 or H3. We now consider F̃ such that F̃ ∩ (V δm ∪V ηm) 6= ∅.
Let xu+1 6∈ H+

2 . Then xt+1 ∈ H+
2 , V αm ∩ {z1, . . . , zu−2} ⊂ {z1, . . . , zi} and

(V αm ∪ V δm) ∩ {w1, . . . , wt−2} ⊂ {w1, . . . , wi} ∪ {wj , . . . , wt−2}.
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xu+1
[V δm]

zi = xb

z1 = y2 zu−2

H2

xh′

H6

Figure 5. Pu/Eu

xt+1
[V ηm]

H2

xa xb

w1 wt−2
H4 H5

Figure 6. Pt/Et

Thus, O is separated from any F̃ such that F̃ ∩ X ⊂ V αm ∪ V δm by H2, and O is

separated from any F̃ such that F̃ ∩X ⊂ V αm ∪ V δm ∪ V ηm and F̃ ∩ V ηm 6= ∅ by H4 or
H5.

Let xu+1 ∈ H+
2 . Then F̃ ∩V δm = ∅ or F̃ ∩V ηm = ∅ for any F̃ by the preceding, and

V αm ∩ {z1, . . . , zu−2} ⊂ {zi, . . . , zu−2}. Let F̃ ∩ V δm 6= ∅. Then as already noted, we

have that y2 6∈ F̃ and F̃ ∩X ⊂ V αm ∪ V δm. Thus, it follows from ii) and Lemma 4.1

that O is separated from any such F̃ by H6. Let F̃∩V ηm 6= ∅. Then F̃∩X ⊂ V αm∪V ηm
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by iii), and either xt+1 6∈ H+
2 and H2 separates O from any such F̃ or xt+1 ∈ H+

2

and H4 or H5 separate O from any such F̃ .

In summary, O is separated from any F̃ by one of H2, H3, H4, H5 and H6.
Finally, let m < t < u. Then we may consider Figure 5 to represent Pt/Et, and

Figure 6 to represent Pu/Eu. From iv), we obtain that if F̃ ∩ V δm 6= ∅ 6= F̃ ∩ V ηm for

some F̃ then xt+1 6∈ H+
2 . We now argue as above and obtain that O is separated

from any F̃ by one of analogously labeled H2, H3, H4, H5 and H6. �

In the following Corollaries: we assume the hypotheses and the notation of
Lemma 4.4, and determine locations of O that do not require five separating hy-
perplanes determined by vertices of P .

Corollary 4.5. Let 1 ≤ i < j < p ≤ m − 3, and O be contained in either the
open region bounded by 〈Em, yi, yj〉, 〈Em, yi, yp〉 and 〈Em, yj , yp〉 or the relatively
open region in 〈Em, yi, yp〉 bounded by 〈Em, yi〉 and 〈Em, yp〉, and x ∈ {xa, xb}. If

{[yi, x], [yi, yj ]} 6⊂ U(Pm) then O is separated from any F̃ by one of at most four
hyperplanes. Moreover, if 1 < i, [yi, yj ] 6∈ U(Pm) and [yj , yp] 6∈ U(Pm) then three
hyperplanes suffice.

Proof. Let i < 1, [yi, yj ] 6∈ U(Pm) and [yj , yp] 6∈ U(Pm). Then O is separated

from any F̃ by one of H6, H
′
6 and 〈Em, yi, yj〉 or one of H7, H

′
7 and 〈Em, yj , yp〉;

cf. Figure 7. In case [yi, yj ] or [yj , yp] is in U(Pm), we replace 〈Em, yi, yj〉 or
〈Em, yj , yp〉 by two hyperplanes.

xm+1
[V αk ]

yi

yj
yp

y1 ym−2
H7 H ′6H6 H ′7

Figure 7. Pm/Em = [xa, xb]

If i = 1, and Eδ = [Eδ ∩ Eα, y1] ∈ U(Pm) with V δm 6= ∅ then we replace H6 by
two hyperplanes. �

A similar argument yields
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Corollary 4.6. Let 1 ≤ i < i+2 < p ≤ m−3, O be contained in the relatively open
region in 〈Em, yi, yp〉 bounded by 〈Em, yi〉 and 〈Em, yp〉, and x ∈ {xa, xb}. Then

O is separated from any F̃ by one of at most four hyperplanes. Moreover, if either
1 < i or i = 1 and [y1, x] 6∈ U(Pm) then three hyperplanes suffice.

xm+1
[V
β
k ]

y1 = yi
ym−2

yp

Figure 8. Pm/Em

Let U ′(P6) = {[x6, x1]} ∪ {[xi, xi+1]|i = 1, . . . , 5}. We note that U ′(P6) ⊂ U(P6)
and that any xw ∈ {x7, . . . , xn} is an η type with respect to P6 for some Eη ∈
U ′(P6), and specifically, we start the sewing process with E6 = [x6, x1]. Let V η =
V η6 and denote the elements of U ′(P6) as indicated below.

U ′(P6) : ◦
x6

α ◦
x1

β ◦
x2

δ ◦
x3

θ ◦
x4

µ ◦
x5

λ ◦
x6

We let Eβ = Er−1 in case V β 6= ∅, and introduce similarly Es−1 = Eδ, Et−1 =
Eθ, Eu−1 = Eµ, and Ev−1 = Eλ.

Finally, let H ′1 = 〈x1, x6, x2, x3〉, H ′2 = 〈x1, x6, x3, x4〉, H ′3 = 〈x1, x6, x4, x5〉,
H ′4 = 〈x1, x2, x3, x4〉, H ′5 = 〈x1, x2, x4, x5〉, H ′6 = 〈x1, x2, x5, x6〉, H ′7 = 〈x2, x3, x4, x5〉,
H ′8 = 〈x2, x3, x5, x6〉, H ′9 = 〈x3, x4, x5, x6〉, and note that F(P6) = {H ′i ∩ P |i =
1, . . . , 9}.

Since Eα = [x1, x6] and F6 = [x1, x6, x2, x5], it follows that H ′i ∩ P6 6∈ F(P ) for
i = 1, 2, 3. It is clear that if V η 6= ∅ for some η 6= α, then |F(P6)∩F(P )| ≤ 4. It is
straightforward but tedious to check the following:

Remark 1. If there are k ≥ 2 types of vertices with respect to P6, then

|F(P6) ∩ F(P )| ≤ 6− k.
We consider {x7, . . . , xn} = V α ∪ V β ∪ V δ ∪ V θ ∪ V µ ∪ V λ, the vertex type that

is sewn last and facets of P that contain a last sewn type vertex. Then we consider
the vertex type that is sewn second last and the facets of P that contain a vertex of
second last sewn type but not a vertex of last sewn type. We reiterate this process
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as often as necessary. Lemma 4.7 states that if O ∈ intP6, then O is separated
from any such class of facets by one of at most three hyperplanes.

Lemma 4.7. Let O ∈ intP6, V η 6= ∅ and Ew−1 = Eη ∈ U ′(P6). Let F̃ ∈ F(P )

such that F̃ ∩V η 6= ∅ and F̃ ∩V τ = ∅ for all Eτ ∈ U ′(P6) such that Eτ = Ez−1 and

xw < xz. Then O is separated from any such F̃ by one of three hyperplanes spanned
by the vertices of P ; moreover, at least one of the three separating hyperplanes may
be chosen from {H ′i | i = 1, . . . , 9} = H′.
Proof. Let Ew−1 = [xa, xb] and assume the (Pw−1/Ew−1, yi)-configuration. Then
P6 = [xa, xb, yi1 , yi2 , yi3 , yi4 ] with 1 ≤ i1 < i2 < i3 < i4 ≤ w − 3; cf. Figure 9.

xw
[V η]

yi2

yi3
yi4

y1

yi1

yw−3

xh′ xg′

Figure 9. Pw−1/Ew−1

We use the same notation as in the proof of Lemma 4.4 for k = 6 and m = w−1.
We recall that three hyperplanes do not suffice to separate O ∈ intP6 ⊆ intPw−1
from any such F̃ only if F̃∩V ψw−1 6= ∅ with Eψ ∈ U(Pw−1) and either Eψ = [yl, yl+1]

or Eψ = [xa, y1] (for example); cf. Figures 2 and 3.
If 1 < i1 < i1 + 1 < i2 < i2 + 1 < i3 < i3 + 1 < i4 < w − 3, then any such

Eψ is separated from O by one of H1, H2 and H3. In this case 1 < ij ≤ l <
l + 1 ≤ ij+1 for some 1 ≤ j ≤ 3. Then there exist xg′ , xh′ ∈ V η such that H1, H2

and H3 can be replaced by the hyperplanes 〈Ew−1, yij , xg′〉, 〈Ew−1, yij , yij+1
〉 and

〈Ew−1, yij+1 , xh′〉, respectively. We note that the hyperplane 〈Ew−1, yij , yij+1〉 is
listed in H′. To simplify notation we rename H1 = 〈Ew−1, yij , xg′〉 and H3 =
〈Ew−1, yij+1

, xh′〉.
If Eψ = [yl, yl+1] = [yij , yij+1 ] and yl+1 = yi4 or if Eψ = [xa, y1] and y1 = yi1 ,

then Eψ ∈ U ′(P6), Eψ = Ez−1 for some xz > xw, and hence, F̃ ∩ V ψ = ∅. �

Remark 2. We note that in the case when i1 = 1 and i4 = w− 3, the hyperplanes
〈Ew−1, yi1 , yi2〉, 〈Ew−1, yi2 , yi3〉 and 〈Ew−1, yi3 , yi4〉 have the same separation prop-
erties as H1, 〈Ew−1, yij , yij+1

〉 and H3 regardless of the position of O in P6. Thus,



A SEPARATION THEOREM FOR TOTALLY-SEWN 4-POLYTOPES 15

they can be used in place of H1, 〈Ew−1, yij , yij+1
〉 and H3. Note also that they are

all listed in H′.

5. Proof of the main theorem

Theorem 5.1 (Separation Theorem). Let O ∈ intP6. Then O is separated from
any facet of P by one of s(O) hyperplanes determined by the vertices of P , and
s(O) ≤ 16.

Proof. We assume the notation introduced in Section 4 and used in Lemma 4.7.

Regarding Lemma 4.7, we simplify by referring to the F̃ as η-facets and to the three
separating hyperplanes as η-separators. Let F ∈ F(P ).

We note that x7 ∈ V α and that from P6/E6: the α-separators are H ′1, H
′
2 and

H ′3. It is noteworthy that H ′2 separates O from precisely those α-facets that are
disjoint from {x2, x5}.

We may now assume that there are k ≥ 2 types of vertices. Then Remark 1 and
Lemma 4.7 yield that s(O) ≤ (6− k) + 3k and we may assume also that k = 6. We
show that among the eighteen separating hyperplanes yielded by Lemma 4.7, there
are at least two distinct ones in H′ such that each is either redundant (separates
O from facets that are separated from O by some other hyperplane) or used twice.
We do this considering the order in which the six vertex types are sewn.

Case 1. xs < xt, xu, xv, xr.

We assume the (Ps−1/Es−1, yi)-configuration with

Fs = [Eδ, y1, ys−3] = [x2, x3, y1, ys−3]

and note that {Eβ = [x1, x2], Eθ = [x3, x4]} ⊂ U(Ps−1)∩U(Ps) yield that {y1, ys−3} =
{x1, x4} and that the δ-separators are H ′1 (a second use), H ′7 and H ′8.

If xt < xu, then we assume the (Pt−1/Et−1, zi)-configuration with

Ft−1 = [Eθ, z1, zt−3] = [x3, x4, z1, zt−3],

and note that Eu−1 = Eµ = [x4, x5] ∈ U(Pt−1) ∩ U(Pt) yields that x5 ∈ {z1, zt−3}.
Let x5 = z1, say. Then (x6, x1, x2) = (zi, zj , zl) with 1 < i < j < l < t − 3 or
1 < l < j < i < t− 3.

With 1 < i < j < l < t− 3 and depending upon the location (cf. Figure 10), we
obtain that the θ-separators are either H ′9, H ′2 (a second use) and Hθ

2 , or Hθ
1 , H

′
4

and Hθ
3 . In the latter case, Hθ

1 separates O from α-facets that are disjoint from
{x2, x5}; that is, H ′2 is redundant.

If 1 < l < j < i < t − 3 then we obtain by a similar argument that H ′2 is again
either redundant or used twice.

If xu < xt then we argue as above with the (Pu−1/Eu−1, wi)-configuration,
Fu−1 = [Eµ, w1, wu−3] = [x4, x5, w1, wu−3], x3 = w1, and obtain that H ′3 is either
a µ-separator (a second use) or it is rendered redundant by a µ-separator.

With respect to U ′(P6); it follows that with respect to Eα = [x6, x1], there is
a symmetry between Eδ = Es−1 and Eµ = Eu−1. Thus, with relabeling, the
argument above also handles the case xu < xs, xt, xv, xr.

Case 2. xt < xr, xs, xu, xv.

From the (Pt−1/Et−1, zi)-configuration, we obtain that (cf. Figure 10) {z1, zt−3} =
{x2, x5} and the θ-separators are H ′9, H ′2 (a second use) and H ′4.
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xt
[V θ]

x6
x2

x5 = z1
zt−3

H ′2

H ′4

H ′9

Hθ
1 Hθ

2

x1

Hθ
3

Figure 10. Pt−1/[x3, x4]

xr

[V β]

x4
x6

x3

H ′
5

H ′
6

H ′
4

H
β
1 H

β
2

x5

H
β
3

Figure 11. Pr−1/[x1, x2]

With the method of argument now evident, it is easy to check that xr < xs
yields that either H ′1 is a β-separator or it is rendered redundant by a β-separator,
or H ′4 is a β-separator or it is rendered redundant by a β-separator. If xs < xr,
then we obtain also that either H ′1 or H ′4 is redundant or used twice.

Case 3. xr < xs, xt, xu, xv.
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From a (Pr−1/[x1, x2], wi)-configuration, we obtain (cf. Figure 11) that the β-

separators are either H ′4, H
′
5 and Hβ

2 or Hβ
1 , H ′6 and Hβ

3 .
If xt < xs, xu, then the θ-separators are H ′2 (a second use), H ′4 and H ′9. Thus,

H ′4 is either used a second time or rendered redundant by Hβ
1 .

If xu < xt, xv, then the µ-separators are H ′3 (a second use), H ′5 and H ′7, and H ′5
is either used a second time or rendered redundant by Hβ

1 .
We may now assume that neither xt nor xu is the third type of vertex sewn. In

U ′(P6), we have that Es−1 and Ev−1 are symmetric with respect to Eα ∪ Eβ and
thus, we may assume without loss of generality that xv < xs, xt, xu. Then from
above, we have that either xu < xs, xt or xs < xu, xt.

Let xu < xs, xt. Then the µ-separators are either H ′7, H ′5 and Hµ
2 or Hµ

1 , H ′3
and Hµ

3 . Hence, H ′3 is either used a second time or rendered redundant by Hµ
2 .

Finally, similar arguments yield that if xt < xs then H ′2 is either redundant or used
a second time, and if xs < xt then H ′1 is either redundant or used a second time.

Let xs < xu, xt. Then H ′1 is either redundant or used twice. From xt < xu (xu <
xt), we obtain that H ′2 (H ′3) is either redundant or used twice.

Lastly, we remark that with relabeling, the argument above also handles the case
xv < xr, xs, xt, xu. �

Theorem 5.2. Let 7 ≤ u ≤ n and O ∈ (intPu) ∩ (bdPu−1). Then s(O) ≤ 16.

Proof. Let F ∈ F(P ), xu ∈ V βu−1, Eu−1 = [xa, xb] and consider the (Pu−1/Eu−1, yi)-
configuration.

Case 1. O ∈ relint[xa, xb, yk, yk+1] for some 2 ≤ k ≤ u− 5.

Let H0 = 〈xa, xb, yk, yk+1〉 and H+
0 and H−0 denote the two closed half-spaces

determined by H0. We assume that xu ∈ H+
0 . If [yk, yk+1] ∈ U(Pu−1), then let

Eλ = [yk, yk+1].
We note that by Lemma 4.2, O is separated from any F such that F ⊂ H−0 by

one of at most three hyperplanes, and hence, O is separated from any F such that
either F ⊂ H−0 or F ⊂ H+

0 by one of at most six hyperplanes. By Lemma 4.4, O is
separated from any F such that F ∩ V λu−1 6= ∅ by one of at most five hyperplanes.

We now assume that F ∩ V λu−1 = ∅, F 6⊂ H−0 and F 6⊂ H+
0 . Note that any

facet containing [yk, yk+1] and a β type vertex is contained in H+
0 . Thus |F ∩

{yk, yk+1}| ≤ 1 and O is separated from any such F by one of H1 = 〈xa, xb, yk, xg〉
and H2 = 〈xa, xb, yk+1, xh〉 with {xg, xh} ⊂ V βu−1 and H1 and H2 are supporting

hyperplanes of [V βu−1].
In summary, s(O) ≤ 13.

Case 2. O ∈ relint[xa, xb, y1, y2].

Let H0 = 〈xa, xb, y1, y2〉 and Eλ = [y1, y2] in case [y1, y2] ∈ U(Pu−1). We note
that if y1 is a vertex of a second universal edge of Pu−1, then it is either [y1, xa] or
[y1, xb]. We may assume that if such a universal edge exists, then it is Eδ = [y1, xb].

Remark 3. Let y1 ∈ F , F ∩ V βu−1 6= ∅ and F ∩ (V λu−1 ∪ V δu−1) = ∅. Then V(F ) ⊂
{xa, xb, y1, y2} ∪ V βu−1.

Proof of Remark 3. If F = [y1, xw, xz, x̃] with xw ∈ V βu−1 and xz ∈ V θu−1, θ 6= β,

and either F ∈ F(Pw) or F ∈ F(Pz), then the deletion process, {y1} = Eδ ∩ Eλ
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and {θ, β} ∩ {λ, δ} = ∅ yield that Eβ ∩ Eθ 6= ∅, that is, Eθ = [xa, yu−3] and
[y1, xu, xa, yu−3] ∈ F(Pu). By Lemma 2.1, we have a contradiction. �

Let F ∩ (V λu−1 ∪ V δu−1) = ∅. Then O is separated from any such F by one of at
most seven hyperplanes for the following reasons. If y1 6∈ F , then H2 suffices (see

Figure 12 with k = 1). If y1 ∈ F and F ∩ V βu−1 = ∅, then F ⊂ H−0 . If y1 ∈ F and

F ∩ V βu−1 6= ∅, then F ⊂ H+
0 by Remark 3 above.

xu

[V
β
u−1]

y1 yu−3

y2

xh

O

H2

H0

H+
0

H−
0

Figure 12. Pu−1/[xa, xb]

Let F ∩ (V λu−1 ∪ V δu−1) 6= ∅. If V λu−1 or V δu−1 is empty, then five hyperplanes
suffice to separate O from any such F by Lemma 4.4 and s(O) ≤ 7 + 5. Let
V λu−1 6= ∅ 6= V δu−1 with Er−1 = Eδ and Eq−1 = Eλ.

Let r < q and consider the (Pr−1/Er−1, zi)-configuration. Since [y1, y2] ∈
U(Pr−1) ∩ U(Pr), we have that y2 ∈ {z1, zr−3}. Let y2 = z1. Since r > u ≥ 7
and [xa, xb, y1, y2] = [Er−1, z1, xa] 6∈ F(Pr−1), it follows that xa 6∈ {z2, zr−3}.

We recall that H0 strictly separates xu from u−5 vertices of Pu−1. Hence, if H0

separates xu and xr, then u ≥ 7 yields that xa 6= z3 as well. Now, O is separated
from any F such that F ∩ V δu−1 6= ∅ and F ∩ V λu−1 6= ∅ by one of at most three
hyperplanes (cf. Figure 13), and hence s(O) ≤ 7 + 3 + 5 by Lemma 4.4.

Let xu and xr be on the same side of H0. We consider the (Pq−1/Eq−1, wi)-
configuration with Fq−1 = [Eq−1, w1, wq−3] = [y1, y2, w1, wq−3]. We note on the
one hand that xq and at least two elements from {w2, . . . , wq−4} are contained
in the same open half-space determined by H0. On the other hand, none of
[xa, y1],[xa, y2],[xb, y1] and [xb, y2] is in U(Pq−1). Hence O is separated from any F
such that F ∩ V λu−1 6= ∅ by one of at most four hyperplanes (cf. Figure 14), and so
s(O) ≤ 7 + 4 + 5.

We argue similarly if q < r.

Case 3. O ∈ [xa, xb, yk] for some 2 ≤ k ≤ u− 4.
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xr
[V δu−1]

y2 = z1
zr−3

H5

H0
xa

xuO

H4

H6

Figure 13. Pr−1/[xb, y1]

xq
[V λu−1]

w1 wq−3

H0xa

O

H5

H6

H7

xb

H4

Figure 14. Pq−1/[y1, y2]

By symmetry, we may assume that 2 ≤ k ≤ u− 5. If [yk, yk+1] ∈ U(Pu−1), then
let Eλ = [yk, yk+1] and H0 = 〈xa, xb, yk, yk+1〉.
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If F ∩ (V βu−1 ∪ V λu−1) = ∅, then F ⊂ H−0 , O ∈ bdH−0 and we apply Lemma 4.2.

If F ∩V λu−1 6= ∅, then we apply Lemma 4.4. If F ∩V λu−1 = ∅ and F ∩V βu−1 6= ∅, then
F is contained in a closed half-space that is bounded by H4 or H5 (cf. Figure 15)
with O on its boundary, and we apply Lemma 4.2 twice. Thus, s(O) ≤ 3 + 5 + 6.

xu

y1 yu−3

O

yk yk+1

H5 H4

H0

H+
0

H−
0

Figure 15. Pu−1/[xa, xb]

�

Theorem 5.3. Let 7 ≤ u ≤ n and O ∈ (intPu) \ Pu−1. Then s(O) ≤ 16.

Proof. Let xu ∈ V βu−1, Eu−1 = [xa, xb], H̃i = 〈xa, xb, xu, yi〉 for i = 1, . . . , u − 3,
and Eα = [xu, xa] and Eη = [xu, xb] in U(Pu).

We note that V βu−1 = {xu}∪V αu ∪V ηu , and set Es = Eα in the case V αu 6= ∅, and
Et = Eη in the case V ηu 6= ∅. Finally, let F ∈ F(P ).

Our subsequent arguments will depend initially upon the location of O and then
upon various properties of F .

Case 1. Let O ∈ int[xa, xb, xu, yk, yk+1] for some 2 ≤ k ≤ u− 5.

If [yk, yk+1] ∈ U(Pu), then let Eλ = [yk, yk+1]; furthermore, let Er = Eλ in the
case V λu 6= ∅.

Remark 4.

(4.1) If V αu 6= ∅ 6= V λu , then Fs 6= [xu, xa, yk, yk+1] 6= Fr and hence, [xu, xa, yk, yk+1] 6∈
F(Ps+1) ∪ F(Pr+1) ∪ F(P ).

(4.2) If V ηu 6= ∅ 6= V λu , then Ft 6= [xu, xb, yk, yk+1] 6= Fr and hence, [xu, xb, yk, yk+1] 6∈
F(Pt+1) ∪ F(Pr+1) ∪ F(P ).

(4.3) No F ′ ∈ F(Pu) contains [xu, y1, yu−3], and hence, no F ′′ ∈ F(P ) contains
[xu, y1, yu−3].
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xu

˜
Hk

˜
Hk+1

y1 yu−3

yk yk+1

O

Eλ

[V
β
u−1]

H0 O O

xb
y1 yu−3

xa
y1

yu−3

yk yk+1 yk
yk+1

˜
Hk

˜
Hk+1H6 H7

Pu/[xu, xa] Pu/[xu, xb]

Figure 16. Pu−1/[xa, xb], and Pu/[xu, xa] and Pu/[xu, xb]

(4.4) If F ∈ F(P )\F(Pu), F ∩V βu−1 = {xu} and F ∩V λu = ∅, then [yk, yk+1] 6⊂ F .

Proof of (4.4). Let F̂ = [xu, yk, yk+1, xw] ∈ F(Pw) and xw ∈ V θu with β 6= θ 6= λ.
We may assume that [yk+1, xw] ∈ U(Pw). Then yk+1 ∈ Eθ ∈ U(Pu) and Eθ is
disjoint from Eα or Eη. We may assume that Eθ ∩ Eα = ∅. Then

{[xu, xa, Eθ], [xu, xa, yk, yk+1], [xu, xa, yk+1, yk+2]} ⊂ F(Pu)

yields that Eθ = [yk+1, yk+2]. From the deletion process applied to F̂ , it follows
that [xu, yk, yk+1, yk+2] ∈ F(Pu); a contradiction. �

Let V λu = ∅. Then O is separated from any F by

• H0 in the case F ∩ V βu−1 = ∅, and
• one of ten hyperplanes spanned by the vertices of P in the case F ∩ (V αu ∪
V ηu ) 6= ∅ (cf. Lemma 4.4).

Let F ∩ V βu−1 = {xu}. If [yk, yk+1] 6⊂ F , then O is separated from any such F

by one of H̃k and H̃k+1 by Lemma 4.1 and Lemma 3.3. If [yk, yk+1] ⊂ F , then
F ∈ F(Pu) by (4.4) and O is separated from any such F by one of H6 and H7.

In summary, s(O) ≤ 1 + 10 + 2 + 2.
Let V λu 6= ∅. Then O is separated from any F such that F ∩ V λu 6= ∅ by one of

at most five hyperplanes by Lemma 4.4.
Henceforth, let F ∩ V λu = ∅.
If F ∩ V βu−1 = ∅, then H0 suffices to separate O from any such F .

Let F ∩ V βu−1 6= ∅ and we consider two cases.
If one of V αu or V ηu is empty, we may assume that V ηu = ∅. Then O is separated

from any F such that F ∩V αu 6= ∅ by one of at most five hyperplanes by Lemma 4.4.

Finally, let F ∩ V βu−1 = {xu}. Then O is separated from any such F by one of H̃k,

H̃k+1, and H7 (applying (4.1)) except if [xb, y1] = Eθ ∈ U(Pu−1), [xb, yu−3] = Eδ ∈
U(Pu−1) and F ∩ V θu 6= ∅ 6= F ∩ V δu . Let F = [xu, xv, x̃, xz] with xv ∈ V θu , xz ∈ V δu ,



22 T. BISZTRICZKY1 AND F. FODOR2

and, say, v < z. Then u < v < z and Lemma 3.2 yield that Eθ ∩ Eδ 6= ∅; a
contradiction. In summary, s(O) ≤ 5 + 1 + 5 + 3.

Let V αu 6= ∅ 6= V ηu with s < t, say. Then O is separated from any F such
that F ∩ V ηu 6= ∅ by one of five hyperplanes, and we consider Ps/Es with the
(Ps/Es, zi)-configuration. Then Et = Eη ∈ U(Ps) ∩ U(Ps+1) yields that, say,
(xb, yk, yk+1) = (z1, zi, zj) with i < j. Then O is separated from any F such that

F ∩V αu 6= ∅ by one of H̃k, H6 and a hyperplane through [xa, xu, yk+1] that supports
[V ηu ].

Finally, let F ∩ V βu−1 = {xu}. Then (4.1) and (4.2) yield that O is separated

from any such F by one of H̃k or H̃k+1. In summary, s(O) ≤ 5 + 1 + 5 + 3 + 2.

Case 2. Let O ∈ int[xa, xb, xu, y1, y2].

xu

H0

H4

y3y2

y1 yu−3

O

˜
H2

H1

(δ)

λ ψ

[V
β
u−1]

Figure 17. Pu−1/[xa, xb]

Let us consider the (Pu−1/Eu−1, yi)-configuration with Eα = Es, E
η = Et,

Eδ = Er, E
λ = Eq and Eψ = Ew in case these various edge and vertex types exist.

◦
xa

Eα ◦
xu

Eη ◦
xb

Eδ ◦
y1

Eλ ◦
y2

Eψ ◦
y3

Remark 5. Let F ′ ∈ F(P ) such that y1 ∈ F ′, F ′∩V βu−1 6= ∅ and F ′∩(V δu ∪V λu ) = ∅.

(5.1) V(F ′) ⊂ V βu−1 ∪ {xa, xb, y1, y2}.

Proof of (5.1). If F ′ ∩ V θu−1 6= ∅ for some θ 6= β, then {β, θ} ∩ {δ, λ} = ∅, {y1} =

Eδ ∩ Eλ and the deletion process yield that Eβ ∩ Eθ 6= ∅. Then Eβ = [xa, xb],
Eδ = [xb, y1] and Lemma 2.1 yield that xa ∈ Eθ and [xu, xb, E

θ] ∈ F(Pu). Hence,
Eθ = [xa, yu−3], [Eδ, Eθ] ∈ F(Pu) and we have a contradiction by Remark (4.3). �
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(5.2) Let F ′ ∈ F(Pu). Then
F ′ = [xu, xa, y1, y2] and V αu or V λu is empty, or
F ′ = [xu, xb, y1, y2] and V λu or V ηu is empty, or
F ′ = [xu, xa, xb, y1] and V αu or V δu is empty.

(5.3) O is separated from any F ′ such that F ′∩(V αu ∪{xu}) 6= ∅ (F ′∩(V ηu ∪{xu}) 6=
∅) by one of at most two hyperplanes spanned by the vertices of P and
containing Eα (respectively Eη).

Proof of (5.3). We note that O ∈ intPs, apply (5.1) and assume the (Ps/Es, zi)-
configuration. Then either y1 = zj for some 2 ≤ j ≤ u − 3 and 〈Eα, zj−1, zj〉 and
〈Eα, zj , zj+1〉 are the separating hyperplanes, or if j = 1 then 〈Eα, z1, z2〉 and if
j = s− 2 then 〈Eα, zs−3, zs−2〉 suffices. We argue similarly for O ∈ intPt. �

(5.4) Let F ′′ ∈ F(P ) such that F ′′ ∩ V βu−1 = {xu}, F ′′ ∩ (V δu ∪ V λu ) = ∅ and
F ′′ 6⊂ Pu. Then y1 6∈ F ′′.

Proof of (5.4). If [xu, y1, x̃, xz] ∈ F(Pz), xz ∈ V θu and θ 6∈ {α, η, δ, λ}, then [xz, x̃] ∈
U(Pz) and [xu, y1, E

θ] ∈ F(Pu) by the deletion process. Then Eθ ∈ U(Pu) and (5.2)
yield that θ = α, a contradiction. �

(5.5) Let F ′′ ∈ F(P ) such that F ′′ ∩ V βu−1 = {xu} and F ′′ ∩ V δu 6= ∅ 6= F ′′ ∩ V λu .
Then {xr, xt} ⊂ {xq+2, . . . , xn}.

Proof of (5.5). Let F ′′ = [xu, x̃r, x̃q, x̃] with x̃r ∈ V δu and x̃q ∈ V λu . By the
deletion process, we may assume that x̃ = y1. Let xr < xq. Then we may
assume also that [xu, x̃r, xq+1, y1] ∈ F(Pq+1), [xu, xr+1, y1, y2] ∈ F(Pr+1) and
[xu, xb, y1, y2] ∈ F(Pr)∩F(Pu). If xt < xr, then [xu, xb, y1, y2] ∈ F(Pt)∩F(Pt+1),
Ft = [xu, xb, y1, y2] and [y1, y2] 6∈ U(Pt+1); a contradiction. If xr < xt, then
{Et, Eq} ⊂ U(Pr+1), [Et, Eq] = [xu, xb, y1, y2] ∈ F(Pr+1), Fr = [xu, xb, y1, y2] and

{[xr+1, xb, y1, y2], [xr+1, xb, y1, xu]} ⊂ F(Pr+1).

Now, [xr+1, xu, y1, y2] ∈ F(Pr+1) and [xr+1, y1] ∈ U(Pr+1) yield that |V(Pr+1)| = 5
by Lemma 2.1; a contradiction.

Since xq < xr, we may assume from F ′′ that [xu, xr+1, x̃q, y1] ∈ F(Pr+1),
[xu, xq+1, xb, y1] ∈ F(Pq+1) and [xu, xb, y1, y2] ∈ F(Pq) ∩ F(Pu). If xt < xq, then
[xu, xb, y1, y2] ∈ F(Pt) ∩ F(Pt+1), Ft = [xu, xb, y1, y2] and [y1, y2] 6∈ U(Pt+1); a
contradiction. �

Case 2.1. O and xu are separated by H1 and O 6∈ H1, cf. Figure 17.

We note that O is separated from any F such that F ∩ (V δu ∪ V λu ) 6= ∅ by one of
ten hyperplanes by Lemma 4.4.

Let F ∩ (V δu ∪ V λu ) = ∅. Then O is separated from any F by

• H1 in the case y1 6∈ F ,

• H0 in the case F ∩ V βu−1 = ∅, and

• one of at most four hyperplanes in the case y1 ∈ F and F ∩ V βu−1 6= ∅ from
(5.1) and (5.3).

In summary, s(O) ≤ 10 + 1 + 1 + 4 = 16.

Case 2.2. O and xu are on the same side of H1.
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i) Let F ∩ V βu−1 = ∅. We note that O is separated from F by H4 in the case

that F ∩ V ψu = ∅ or O and xw+1 are on opposite sides of H4. Let F ∩ V ψu 6= ∅ and
assume that O and xw+1 are on the same side of H4. Consider the (Pw/Ew, zi)-
configuration. Then (xa, xb) = (zk, zl) and we may assume 1 ≤ k < l ≤ w − 2.
Since O, xw+1 and xu are on the same side of H4 = 〈Ew, zk, zl〉, it follows that
xu = zi for some k < i < l. Now, by Lemma 3.3, we have that

{zk+1, . . . , zl−1} = V βu−1 ∩ {z1, . . . , zw−2}.
Thus, O is separated from any F above by one of H4, H5 and H6; cf. Figure 18.

In summary, three hyperplanes suffice.

xw+1

O

H5 H6

xa
xb

xu
H4

Figure 18. Pw/[y2, y3]

ii) Next, we consider F with the property that F ∩ V βu−1 = {xu}. Then

• H̃2 separates O from F in the case F ∩ (V δu ∪ V λu ∪ {y1}) = ∅,
and we argue below that

• one hyperplane separates O from F in the case that F ∩ V δu 6= ∅ 6= F ∩ V λu .

We letH = 〈xu, xb, y1, y2〉, and recall that xq < xr, xt by (5.5). Hence, [xu, xb, y1, y2] ∈
F(Pq) \ {Fq} and H strictly separates O and xq+1. Since {xu, y1} ⊂ H and

{y1} = Eλ ∩ Eδ, it follows that H separates O from any such F in the case that
H separates O and xr+1. Let O and xr+1 be on the same side of H. Then (cf.

Figure 19) xu ∈ F yields that O is separated from any such F̂ by H, a hyperplane
through 〈xb, y1, xu〉 that supports [V δu ].

Now, we consider F such that F ∩ V λu 6= ∅ and F ∩ V δu = ∅. We recall that
Eλ = Eq = [y1, y2] and consider the (Pq/Eq, zi)-configuration. Then xu = zk and
we may assume that 1 ≤ k ≤ q−3. From Lemma 3.2 and the hypotheses, we obtain
that V(F ) ⊂ V(Pu) ∪ V λu . It is then clear that 〈Eq, xu, zk+1〉 separates O from any
F such that |F ∩ (V λu ∪ {y1, y2})| = 3.
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xr+1

O

̂
H

xu
y2
xq+1

[V δu ]

H

Figure 19. Pr/[xb, y1]

Let F = [xu, x̃, x
′, xv] ∈ F(Pv), xv ∈ V λu , and x̃ ∈ V(Pu) \ {y1, y2}. Then

[x′, xv] ∈ U(Pv), x̃ 6∈ Ev−1 and the deletion process yield that x̃ ∈ {xa, xb},
[xu, x̃, y1, y2] ∈ F(Pu) ∩ F(Pq) and x̃ ∈ {zk−1, zk+1}. Thus, O is separated from F
by 〈Eq, xu, x̃〉. We note that if x̃ = xa and V αu 6= ∅, then xs+1 > xv and F = Fs.
It is clear that if xs+1 > xv then F ∈ F(Pv) yields that F ∈ F(Ps) ∩ F(Ps+1),
and so, F = Fs. If xs+1 < xv then, as a simplification, we may assume x′ = xp
and xv > xs+1 > xp. Since [xu, xa, Ev−1] ∈ F(Pp) ∩ F(Pv−1) by Deletion, it fol-
lows that [xu, xa, Ev−1] ∈ F(Ps) ∩ F(Ps+1), Fs = [xu, xa, Ev−1], Ev−1 6∈ U(Ps+1)
and Ev−1 6∈ U(Pv−1); a contradiction. Similarly, if x̃ = xb then either V ηu = ∅ or
xt+1 > xv and F = Ft.

In summary, O is separated from any such F by 〈Eq, xu, zk−1〉 or 〈Eq, xu, zk+1〉
only if V αu or V ηu is empty or V αu 6= ∅ 6= V ηu and F ∈ {Fs, Ft}.

If V αu 6= ∅ 6= V ηu , then F = Fs with the (Ps/Es, wi)-configuration implies that
xb = wj for some 1 < j < s − 2, and thus, Eη = Et = [xu, xb] 6∈ U(Ps+1) by
Lemma 2.1 and xt < xs. On the other hand, F = Ft yields that xs < xt by a
similar argument. This is a contradiction. Since F is now unique, we may assume
that x̃ = zk+1 and F is also separated from O by 〈Eq, xu, zk+1〉.

Next, we consider F such that F ∩ V δu 6= ∅ and V λu = ∅. We argue as above and
obtain that, with the (Pr/Er, zi)-configuration and xu = zk for some 1 ≤ k ≤ r−3,
O is separated from any F such that |F ∩ (V δu ∪ {xb, y1})| = 3 by 〈Er, xu, zk+1〉.
From F ∩ (V αu ∪ V ηu ∪ V λu ) = ∅, it follows that if F = [xu, x̃, x

′, xv] ∈ F(Pv),
x̃ 6∈ V δu ∪ {xb, y1}, and {x′, xv} ∩ V δu 6= ∅, then x̃ = xa ∈ {zk−1, zk+1} (hence, we
may assume that x̃ = zk+1) then O is separated from F again by 〈Er, xu, zk+1〉 and
either V αu = ∅ or F = Fs.

In summary, O is separated from any F such that F intersects exactly one of
V δu and V λu by one of two hyperplanes in the case that V αu 6= ∅ 6= V ηu , and by one
of three hyperplanes otherwise.
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Finally, let F ∩(V δu ∪V λu ∪{y1}) = {y1}. Then by (5.4) and (5.2), F ∈ F(Pu) and
there are at most three such F and each is contained in {Fs, Ft, Fr, Fq}. From this
it follows that if any of V αu , V ηu , V δu and V λu is non-empty then there are at most
two such F and at least one of them is empty. We observe that if only V λu is empty
and there are two such F , then they are [xu, xa, y1, y2] = Fs (hence, xt < xs from
Et = [xu, xb]) and [xu, xb, y1, y2] = Ft = Fr (hence, xs < xt from Es = [xu, xa]); a
contradiction.

From i) and the above, we know that O is separated from any F such that
F ∩ (V αu ∪ V ηu ) = ∅ by one of at most ten hyperplanes. Furthermore, ten are
necessary only if V αu or V ηu is empty. But in that case, O is separated from any F
such that F ∩ (V αu ∪ V ηu ) 6= ∅ by at most five hyperplanes by Lemma 4.4.

We assume that V αu 6= ∅ 6= V ηu . Then i) and the above yield that O is separated
from any F such that F ∩ (V αu ∪ V ηu ) = ∅ by one of at most seven hyperplanes;
furthermore, seven are necessary only if V δu and V λu are non-empty. Thus, by
Lemma 4.4, we may assume that V δu 6= ∅ 6= V λu and that there exists an F ′′ ∈ F(P )

such that F ′′ ∩ V βu−1 = {xu} and F ′′ ∩ V δu 6= ∅ 6= F ′′ ∩ V λu . Thus, xr > xq and
xt > xq by (5.5).

iii) Let F ∩(V αu ∪V ηu ) 6= ∅ under the preceding assumptions. From the preceding,
we need to verify that O is separated from any such F by one of at most nine
hyperplanes.

Let xs < xt, xr (simply s < t, r) and F ∩ V αu 6= ∅. Then O ∈ intPs, xb ∈ Fs and
with reference to Figure 20, it is easy to check from arguments as in Lemma 4.4
that O is separated from any such F by

• one of at most three hyperplanes in the case that O is separated from [V αu ]

by Ĥ1 and Ĥ2 (xq < xr yields that xb ∈ Fq and so, Ĥ0 separates xq+1 from
xb and O), and
• one of at most two hyperplanes in the case that O is separated from [V αu ]

by H̃1 and Ĥ3, and O is separated by H̃1 from xt+1 and xr+1.

Hence we may now assume that O is separated from [V αu ] by H̃1 and Ĥ3, and O

is not separated from xt+1 and xr+1 by H̃1.

Let s < r < t. If H̃1 separates O from xt+1, then O and xr+1 are on the

same side of H̃1 and we argue as in the proof of Lemma 4.4 with the (Pr/Er, wi)-
configuration and obtain that O is separated from any F such that F ∩ V αu 6= ∅ by

one of H̃1, Ĥ3 and a hyperplane through 〈Er, xa〉 that supports [V δu ]. In the case

that H̃1 separates O from xr+1, we argue with the (Pt/Et, wi)-configuration and

obtain that O is separated from any F such that F ∩V αu 6= ∅ by one of H̃1, Ĥ3 and
two hyperplanes that support [V ηu ], one through 〈Et, xa〉 and one through 〈Et, y1〉.

Finally, we assume that O, xr+1 and xt+1 are all on the same side of H̃1. Then
we argue with the (Pr/Er, wi)-configuration and the (Pt/Et, zi)- configuration and
obtain from xr < xt that O is separated from any F such that F ∩ V αu 6= ∅ by one

of Ĥ3, one hyperplane through 〈Er, xa〉 that supports [V δu ] and two hyperplanes
that support [V ηu ] (through 〈Et, xa〉 and 〈Et, y1〉).

In summary, if s < r < t, then O is separated from any F such that F ∩ V αu 6= ∅
by one of at most four hyperplanes. A similar argument yields the same result in
the case that s < t < r. Hence, s(O) ≤ 7 + 4 + 5 = 16 by Lemma 4.4 applied to F
such that F ∩ V ηu 6= ∅.



A SEPARATION THEOREM FOR TOTALLY-SEWN 4-POLYTOPES 27

xs+1

˜
H1

Ĥ0

y2
y1

xb

Ĥ1 Ĥ3

˜
H2

(η)

δ

λ

Ĥ2

Figure 20. Ps/Es = [xu, xa]

In the case that xr < xs, we obtain from O ∈ int[xa, xb, xu, y1, y2] that with
the (Ps/Es, zi)-configuration: O is contained in a region bounded by 〈Es, zi, zj〉,
〈Es, zj , zp〉 and 〈Es, zi, zp〉 with 1 ≤ i < j < p ≤ s−2 and {zi, zj , zp} = {xb, y1, y2}.
Then [zi, zj ] 6∈ U(Ps) and [zj , zp] 6∈ U(Ps) from q < r, s, and we apply Corollary 4.5
to obtain s(O) ≤ 16.

It remains to consider the case t < s < r with the (Ps/Es, zi)-configuration and

the (Pr/Er, wi)-configuration. The important fact is whether H̃1 separates O and
xr+1. If yes, then O is separated from any F such that F ∩ V αu 6= ∅ by one of at
most three hyperplanes, each of which contains Es. If not, then separation is by
one of at most four hyperplanes, two containing Es and the other two containing
Er.

Case 3. O ∈ relint[xa, xb, xu, yk], 2 ≤ k ≤ u− 4.

Let 2 < k < u− 4 and F ∈ F(P ). We show first that O is separated from any F
by one of at most seven hyperplanes spanned by the vertices of P in the case that
F ∩ (V αu ∪ V ηu ) 6= ∅.

Clearly, we may assume that V αu 6= ∅ 6= V ηu by Lemma 4.4.
Recall that

◦
xa

Es ◦
xu

Et ◦
xb

Er ◦
y1

Eq ◦
y2
.

Let s < t. Then we note that U(Pt)∩{[xa, xu], [xa, xb]} = ∅. Since 2 < k < u−4,
we have also that U(Pt) ∩ {[yk, xu], [yk, xb]} = ∅, and the (Pt/Et, zi)-configuration
with {xa, yk} = {zi, zp} and 1 ≤ i < i + 2 < p ≤ t − 2. Thus O is separated from
any F such that F ∩ V ηu 6= ∅ by one of at most three hyperplanes by Corollary 4.6.
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Since 2 < k < u − 4, a similar argument with the (Ps/Es, wi)-configuration
yields that O is separated from any F such that F ∩V αu 6= ∅ by one of at most four
hyperplanes by Corollary 4.6. Clearly, the claim follows by a similar argument in
the case that t < s.

Let Eθ = [yk−1, yk] = Ev and Eψ = [yk, yk+1] = Ew in case these edge and
vertex types exist with respect to Pu.

Let F∩V βu−1 = ∅. Then O is separated from F by one ofH ′k−1 = 〈xa, xb, yk−1, yk〉
and H ′k+1 = 〈xa, xb, yk, yk+1〉 in case F ∩ V θu = ∅ or F ∩ V ψu = ∅ or H ′k+1 separates
O and xw+1 or H ′k−1 separates O and xv+1. In the remaining case, we are left to

consider F such that F ∩ V θu 6= ∅ 6= F ∩ V ψu . We may assume that v < w and
that in the (Pv/Ev, zi)-configuration, (yk+1, xa, xb) = (z1, zj , zl) with 1 < j < l ≤
v−2. Then O is separated from any such F by a hyperplane through 〈Ev, xa〉 that
supports [V θu ].

Let F∩V βu−1 = {xu}. Then 2 < k < u−4 yields that Eβ∩([yk−1, yk], [yk, yk+1]) =

∅, and either F ∩ V θu = ∅ or F ∩ V ψu = ∅ by Lemma 3.2. Hence, F is contained in

one of the closed half-spaces determined by H̃k and O is separated from any such
F by one of at most six hyperplanes by Lemma 4.2 (applied twice). In summary,
s(O) ≤ 7 + 3 + 6.

Let k = 2 and F ∈ F(P ) and V δu 6= ∅ 6= V λu . We note again that O is separated

from any F such that F ∩ V βu−1 = ∅ by one of at most three hyperplanes, and we
claim that O is separated from any F such that F ∩ (V αu ∪ V ηu ) 6= ∅ by one of at
most seven hyperplanes.

Let F ∩ (V αu ∪V ηu ) 6= ∅ and V αu 6= ∅ 6= V ηu . Let s < t. If r < t, then H̃2 separates
y1 and xr+1 from y3 and yu−3. Now we readily obtain from Corollary 4.6 that O is
separated from any F such that F ∩ V ηu 6= ∅ by one of at most three hyperplanes.
If r > t, then with the (Pt/Et, zi)-notation, we obtain that y1 ∈ {z1, zt−2}. Since

H̃2 = 〈Et, xa, y2〉 separates y1 and {y3, . . . , yu−2}, we obtain the result above again
by Corollary 4.6.

It is clear from Corollary 4.6 that O is separated from any F such that F∩V αu 6= ∅
by one of at most four hyperplanes except possibly in the case that s < q, r, t and

the location of O in H̃2 as indicated in Figure 20.
From the above, we may assume that F ∩ V ηu = ∅. Then O is separated from

any such F by one of at most four hyperplanes. Depending upon the location of
O: either two for F such that F ∩ V λu = ∅ and two for F such that F ∩ V λu 6= ∅, or
two for F such that F ∩ V δu = ∅ and two for F such that F ∩ V δu 6= ∅.

Let t < s. Then there is no E ∈ U(Ps) such that |E ∩ {xu, xa}| = 1 = |E ∩
{xb, y2}|. Thus, if r < s or q < s, then we argue as in the preceding and obtain
that O is separated from any F by

• one of at most three hyperplanes in the case that F ∩ V αu 6= ∅, and
• one of at most four hyperplanes in the case that F ∩V αu = ∅ and F ∩V ηu 6= ∅.

Finally, let t < s < r, q. Then with the (Ps/Es, wi)-configuration and {xb, y2} =
{wi, wp}, we obtain that |p− i| = 2. We now apply Corollary 4.5 and obtain that O
is separated from any F such that F ∩ V αu 6= ∅ by one of at most four hyperplanes.

From the (Pt/Et, zi)-configuration, it follows from t < s < r that {xa, yi} =
{z1, zt−2}. Let xa = z1 and y1 = zt−2. Then y2 = zt−3. Let F ∩ V αu = ∅. Then
F ∩V ηu 6= ∅. We now obtain, as above, that O is separated from any such F by one
of at most three hyperplanes by Corollary 4.6.
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Let F ∩ V βu−1 = {xu}. Again, O is separated from any F such that F ∩ (V δu ∪
V λu ∪ {y1}) = ∅ by one of at most three hyperplanes by Lemma 4.2.

Let F ∩ (V δu ∪V λu ∪{y1}) 6= ∅. If F ∩ (V δu ∪V λu ) = ∅, then y1 ∈ F and (5.1) imply
F ∈ F(Pu), and (5.2) implies that V αu , V

η
u , V

δ
u or V λu is empty; a contradiction. Let

F ∩ (V δu ∪ V λu ) 6= ∅. If F ∩ V θu−1 6= ∅ for some θ 6∈ {β, δ, λ} then Lemma 3.2 implies

that Eθ ∩ Eφ 6= Eβ ∩ (Eθ ∪ Eψ) for some φ ∈ {δ, λ}. Since Eθ ∩ Eφ 6= ∅ implies
φ = λ, and Eβ ∩ (Eθ ∪ Eφ) 6= ∅ implies φ = δ, we have a contradiction. Thus,
F ⊂ Q = [V δu ∪ V λu ∪ {xu, xa, xb, y1, y2}], and O is separated from any such F by
one of at most three hyperplanes by Lemma 4.2.

Let V δu or V λu be empty. We argue as above and again obtain that O is separated
from F by

• one of at most three hyperplanes in each of the following cases: a) F ∩
V βu−1 = ∅, b) F ∩ V βu−1 = {xu} and F ∩ (V δu ∪ V λu ∪ {y1}) = ∅, and c)

F ∩ V βu−1 = {xu} and F ∩ (V δu ∪ V λu ∪ {y1}) 6= ∅,
• one of at most seven hyperplanes in the case F ∩ (V αu ∪ V ηu ) 6= ∅ and either
V λu = ∅ or V λu 6= ∅ = V δu and q < s or q < t, and
• one of at most eight hyperplanes in the case F ∩ (V αu ∪ V ηu ) 6= ∅, V αu 6= ∅ 6=
V ηu , V λu 6= ∅ = V δu and q > s, t.

Let V αu 6= ∅ 6= V ηu , V λu 6= ∅ = V δu and q > s, t. Let F ∈ F(P ) such that

F ∩V βu−1 = {xu} and F ∩ (V δu ∪V λu ∪{y1}) 6= ∅. We claim that O is separated from
F by one hyperplane, and hence, s(O) ≤ 16 in this case as well.

If there is an F such that F∩V λu 6= ∅ then (as noted above) F ⊂ Q by Lemma 3.2,
and [xu, x̃, y1, y2] ∈ F(Pu) ∩ F(Pq) for some x̃ ∈ {xa, xb} by the Deletion process.
Since x̃ ∈ {xa, xb} implies that q < s or q < t, it follows that F ∩ V λu = ∅ for all
such F . Then y1 ∈ F and (5.1) imply that F ∈ F(Pu). Since none of V αu , V

η
u and

V λu is empty, it follows from (5.2) that F = [xu, xa, xb, y1] is unique. �
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