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Abstract

Covering problems are well studied in the Operations Research lit-
erature under the assumption that both the set of users and the set of
potential facilities are finite. In this paper, we address the following
variant, which leads to a Mixed Integer Nonlinear Program (MINLP):
locations of p facilities are sought along the edges of a network so that
the expected demand covered is maximized, where demand is contin-
uously distributed along the edges. This MINLP has a combinatorial
part (which edges of the network are chosen to contain facilities) and a
continuous global optimization part (once the edges are chosen, which
are the optimal locations within such edges).

A branch-and-bound algorithm is proposed, which exploits the
structure of the problem: specialized data structures are introduced to
successfully cope with the combinatorial part, inserted in a geometric
branch-and-bound algorithm.
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Action TD1207 (EU), MTM2012-36163 (Ministerio de Ciencia e Innovación, Spain), P11-
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Computational results are presented, showing the appropriateness
of our procedure to solve covering problems for small (but non-trivial)
values of p.

Key words : Maximal Covering Location Problem. Location on networks.
Regional demand. Global optimization. Branch and bound.

1 Introduction

The Maximal Covering Location Problem, (MCLP), [3, 14, 15, 22], is a classic
problem in locational analysis with applications in a good number of fields,
such as health care, emergency planning, ecology, statistical classification,
homeland security, see e.g. [1, 8, 13, 18, 39, 40] and the references therein.
Given a finite set of users A, each a ∈ A with demand ωa ≥ 0, a set of p
facilities in a set F is sought in order to maximize the demand covered. A
point is said to be covered by a set F ∗ ⊂ F of p facilities if there is at least
one f ∈ F ∗ at distance from a not greater than R, where R > 0 is a fixed
number, called the covering radius.
(MCLP) is easily expressed as an Integer Program. Indeed, defining binary
variables yf and za to indicate respectively whether a facility at f is open,
and whether a is covered, (MCLP) amounts to solving the following program:

max
∑
a∈A

ωaza

s.t. za ≤
∑

f∈F : d(a,f)≤R

yf ∀a ∈ A

∑
f∈F

yf = p

yf ∈ {0, 1} ∀f ∈ F
za ∈ {0, 1} ∀a ∈ A.

(1)

(MCLP) is known to be NP-hard, [27], but formulated as (1) is, in words
of [37], integer-friendly, in the sense that its continuous relaxation is often
all-integer, and thus no much branching is usually needed in a branch-and-
bound algorithm. See [23, 29, 36, 38] and the references therein for heuristic
approaches to handle problems of larger size.
Extensions and closely related models to the (MCLP) abound in the Oper-
ations Research literature. First, (MCLP) has been studied assuming that
the space is not a discrete set but a network: the set A of users is the set
of nodes of a network N , and facilities are allowed to be located not only at
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the nodes, but anywhere on N. It is shown, however, that one only needs to
consider a finite and relatively small set of candidate locations, [14, 27], and
thus the problem can be written in the form of (MCLP) above. Nontrivial
extensions include, for instance, replacing the basic yes/no covering function
to more general decreasing functions in the distance separating the user and
the facility, [3, 4, 2, 5]; another variant is found when the set A of users is
finite, but the feasible locations are assumed to be a subset of the plane,
yielding planar covering models, as reviewed in [33].
Much less literature exists on covering models with regional demand, [21,
26, 31], in which, by the very nature of the problem, assuming the demand
to be concentrated at a finite set (e.g. centroids of neighbourhoods, towns,
administrative units or census boundaries, [31]) is a crude approximation.
The consequences of inaccuracies due to such discretization are well studied,
[16, 28, 31], and thus demand is advocated to be modeled as following a
continuous distribution on a given region. See also [9, 10, 11] for other
location models with continuously distributed demand.

The following version of the classic (MCLP) with regional demand is ad-
dressed in this paper: demand is assumed to be continuously distributed
along the edges of a network and p points along the set of edges of the net-
work are sought in order to maximize the expected covering of the demand.
Hence, the model differs from the classic (MCLP) in two main issues: first,
the set of feasible locations is not a discrete set, but (a set of) the edges of
a network; moreover, demand is assumed here to be distributed along the
edges of the network, making it a realistic model, for instance, for covering
problems in an urban context, in which users are located along streets (the
edges), or for the location of emergency services to attend accidents, which
take place along the roads (edges of the transportation network).

Let us now introduce formally the problem under consideration. We are
given a network N = (V,E); each edge e ∈ E has associated its length le,
which allows us to talk about points in an edge: edge e, with endpoints u, v,
is identified with the interval [0, le], and we thus identify any x ∈ [0, le] as
the point in the edge e at distance x of u and distance le − x of v. With this
identification, the shortest-path distance between the nodes in V is readily
extended to a metric d on the points in the edges. Moreover, each edge e has
a weight ωe ≥ 0 and a probability density function (pdf) fe, which models
the demand along edge e. We assume that a radius R > 0 is given, and a
point x along an edge e ∈ E is covered by the set of facilities at t1, . . . , tp if

min
1≤i≤p

d(ti, x) ≤ R. (2)

The expected demand of edge e covered by facilities at t = (t1, . . . , tp) is
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given by

ωe

∫ le

0

δe(x; t)fe(x) dx,

where δe(x; t) takes the value 1 when x ∈ e is covered by facilities at t =
(t1, . . . , tp), i.e., when (2) is fulfilled, and takes the value 0 otherwise.
With this, the optimization problem at hand can be written as

max
t∈Ep

C(t) :=
∑
e∈E

ωe

∫ le

0

δe(x; t)fe(x) dx. (3)

The remainder of this note is structured as follows. In Section 2, structural
properties of the MINLP (3) are studied. A branch-and-bound method is
designed in Section 3. Exploiting the structure of the problem, data struc-
tures and bounding procedures are proposed, and they are tested on a set of
instances in Section 4. The paper ends with some concluding remarks and
possible extensions in Section 5.

2 Structural properties

Property 2.1. For any p-tuple of edges (e1, . . . , ep) ∈ Ep, the function C :
t = (t1, . . . , tp) ∈ [0, le1 ] × . . . × [0, lep ] −→ C(t) is continuous in [0, le1 ] ×
. . .× [0, lep ].

Proof. Using the inclusion-exclusion principle, we can re-write C(t) as

C(t) =
∑
e∈E

ωe

∫ le

0

∑
I⊂{1,...,p}

(−1)1+|I|
∏
i∈I

δe(x; ti)fe(x) dx.

Hence, it suffices to show that, for any e = (u, v) ∈ E and any nonempty I,

the function
∫ le
0

∏
i∈I δe(x; ti)fe(x) dx is continuous in t. Split the index set

I in those indices corresponding to facilities in e and not in e respectively:

I+ := {i ∈ I : ei = e}
I− := {i ∈ I : ei 6= e}.

Observe that, for i ∈ I+, one has

δe(x; ti) = 1 iff d(x, ti) ≤ R

iff x ∈ [ti −R, ti +R],
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while for i ∈ I−,

δe(x; ti) = 1 iff min{x+ d(u, ti), le − x+ d(v, ti)} ≤ R

iff x ∈ [0, R− d(u, ti)] ∪ [d(v, ti) + le −R, le]

Hence∏
i∈I+

δe(x; ti) = 1 iff x ∈ [max
i∈I+

ti −R,min
i∈I+

ti +R]∏
i∈I−

δe(x; ti) = 1 iff x ∈ [0, R−max
i∈I−

d(u, ti)] ∪ [max
i∈I−

d(v, ti) + le −R, le]∏
i∈I

δe(x; ti) = 1 iff

x ∈ [max{max
i∈I+

ti −R, 0},min{min
i∈I+

ti +R,R−max
i∈I−

d(u, ti)}]

∪ [max{max
i∈I+

ti −R,max
i∈I−

d(v, ti) + le −R},min{min
i∈I+

ti +R, le}]

= [a1(t), b1(t)] ∪ [a2(t), b2(t)].

Hence,∫ le

0

∏
i∈I

δe(x; ti)fe(x)dx =

∫
[a1(t),b1(t)]∪[a2(t),b2(t)]

fe(x)dx

=

∫ b1(t)

a1(t)

fe(x)dx+

∫ b2(t)

a2(t)

fe(x)dx−
∫ min{b1(t),b2(t)}

max{a1(t),a2(t)}
fe(x)dx

= max{Fe(b1(t))− Fe(a1(t)), 0}+ max{Fe(b2(t))− Fe(a2(t)), 0}
−max{Fe(min{b1(t), b2(t)})− Fe(max{a1(t), a2(t)}), 0},

where Fe is the cumulative distribution function associated with the pdf fe.
Since Fe is continuous, C(t) is continuous as well.

Once the p-tuple of edges (e1, . . . , ep) is chosen, the function C is continuous
on the compact set [0, le1 ]× . . .× [0, lep ], and attains its maximum. Since the
possible choices of p-tuple of edges is also finite, the maximum of C on Ep is
attained. Finding such maximum may be hard because, for arbitrary pdfs fe
defining the demand along the edges, the function C may not be convex, and
thus Global Optimization techniques are to be used; in its full generality, C
may lack important structural properties, such as Lipschitz-continuity. This
is shown in the following example.

Example 2.1. Consider a graph N = (V,E) with two nodes, v1, v2, connected
by an edge e of length 2, so that we can identify the edge with the segment
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[−1, 1] and the nodes with the endpoints of the segment. The density fe of
the demand is given by

fe(x) =
1

4
√
|x|
, x ∈ [−1, 1].

Consider the problem of locating one facility (p = 1) on e, and a coverage
radius R = 1/4. Let us study the behavior of the function C on the interval
[−1, 1]. First, the cumulative distribution Fe is easily shown to be given by

Fe(x) =


0, if x < −1
1−
√
−x

2
, if −1 ≤ x < 0

1+
√
x

2
, if 0 ≤ x < 1

1, if x ≥ 1.

(4)

On the other hand, C is given by

C(x) = Fe

(
x+

1

4

)
− Fe

(
x− 1

4

)
(5)

Joining (4) and (5) one obtains after some algebra the following expression
of C :

C(x) =



1−
√
−x−1/4
2

, if −1 ≤ x < −3
4√

−x+1/4−
√
−x−1/4

2
, if −3

4
≤ x < −1

4√
x+1/4+

√
−x+1/4

2
, if −1

4
≤ x < 1

4√
x+1/4−

√
x−1/4

2
, if 1

4
≤ x < 3

4

1−
√

x−1/4
2

, if 3
4
≤ x < 1

Observe that the function C has infinite directional derivatives at points x =
±1

4
, which are interior to the interval [−1, 1]. Hence C cannot be Lipschitz-

continuous in the interval [−1, 1].

Under some reasonable assumptions on the pdfs involved, the function C is
Lipschitz-continuous:

Property 2.2. Suppose that, for each e ∈ E, the pdf fe is bounded above
by some constant M. Then, for any p-tuple of edges (e1, . . . , ep) ∈ Ep, the
function C : t = (t1, . . . , tp) ∈ [0, le1 ] × . . . × [0, lep ] −→ C(t) is Lipschitz-
continuous in [0, le1 ]× . . .× [0, lep ].
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Proof. Let t = (t1, . . . , tp), s = (s1, . . . , sp) ∈ [0, le1 ]× . . .× [0, lep ]. One has

|C(t)− C(s)| ≤
∑
e∈E

ωe

∫ le

0

|δe(x; t)− δe(x; s)|M dx. (6)

Now, for x ∈ e := (u, v), |δe(x; t) − δe(x; s)| > 0 iff one of the two following
conditions holds:

δe(x; t) = 1, δe(x; s) = 0, (7)

δe(x; t) = 0, δe(x; s) = 1. (8)

Let us study separately the two cases, by identifying necessary conditions
which must hold and are more manageable. If (7) holds, then, there exists
some i ∈ {1, . . . , p}, ei = (ai, bi) such that one of the following conditions
holds:

ei 6= e, ti + d(ai, u) + x ≤ R < d(si, x)

ei 6= e, lei − ti + d(bi, u) + x ≤ R < d(si, x)

ei 6= e, ti + d(ai, v) + le − x ≤ R < d(si, x)

ei 6= e, lei − ti + d(bi, v) + le − x ≤ R < d(si, x)

ei = e, |x− ti| ≤ R < x− si
ei = e, |x− ti| ≤ R < −x+ si,

which imply respectively the following:

ei 6= e, ti + d(ai, u) + x ≤ R < si + d(ai, u) + x

ei 6= e, lei − ti + d(bi, u) + x ≤ R < lei − si + d(bi, u) + x

ei 6= e, ti + d(ai, v) + le − x ≤ R < si + d(ai, v) + le − x
ei 6= e, lei − ti + d(bi, v) + le − x ≤ R < lei − si + d(bi, v) + le − x
ei = e, x− ti ≤ R < x− si
ei = e, −x+ ti ≤ R < −x+ si,

i.e.,

ei 6= e, x ∈ (−si − d(ai, u) +R,−ti − d(ai, u) +R] (9)

ei 6= e, x ∈ (−lei + si − d(bi, u) +R,−lei + ti − d(bi, u) +R] (10)

ei 6= e, x ∈ [ti + d(ai, v) + le −R, si + d(ai, v) + le −R) (11)

ei 6= e, x ∈ [lei − ti + d(bi, v) + le −R, lei − si + d(bi, v) + le −R)(12)

ei = e, x ∈ (si +R, ti +R] (13)

ei = e, x ∈ [ti −R, si −R). (14)
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If, instead of (7), (8) holds, then conditions analogous to (9)-(14) are ob-
tained, but exchanging the roles of si and ti.
Hence, by (6) one has

|C(t)− C(s)| ≤
∑
e∈E

ωe

∫ le

0

|δe(x; t)− δe(x; s)|M dx

≤
∑
e∈E

ωe2

(∑
i: ei 6=e

4|ti − si|+ 2
∑
i:ei=e

|ti − si|

)
M

≤
∑
e∈E

ωe8pM‖t− s‖∞,

and thus C is Lipschitz-continuous.

3 A global optimization approach

A branch-and-bound algorithm is proposed to cope with this MINLP. As in
any branch-and-bound procedure, the two key elements are the branching
and the bounding strategies, which are discussed in Sections 3.1 and 3.2,
respectively. Firstly, we define the splitting rules, which take advantage of the
structure of the problem, by taking into account that the variables indicating
the number of facilities per edge should be strongly correlated: if facilities
are located at a given edge, it is unlikely that more facilities are located
in neighboring edges, leaving big clusters of edges uncovered. Bounding
strategies for such subdivision elements will then be built. Other important
algorithmic issues of our proposal, such as the selection, elimination and
termination rules, are outlined in Section 3.3.

3.1 Division rule

One first and naive approach is to decide first how many facilities are located
within each edge, and then, once these variables are fixed, one solves, by
means of a standard branch-and-bound algorithm on networks, e.g. [6, 7], the
nonlinear optimization problem of deciding where to locate them. However,
full inspection of all p-tuples of edges will be doable only for very small
networks. For this reason, our approach is to facilitate branching on the
combinatorial and the continuous part at the same time.
In order to avoid the enumeration of every possible combination of p edges,
we propose to construct clusters of (sub)edges. Instead of associating with
each edge an integer variable indicating the number of facilities to be located
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in such edge, the integer variables will be associated with the clusters of
(sub)edges, called hereafter edgesets, and the tuple of edgesets will be called
superset.
To be precise, an edgeset is a finite collection of (sub)edges of E; a superset
S is any tuple of the form (E1, p1;E2, p2; . . . , Ek, pk), where E1, E2, . . . , Ek

are disjoint edgesets and p1, . . . , pk are strictly positive integer numbers with

k∑
j=1

pj = p,

indicating, for each j = 1, . . . , k, that exactly pj facilities are to be located
within the points in Ej.

Example 3.1. Consider the network depicted in Figure 1, with all lengths
equal to 1, uniform demand on each edge, weights ωe given by

ω12 = 2
ω14 = 1
ω23 = 1
ω34 = 1
ω45 = 2
ω46 = 1
ω56 = 1
ω67 = 1,

(15)

and suppose p = 3 facilities are to be located for a covering radius R = 1/4.
The partition of E in the three edgesets E1, E2, E3,

E1 = {(1, 2), (1, 4), (2, 3), (3, 4), (4, 6)}
E2 = {(6, 7)}
E3 = {(4, 5), (5, 6)}

(16)

induces, among others, the superset S

S = (E1, 2;E2, 1), (17)

which corresponds to the decision of locating two facilities in the edges of E1

and one facility in the edges of E2.

Supersets will correspond to nodes in the branch-and-bound tree. We discuss
in what follows our proposal to build the starting nodes, and the way to
sequentially subdivide the supersets.
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Figure 1: Example of a network

3.1.1 Initial supersets

The root node of our branch-and-bound tree is the superset S0 = (E, p). S0

is subdivided by using a given partition E1, E2, . . . , Ek of E : we add to the
branch-and-bound tree list

(
p+k−1

p

)
supersets of the form (Ei1 , p1; . . . ;Eil , pl),

where {i1, ..., il} ⊆ {1, ..., k} and p1 + . . . + pl = p. Observe that, although
such starting list will have a cardinality exponentially increasing in p, the
difficulty of the MINLP under study only allows us to handle problems with
a low value of p. Hence, the cardinality of the starting list will not grow
much.
A critical issue is how the edges of the network, conforming the initial super-
set S0, are split into edgesets in such a way that the so-obtained subdivision
fits with the actual distribution of facilities at the optimal solution of the
problem. To do this, we build from the network a discrete (MCLP) as fol-
lows: we consider a discrete covering problem in which we have, as possible
locations, the edges of the network, we have as users also the edges e of the
network, with demand ωe, and we define the distance d∗(e, f) between user
e and edge f as the smallest distance between the points in e and f. Then,
we consider a user e covered if d∗(e, f) ≤ R for some edge f. Hence, we
count an edge e as fully covered (and thus, the weight ωe is taken) as soon as
some point in some f is at distance not greater than R from some point in e.
Once this discrete (MCLP) is solved, and f ∗1 , . . . , f

∗
p is an optimal solution,

we build the edgesets E1, . . . , Ep so that Ej contains the edges e for which
f ∗j is the closest facility.
Let us illustrate this procedure with the data of Example 3.1 for p = 2. The
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distance matrix d∗ is then given by

(1, 2) (1, 4) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6) (6, 7)
(1, 2) 0 0 0 1 1 1 2 2
(1, 4) 0 0 1 0 0 0 1 1
(2, 3) 0 1 0 0 1 1 2 2
(3, 4) 1 0 0 0 0 0 1 1
(4, 5) 1 0 1 0 0 0 0 1
(4, 6) 1 0 1 0 0 0 0 0
(5, 6) 2 1 2 1 0 0 0 0
(6, 7) 2 1 2 1 1 0 0 0

Solving such (MCLP) yields as an optimal solution the edges f ∗1 = (1, 2) and
f ∗2 = (4, 6), and, starting from them, the edgesets

E1 = {(1, 2), (1, 4), (2, 3)}
E2 = {(3, 4), (4, 5), (4, 6), (5, 6), (6, 7)},

where, in case of ties in d∗, edges have been allocated randomly. With such
definition of E1, E2, three supersets are obtained as split of the starting su-
perset S0, namely (E1, 2), (E1, 1;E2, 1), (E2, 2), represented in Figure 2.

3.1.2 Subdivision of a superset

In order to guarantee convergence of the branch-and-bound algorithm, ele-
ments in the list should become arbitrarily small. Let us define the diameter
λ(E∗) of an edgeset E∗ as the sum of the lengths of the (sub)edges in E∗, and
define the diameter λ(S) of a superset S as the highest length of its edgesets
with assigned facilities,

λ(E1, p1;E2, p2; . . . ;Ek, pk) = max
j
λ(Ej).

Reduction of the diameters of the supersets in the list guides our subdivision
strategy. Superset S = (E1, p1;E2, p2; . . . ;Ek, pk) is subdivided as follows:
first, the edgeset Ej∗ with highest diameter is found,

λ(E1, p1;E2, p2; . . . ;Ek, pk) = λ(Ej∗).

Then, the edgeset Ej∗ is split into two subsets by identifying two “central”
edges, and then clustering the edges around such edges. The process, similar
to the one described in Section 3.1.1 for splitting the initial set, is based
on the construction of an auxiliary (MCLP): a 2-facility discrete covering
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Figure 2: Splitting the starting superset

problem is considered, in which we have, as possible locations, the edges of
the edgeset Ej∗ , we have as users the edges e of the network, with demand
ωe, and we define the distance d∗(e, f) between user e and edge f as the
smallest distance between the points in e and f. Then, we consider a user e
covered if d∗(e, f) ≤ R for some edge f. Once this discrete (MCLP) is solved
and an optimal solution f+, f− is obtained, we build the sets E+

j∗ and E−j∗ so
that E+

j∗ contains the edges e ∈ Ej∗ for which f+ is the closest facility.
Given the splitting of Ej∗ into E+

j∗ and E−j∗ , the superset S is subdivided into
pj∗ + 1 supersets, by assigning respectively i and pj∗ − i facilities to E+

j∗ and
E−j∗ , i = 0, 1, . . . , pj∗ .
By construction, one immediately has

Property 3.1. The given subdivision of the supersets is exhaustive, that is,
for an infinite nested series of supersets {Sq}∞q=0, λ(Sq)→ 0 as q →∞.
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3.2 Bounding Rules

As in any branch-and-bound algorithm, procedures for giving lower and up-
per bounds are needed here. Lower bounds on the objective C of (3) are
obtained by evaluating C at heuristic solutions, built as the midpoints of p
(sub)edges in the superset under evaluation. Different strategies for obtain-
ing upper bounds are described in Sections 3.2.1–3.2.3.

3.2.1 Shadow Bound

An easy way to obtain an upper bound for C on the superset S is to consider
as covered all points in S as well as those at distance at most R of some
point in S. In other words, a bound is obtained if one considers as covered
the points both in S and the “shadow” of S, i.e., those points at distance
R from points in S. Formally, the Shadow Bound, CSB(S), for C on the
superset S = (E1, p1; . . . , Ek, pk) is calculated as

CSB(S) :=
∑
e∈E

ωe

∫ le

0

δSBe (x;S)fe(x) dx, (18)

where δSBe (x;S) takes the value 1 when x is at distance at most R of some
y ∈ Ej and takes the value 0 otherwise.
For instance, for the data of Example 3.1 and the superset S in (17), we have

δSBe (x;S) = 1 ∀x ∈ [0, 1], ∀e ∈ E1 ∪ E2

δSB(4,5)(x;S) =

{
1, if x ∈ [0, 1/4]
0, else

δSB(5,6)(x;S) =

{
1, if x ∈ [3/4, 1]
0, else

Then, given the weights in (15), one obtains

CSB(S) = 6 + 2
1

4
+

1

4
=

27

4
.

By construction, the Shadow Bound has the important property of mono-
tonicity, in the sense that, if S = (E1, p1; . . . , Ek, pk) and S ′ = (E ′1, p1; . . . , E

′
k, pk)

are supersets satisfying Ei ⊇ E ′i for all i, then

CSB(S) ≥ CSB(S ′). (19)
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Moreover, using the same arguments than in the proof of Property 2.1, if
{(sq1, 1; . . . , sqp, 1)}q is a sequence of supersets, where each sj is a subedge

of an edge ej converging to some point tj, then CSB((s1, 1; . . . , sp, 1)) =
C(t1, . . . , tp). Hence, the bounds go arbitrarily sharp when the length of the
supersets goes to zero. Consequently, having an exhaustive division rule and
a convergent bounding rule, a branch-and-bound method using this bound
is convergent.

3.2.2 MCLP Bound

The upper bound CMCLP is obtained by solving a variant of a discrete
(MCLP) as (1): we consider a discrete covering problem in which we have,
as possible locations, the (sub)edges of the edgesets of the superset S =
(E1, p1; . . . ;Ek, pk), we have as users the edges e of the network, with de-
mand ωe, and we define the distance d∗(e, f) between user e and (sub)edge
f as the smallest distance between the points in e and f. Then, we consider
a user e covered if d∗(e, f) ≤ R for some (sub)edge f of some edgeset Ej.
Hence, we count an edge e as fully covered (and thus, the weight ωe is taken)
as soon as some point in some f is at distance not greater than R from some
point in e. Moreover, since the number pj of facilities within each edgeset Ej

is given, we impose at most pj different edges in Ej are to be chosen.
By construction, the optimal value of such discrete covering problem is a
valid upper bound of C on S :

max
∑
e∈E

ωeze

s.t. ze ≤
∑

f∈∪jEj

aefyf ∀e ∈ E∑
f∈Ei

yf ≤ pi, i = 1, 2, . . . , k

yf ∈ {0, 1} ∀f ∈ ∪jEj

ze ∈ {0, 1} ∀e ∈ E,

(20)

where aef is the scalar taking the value 1 if f ∈ Ej for some j with d∗(e, f) ≤
R, and taking the value 0 otherwise.
Contrary to what happens with the Shadow Bound CSB, this bound may not
be sharp enough in small supersets, since, if any point of an edge is covered,
then all the demand of that edge is considered as covered. For this reason,
the bounding approach is not convergent.
This bound can easily be sharpened by observing that, by construction, for
an edge e, if at least one point in some f in some Ej is at distance not greater

14



than R, we are considering in (20) all the demand of the edge e covered, whilst
a smaller amount, ω∗e ,

ω∗e = ωe

∫ le

0

δSBe (x, S)fe(x) dx (21)

can be captured. Here, δSBe (x, S), as defined in the Shadow Bound (18),
takes the value 1 when x is at distance at most R of some x ∈ Ej and takes
the value 0 otherwise.
In this paper we call MCLP bound CMCLP as the optimal value of problem
(20) after replacing in the objective the weights ωe by the weights ω∗e in (21).
Observe that the MCLP bound is, by construction, monotonic. Moreover,
when each edgeset is part of one edge, the bound obtained is exactly the
Shadow Bound, and thus it will enjoy the same convergence properties as
the Shadow Bound. Note also that, since an upper bound is needed, a (more
crude but less expensive) upper bound is obtained if, instead of the IP (20),
its LP relaxation is solved.

3.2.3 Mixed Bound

The upper bounds CSB and CMCLP above described usually work well if
the covering areas have big overlapping parts. When, on the contrary, the
areas covered are almost disjoint, the problem could be split into a series
of (almost) independent single-facility problems, successfully yielding sharp
bounds.
More precisely, for S = (E1, p1; . . . ;Ek, pk), we can combine the Shadow
Bound CSB(Ej, 1) on Ej with any upper bound C1(Ej) for the problem of
locating one facility at some point in Ej. This way, the so-called Mixed Bound
CMB(S) is defined as

CMB(S) =
k∑

j=1

min
{
pjC1(Ej), CSB(Ej, 1)

}
,

where CSB(Ej, 1) is the Shadow Bound on Ej. So the problem is reduced
to obtaining an upper bound for the single-facility problem with the edgeset
Ej as set of candidate points. If Fj is a collection of small subedges of the
network with

Ej ⊆
⋃
f∈Fj

f,

then one can take as upper bound C1(Ej) the maximum of the Shadow
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Bounds for locating one facility on f , when f varies in the class Fj,

C1(Ej) = max
f∈Fj

CSB((f, 1)),

yielding

CMB(S) =
k∑

j=1

min

{
pj max

f∈Fj

CSB((f, 1)), CSB(Ej, 1)

}
.

As an illustration consider the network in Example 3.1 and the superset S
in (17). If, for each edgeset Ej, we define the split Fj as the edges of the
network in Ej, we have:

C1(E1) = max{CSB((1, 2), 1), CSB((1, 4), 1), CSB((2, 3), 1), CSB((3, 4), 1)}
= max{10/4, 9/4, 7/4, 8/4} = 10/4

CSB(E1, 1) = 7
C1(E2) = 5/4
CSB(E2, 1) = 3/2
CMB(S) = 2 · 10/4 + 5/4 = 25/4.

Note that, by construction, the Mixed Bound CMB is monotonic. However,
since it calculates separately the covering of each edgeset Ej, in case of over-
lapping in the areas covered, such points are counted more than once. Hence,
the bound is not necessarily convergent.

3.3 Further algorithmic issues

In order to have a functional method, some other rules are necessary, although
these are some of the usual rules.

Selection Rule: The next superset to be evaluated is the one with the
highest upper bound on the list.

Elimination Rule: Whenever a superset S is such that C(S) < LB, any
possible location of the facilities in the edgesets of S would lead to a worse
covering that the best solution we have so far, therefore the set S can be
omitted from further consideration.

Termination Rule: When the relative error of the largest upper bound and
the best found solution is less then the tolerance ε, the algorithm stops. The
supersets remaining on the list contain the global optimum, and the best
solution found so far is reported.
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4 Computational Results

Our branch and bound was implemented in Fortran 90 (Intel c©Fortran Com-
piler XE 12.0), using the integration tools of the IMSL Fortran Numerical
Library and calling the MIP solver of Cplex 12.5. Executions were carried
out on an Intel Core i7 computer with 8.00 Gb of RAM memory at 2.8 GHz,
running Windows 7.
Two types of experiments were performed. First, a series of networks of
medium size, obtained e.g. from [6, 19], were solved for a small number p
of facilities: p = 2, 3, 4. In order to analyze the impact of p on the running
times, we have tested our method on a small network, the Sioux-Falls, taken
from [24].

Let us describe now the first experiment class. Problems on 7 test networks
obtained are solved. The number of nodes of these networks ranges from 150
to 225, and the number of edges from 296 to 386. Demand parameters are
randomly generated: the overall demand ωe of an edge e is assumed to follow
a uniform distribution in [0, le], and the demand along each edge is assumed to
follow a beta distribution with parameters randomly generated in the interval
[0.1, 5], which provides a wide range of density functions with very different
shapes. We stress that we have chosen the beta distribution just because the
beta class is versatile enough and it requires numerical integration routines
for evaluation, so the usefulness of the method is demonstrated in a difficult
case. However, arbitrary densities could have been used instead.
On each network, the problem is solved for p facilities, p = 2, 3, 4, and three
different radii R, a small, a medium and a large one with respect to the
diameter of the networks.
The stopping criterion is set to the relative gap of 10−3 for all problems.

In order to see the efficiency of the bounding rules, different settings, using
the different bounding schemes proposed in the paper, were compared. In all
cases, the Shadow Bound CSB was calculated to guarantee convergence of
the branch-and-bound algorithm, and, if needed, to compute the coefficients
ω∗e in the MCLP bound CMCLP . The following strategies were tested:

SB: Just the Shadow Bound is calculated.

MCLP: In addition to the Shadow Bound (needed to calculate ω∗e), the
MCLP bound is also calculated.

MB: Both the Shadow Bound and the Mixed Bound are calculated.

ALL: All three bounds, namely the Shadow Bound, the MCLP and the
Mixed Bound, are calculated.
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Smart: Heuristic bound rule, where, for every third level in the division
tree at each superset, all the bounding rules are calculated. The most
efficient rule is stored for each superset, where efficiency is measured
by means of a merit function which combines sharpness of the bounds
and computational time: i is the most efficient bound if for any bound

j it holds that 2RUB−1RT > 1, where RUB =
Cj−f̃
Ci−f̃

is the ratio of

overestimations, and RT =
Tj

Ti
is the ratio of computational time for

bounds j and i; otherwise the second best bound is chosen.

Once the most efficient bound is identified, only such bound is calcu-
lated for their descendants in the next two levels.

In Tables 1-3, running times in seconds of the different bounding approaches
are presented for the different values of p and R. In the tables results are
grouped by the radius, and average values are also shown. For the instances
which did not terminate in 5 hours (18000 sec), the achieved relative gap is
reported. The best approach for each problem is highlighted.

In Table 1 the results for p = 2 are shown. One can see clearly the not
surprising differences from one approach to the other with respect to the
radius. Namely, while for the SB and MCLP approaches running time is
decreasing as R is increasing, for MB is just the opposite. The balance of
forces is already clear: although SB and MCLP are good for large radius,
MB is necessary for small and medium R. Our Smart rule is shown to be
the best for small and medium radii, while for large R almost always SB was
the most efficient.
In Table 2 the running times and achieved gaps are shown for p = 3. For
the SB and MCLP approaches, most problems with small radius are in-
tractable, since the gap after 5 hours of running time is still over 15-25% on
average. With the exponential growth of possibilities for the solution, the
MB approach gets more useful. This happens because the evaluation of the
Mixed Bound is expensive rather at the beginning of the algorithm, when
the maximal bound for each edge is calculated, but it takes almost no time
until bounds on small segments have to be evaluated. While from the pure
bounding rules MB is almost always the best, the Smart approach still has
a slightly better performance.
In Table 3 results for p = 4 are shown for only the MB, ALL, and Smart
approaches, since SB and MCLP can solve only the PR152G problem with
large R. Although the Smart approach is still the best one on average, we can
see that the average time is very similar for the different approaches. This
is due to the fact that many problems were stopped after 5 hours, making
averages similar (and high).
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Table 1: Running times (p = 2).

Graph R SB MCLP MB ALL Smart

KROA150G

sm
al

l

286.4 271.2 34.8 37.2 30.7
KROA200G 413.8 373.7 36.1 38.5 33.4
KROB150G 833.4 847.3 67.3 69.5 54.2
KROB200G 789.0 770.5 53.2 56.7 45.7
PR152G 171.5 182.6 20.8 21.6 19.3
RAT195G 2021.5 2000.9 37.8 40.0 31.9
TS225G 301.4 293.3 14.6 16.9 14.1

Average 688.1 677.1 37.8 40.1 32.8

KROA150G

m
ed

iu
m

384.9 378.5 45.7 47.1 38.6
KROA200G 269.2 258.9 92.2 98.7 86.3
KROB150G 287.0 282.0 34.2 37.8 31.2
KROB200G 538.5 544.7 190.2 202.2 181.3
PR152G 12.3 16.8 6.1 6.5 6.0
RAT195G 716.6 696.4 112.8 116.5 91.2
TS225G 242.8 178.4 29.3 32.7 25.6

Average 350.2 336.5 72.9 77.4 65.7

KROA150G

la
rg

e

2.3 3.4 21.0 22.0 21.7
KROA200G 607.0 622.2 669.2 694.1 677.9
KROB150G 32.2 36.6 55.0 61.0 55.2
KROB200G 2.2 3.8 25.1 26.8 25.0
PR152G 15.7 20.3 9.8 12.1 11.0
RAT195G 2.8 6.4 22.7 26.6 24.4
TS225G 44.9 50.1 65.1 71.3 62.7

Average 101.0 106.1 124.0 130.6 125.4

Average – 379.8 373.2 78.2 82.7 74.6

Let us discuss now the second experiment. In order to see how the results
change as p grows, the Smart bounding rule was used for a very small (24
nodes and 39 edges) network, namely, the Sioux-Falls network, [24].
In Table 4 computational times are given for p = 2, . . . , 7, and, as in the first
type of experiments, three different radii. For the large radius, when p = 6, 7
more than 100, 000 supersets needed to be stored in the list; this was the
maximum allowed in the program, so the reached gap was also reported in
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Table 2: Running times and gaps (p = 3).

Graph R SB MCLP MB ALL Smart
name T(s) Gap T(s) Gap T(s) T(s) T(s)

KROA150G

sm
al

l

– 0.254 – 0.218 337.8 355.0 285.0
KROA200G – 0.149 – 0.098 243.3 252.3 181.7
KROB150G – 0.276 – 0.206 156.1 164.1 124.2
KROB200G – 0.209 – 0.142 453.1 446.7 363.0
PR152G 15770.3 – 16863.6 – 37.2 43.9 31.3
RAT195G – 0.633 – 0.451 93.1 112.2 72.6
TS225G – 0.103 – 0.086 167.5 183.4 121.7

Average 17681.5 0.232 17837.7 0.172 212.6 222.5 168.5

KROA150G

m
ed

iu
m

12146.4 – 11096.7 – 269.8 298.9 238.5
KROA200G 4410.2 – 3992.2 – 111.8 120.4 99.0
KROB150G – 0.001 16591.4 – 632.8 652.6 477.1
KROB200G 6332.9 – 4678.2 – 198.6 196.0 144.7
PR152G 1009.3 – 1103.3 – 25.1 27.8 24.3
RAT195G – 0.101 – 0.071 3804.5 3794.3 3329.6
TS225G – 0.038 – 0.005 210.6 241.5 182.6

Average 11128.4 0.021 10494.5 0.012 750.5 761.6 642.3

KROA150G

la
rg

e

3072.0 – 3178.4 – 2987.0 3035.1 2978.9
KROA200G 4481.7 – 4675.3 – 3155.2 3277.2 3158.3
KROB150G 1993.0 – 1960.2 – 752.8 770.4 700.6
KROB200G 270.7 – 284.9 – 282.8 304.7 277.7
PR152G 77.2 – 106.2 – 17.0 22.0 18.2
RAT195G 150.4 – 169.3 – 181.9 201.6 182.7
TS225G 2686.5 – 1951.6 – 1872.5 1525.7 1574.3

Average 1818.8 0.001 1760.8 0.001 1321.3 1305.2 1270.1

Average – 10209.6 0.085 10031.0 0.061 761.5 763.1 693.6

these cases.
Observe that for the small and large radii, an explosion in running times
happens from p = 5 to p = 6, whereas for the medium radius it is rather
from p = 4 to p = 5. It is also interesting to see that the difficulty can be very
different from problem to problem, as for small radius and p = 7 facilities,
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Table 3: Running times and gaps (p = 4).

Graph R MB ALL Smart
name T(s) Gap T(s) Gap T(s) Gap

KROA150G
sm

al
l

– 0.003 – 0.003 – 0.003
KROA200G 2612.6 – 2792.8 – 2068.5 –
KROB150G 4367.5 – 4867.2 – 3658.3 –
KROB200G – 0.019 – 0.020 – 0.014
PR152G 225.5 – 261.5 – 171.8 –
RAT195G 1862.2 – 2105.0 – 1423.3 –
TS225G 435.7 – 535.6 – 357.2 –

Average 6500.5 0.004 6651.7 0.004 6239.9 0.003

KROA150G

m
ed

iu
m

2428.6 – 2573.0 – 1875.6 –
KROA200G 846.8 – 881.9 – 736.5 –
KROB150G 5619.4 – 5771.9 – 4694.6 –
KROB200G 4403.2 – 4581.3 – 3406.7 –
PR152G 9976.9 – 10681.3 – 8892.0 –
RAT195G – 0.049 – 0.049 – 0.047
TS225G 432.0 – 749.1 – 405.9 –

Average 5958.1 0.008 6176.9 0.008 5430.2 0.008

KROA150G

la
rg

e

– 0.044 – 0.041 – 0.042
KROA200G – 0.013 – 0.013 – 0.013
KROB150G – 0.004 – 0.005 – 0.004
KROB200G – 0.048 – 0.042 – 0.042
PR152G 16.1 – 21.5 – 17.9 –
RAT195G – 0.049 – 0.044 – 0.045
TS225G – 0.002 10603.9 – 10914.5 –

Average 15430.9 0.023 14375.1 0.021 14418.9 0.021

Average – 9296.5 0.012 9067.9 0.011 8696.3 0.011

it can be solved faster than the same problem with 6 facilities. This may be
due to the number of local optima which are close to the global optima, or
due to the flatness of the objective function near the global optimizer. Even
though more extensive testing needs to be performed to fully understand the
dependence of running times of the covering problems with respect to all the
parameters involved, it is clear from our tests that the running times increase
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Table 4: Running times and gaps for the Sioux-Falls network.

R p = 2 p = 3 p = 4 p = 5 p = 6 p = 7
T(s) T(s) T(s) T(s) T(s) Gap T(s) Gap

small 3.0 5.4 20.7 91.4 10652.8 – 6487.5 –
medium 10.2 29.2 257.7 6123.1 38222.6 – 58451.4 –
large 9.8 147.7 1256.5 1493.6 49633.6 0.0012 46297.7 0.14

exponentially when p increases.

5 Conclusions

In this paper we have studied a covering location problem on networks which,
contrary to those already in the literature, assumes the demand distributed
along the edges of the network, which is a more realistic assumption for
problems with networks representing high-density regions, such as cities. The
problem is a challenging MINLP, in which combinatorial decisions (which
edges of the network are to be selected to contain facilities) are coupled with
continuous decisions (where to locate the facilities once the edges are chosen).
A branch-and-bound algorithm has been developed for this MINLP. While
some ingredients of such branch and bound are standard, the branching pro-
cedure is rather specific, since it successfully exploits the fact that the loca-
tional decisions are taken on a network. Different bounding rules are pro-
posed and tested on different networks; it is shown that the so-called Smart
strategy, which through a learning process, is identifying for each branch-and-
bound node the most promising branching strategy, is the most promising in
terms of running times.
For the resolution of the problem, we have also considered a special type
of superset, where no information about the number of facilities in each
edgeset is stored. For these supersets similar bounding rules can be derived,
although in some cases giving looser bounds. The advantage of this data
structure is that it reduces the exponential growth of the number of supersets
as p increases, but for the number of facilities in the experiments we have
performed the results were very similar. However it may give better results
for higher number of facilities, and thus we believe this alternative approach
deserves further analysis and testing.

Several extensions of the problem are possible, and in most cases the bound-
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ing strategies proposed in this paper could be adapted to such extensions.
To mention a few, the most straightforward extension would be the addi-
tion of capacity constraints to the covering model, as proposed e.g. in [32].
On the other hand, we have assumed the demand along each edge to follow
an absolutely continuous random variable. The more general case in which
the demand is expressed as a mixture of an absolutely continuous random
variable and a discrete variable with finite support can be handled in the
same way, by splitting the edges at the preprocessing step into subedges in
such a way that the cover of points with positive mass is constant along each
subedge.
A third line of extensions would consist of including congestion effects, as
proposed for (standard) covering models e.g. in [12, 25]. This calls also for
the re-definition of the objective, since, in this case, the potential users caus-
ing the congestion are not identified by a finite set. The fourth and most
challenging extension consists of incorporating in the covering problem com-
petition issues, [17, 20, 34, 35]: in a leader-follower problem, the location of
the follower is a covering problem, similar to the one described here; solving
the leader problem is a much harder problem than the one addressed here,
since one has to solve a bilevel problem in which the follower strategy is the
one described in this paper. This, as well as the other extensions, deserve
further study, not only by its implications in location analysis (more realistic
models for dense demand are considered) but also from the Global Opti-
mization viewpoint, since new, challenging MINLPs are addressed with new
branch-and-bound procedures.
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