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Abstract

A new customer choice rule, which may model in some cases the actual
patronising behaviour of customers towards the facilities closer to reality
than other existing rules, is proposed. According to the new rule, customers
split their demand among the firms in the market by patronising only one
facility from each firm, the one with the highest utility, and the demand is
split among those facilities proportionally to their attraction. The influence
of the choice rule in the location of facilities is investigated. In particular, a
new continuous competitive single-facility location and design problem using
this new rule is proposed. Both exact and heuristic methods are proposed
to solve it. A comparison with the classical proportional (or Huff) choice
rule when solving the location model reveals that both the location and the
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quality of the new facility to be located may be quite different depending on
the patronising behaviour of customers. Most importantly, the profit that
the locating chain may lose if a wrong choice is made can be quite high in
some instances.

Keywords: Facility location, patronising behaviour, competition, global
optimization, computational study

1. Introduction and notation

The estimation of the market share that can be captured by a facility
in a competitive environment where there exist other facilities offering the
same product is a topic of major concern for managers, as the survival of
a facility depends on the revenues it can obtain, and those revenues largely
depend on the market share. Where to locate a facility is a strategic decision
which cannot be easily altered as the location of a facility usually requires
a massive investment. But how do we choose the right location for a new
facility?

Competitive location problems concerning optimally placing facilities in a
competitive environment have been widely developed for a number of contex-
tual applications in the traditional retail sector, see for instance the survey
papers of ?? and ? and the references therein. They vary in the ingredients
which form the model. For instance, the location space may be the plane,
a network or a discrete set. We may want to locate just one or more than
one new facility. The competition may be static, which means that the com-
petitors are already in the market and the owner of the new facility knows
their characteristics, or with foresight, in which the competitors are not in
the market yet but they will be soon after the new facility enters. Demand
is usually supposed to be concentrated in a discrete set of points, called de-
mand points, and it can be either inelastic or elastic, depending on whether
the goods are essential or inessential.

It is also necessary to specify what the attraction (or utility) function of a
customer towards a given facility is. Usually, the attraction function depends
on the distance between the customer and the facility, as well as on other
characteristics of the facility which determine its quality.

The patronising behaviour of the customers must also be taken into ac-
count, since the market share captured by the facilities depends on it. This
is the topic this paper is devoted to. For instance, it is not uncommon
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to see in the literature papers where consumers shop at the closest store
supplying a specific product or service. But, does this assumption reflect
consumer behaviour? It seems more realistic to admit that consumers do
not merely consider distance when choosing retail outlets. Also, consumers
may patronise more than one facility to satisfy their demand. Consumer
choice behaviour literature studies the key variables that a customer takes
into account to patronise one or another facility, and how these variables
interact.

A common classification of the consumer choice behaviour states that this
can be done in three groups (?):

• The first one includes models that rely on some “normative assump-
tion” regarding consumer travel behaviour. This hypothesis is too sim-
ple and is useful only in a limited number of applications. The classic
example is the so-called deterministic rule, which says that “consumers
patronise the nearest outlet that provides the required goods or ser-
vice”. This hypothesis has not found much empirical support, except
in areas where shopping opportunities are limited and transportation
is difficult.

• The second group uses information revealed by past behaviour to un-
derstand the dynamics of retail competition and how consumers choose
among alternative shopping opportunities. ? was the first one to use
the revealed preference approach to study retail store choice. The Huff
probability formulation, known as the probabilistic rule, uses distance
(or travel time) from consumer zones to retail centres and the size of
retail centres as inputs to find the probability of consumers shopping
at a given retail outlet.

• The third group of models estimates the consumer utility function from
simulated choice data using information integration, conjoint or logit
techniques. Instead of observing past choices, these methods use con-
sumer evaluations of hypothetical store descriptions to calibrate the
utility function. The best representative model of this group is the one
developed by ? based on game theory.

? have pointed out that firms prefer the revealed preference approach
to model consumer store-choice behaviour. This approach is preferred to
normative models since it more faithfully reflects real consumer behaviour,
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and to the direct utility approach because it is simpler since it uses surveys
and linear regression instead of conjoint, logit techniques or game theory. We
follow the revealed preference approach in this paper.

The two customer choice rules commonly used in literature are the fol-
lowing:

Deterministic (or binary) rule: it assumes that the full demand of a cus-
tomer is satisfied by only one centre, the one to which he/she is at-
tracted most, disregarding all other facilities which are less attractive,
even those whose difference in attraction is very small.

Probabilistic rule: it assumes that a customer splits his/her demand prob-
abilistically over all facilities in the market proportionally to his/her
attraction to each facility.

? was the first to propose the deterministic choice rule for a simple model
on a line. That is why competitive location models using this rule are also
referred to as Hotelling models. The first two papers that introduced location
models in a more general space assuming that customers patronize the closest
facility were ? in the plane and ? on a network.

?? described the gravity model suggested by ?, although he did not
investigate any location problem. The first paper that considered the location
problem based on the Huff rule was ?. Later on, ? and ? introduced the
design as an additional variable of the model, although an earlier version of
location and design was already introduced in ?.

The aim of this paper is twofold. First, we present a new choice rule,
named multi-deterministic choice rule, which may, in some cases, model the
patronising behaviour of customers closer to reality than other existing rules
in many practical applications. In particular, we introduce a new single-
facility location and design problem on the plane which considers this rule.
Second, we investigate up to what extent the selection of the choice rule
may affect the location decisions of a firm that wants to expand its presence
in a given geographical region by opening new facilities. In particular, we
will compare the outputs provided by models using the probabilistic and the
multi-deterministic rules on the same input data sets.

In the rest of the paper, in order to fix ideas, we assume the following
scenario (notice, however, that the main conclusion from the paper, i.e., that
the selection of the right customer choice rule is a critical issue for the location
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decisions of a firm that wants to set up new facilities, remains valid for other
competitive location models as well): A chain wants to locate a new single
facility in a given area of the plane, where there already exist other facilities
in the vicinity offering the same goods or product. Some of those facilities
may belong to the locating chain. The demand is supposed to be fixed and
concentrated at given demand points, whose locations and buying powers
are known, as well as the location and quality of the existing facilities. The
attraction of a demand point towards a facility is modelled multiplicatively
as quality divided by perceived distance. This generalizes the law of retail
gravitation of ?, who considered the perceived distance to be the squared
distance. Quality was first estimated as store surface by ?, and later several
other store characteristics were incorporated by ? and ?. For details see ?.

The objective is to maximize the profit obtained by the chain after the
location of the new facility, to be understood as the income due to the market
share captured by the chain minus its operational costs. Both the location
and the quality of the new facility are to be found.

In order to give a mathematical formulation of location models using the
different customer choice rules, the following notation will be used:

Indices
i index of demand points, i = 1, . . . , imax.
c index of competing chains, c = 1, . . . , cmax (chain c = 1 is the

locating chain).
j index of existing facilities, j = 1, . . . , jmax (we assume that from

j = j1min(= 1) to j1max the facilities belong to chain c = 1
(j1max < jmax); from j = j2min(= j1max + 1) to j2max belong to
chain c = 2,. . . , from j = jcmax

min (= jcmax−1
max + 1) to jcmax

max (= jmax)
to chain c = cmax).

Variables
x location of the new facility, x = (x1, x2).
α quality of the new facility.

Input data
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pi location of demand point i.
wi demand (or buying power) at pi, wi > 0.
fj location of existing facility j.
dij distance between demand point pi and facility fj, dij > 0.
αj quality of facility fj, αj > 0.
γi weight for the quality of the facilities as perceived by

demand point pi, γi > 0.
dmin
i minimum distance from pi at which the new facility can be

located, dmin
i > 0.

αmin minimum level of quality for the new facility, αmin > 0.
αmax maximum level of quality for the new facility, αmax ≥ αmin.
S region of the plane where the new facility can be located.

Miscellaneous
gi(·) a continuous non-negative non-decreasing function, which

modulates the decrease in attractiveness as a function of
distance.

di(x) distance between demand point pi and the new facility.
ui0(x, α) attraction that pi feels for the new facility; ui0(x, α)

= γiα/gi(di(x)).

Computed parameters

uij attraction that pi feels for fj (or utility of fj perceived by the
people at pi). In this paper, uij = γiαj/gi(dij).

uc
i maximum attraction that pi feels for any of the existing

facilities of chain c, uc
i = max{uij : j = jcmin, . . . , j

c
max}

Based on these assumptions, the market share captured by the chain when
a deterministic rule is used is

MD(x, α) =
∑

{i∈{1,...,imax}:max{u1
i ,ui0(x,α)}≥max{uc

i :c=2,...,cmax}}

wi.

In the previous formula we have assumed that, in case of ties in the attrac-
tion, customers choose the locating chain. Notice that in the deterministic
rule it is assumed that the attraction of the customers at pi towards a chain
is determined only by the facility to which they are attracted most. The rest
of the facilities do not play any role.

When a probabilistic rule is used, the market share captured by the chain
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is given by

MP (x, α) =
imax∑
i=1

wi

ui0(x, α) +
∑j1max

j=j1min
uij

ui0(x, α) +
∑jmax

j=1 uij

.

In the probabilistic rule the attraction of the customers at pi towards a chain
is determined by all the facilities belonging to the chain. As we can see, it
is assumed that the utility is additive: for instance, the utility for the first

chain is given by U1
i (x, α) = ui0(x, α) +

∑j1max

j=j1min
uij.

The problem to be solved is then
max Π(x, α) = Π(M(x, α), G(x, α))
s.t. di(x) ≥ dmin

i ∀i
α ∈ [αmin, αmax]
x ∈ S ⊂ R2

(1)

where M(x, α) stands for either MD(x, α) or MP (x, α), G(x, α) is a func-
tion which gives the operating cost of a facility located at x with quality α,
and Π(x, α) is the profit obtained by the chain. This profit depends on x
and α through the functions M(x, α) and G(x, α), with Π(M,G) increasing
and decreasing, respectively, in its two arguments M and G (see ?). In all
the computational studies done in this paper we have assumed, following
?, that Π(M,G) = F (M) − G, where F (·) is a strictly increasing function
which transforms the market share into expected sales. See ? for possible
expressions for F and G. Note that this profit disregards the operating costs
of the existing facilities of the own chain, since these are considered to be
constant. The parameters dmin

i > 0 and αmin > 0 are given thresholds, which
guarantee that the new facility is not located over a demand point and that
it has a minimum level of quality, respectively. The parameter αmax is the
maximum value that the quality of a facility may take in practice. By S we
denote the region of the plane where the new facility can be located. Dis-
tances are assumed to be computed with the help of a distance predicting
function induced by a norm (see ?). As for gi(d), it is usually considered to
be of the form gi(d) = dλ for some λ > 0 (see ???) or gi(d) = exp(κdτ ) for
some κ, τ > 0 (see ??). Notice that since dmin

i > 0, then gi(di(x)) is strictly
positive for any feasible location x.

In the following section, the multi-deterministic choice rule is introduced,
and the corresponding continuous competitive facility location and design
problem is also formulated for the same scenario. Different approaches
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to solve the problem are presented in Section 3. In particular, an exact
branch-and-bound algorithm, a multi-start strategy whose local optimizer is
a Weiszfeld-like algorithm, and an evolutionary algorithm will be discussed.
The exact B&B method will be used in Section 4 to research up to what
extent the use of a particular customer choice rule may affect the decision
about the optimal location of a new facility. Some computational studies
to investigate the effectiveness and efficiency of the methods are reported in
Section 5. The paper ends in Section 6 with some conclusions.

2. The multi-deterministic choice rule and the corresponding loca-
tion model

Although in some cases customers patronise facilities according to the
deterministic or the probabilistic choice rules (or at least, those rules pro-
vide good estimations of the market share captured by the facilities), there
are also other cases in which those choice rules do not represent customer
behaviour properly. In order to have a better estimation of the market share
captured by each facility or chain, new customer choice rules which model
customer behaviour closer to reality are needed. Consider, for instance, the
case of a customer who needs to do his/her weekly shopping. There are five
supermarkets around his/her home, two of them belonging to chain A, and
the other three to a different chain, B. Most likely, he/she will not do all
the weekly shopping in a single supermarket, as some products may not be
available there, or their price is lower in the supermarkets of the other chain.
However, he/she will not go to all the supermarkets either, as he/she will
find the same products, even with the same price, in all the supermarkets
belonging to the same chain. So, he/she will decide to go to one of the super-
markets in chain A and to one of the supermarkets in chain B. In particular,
the supermarket from each chain that he/she will choose will be the one for
which he/she is attracted most. And he/she will do his/her weekly shopping
in those two supermarkets not on a 50% basis: most likely, he/she will spend
more money in the supermarket for which he/she feels more attraction. The
multi-deterministic rule that we introduce next in this section tries to model
this behaviour.

Hakimi already proposed something like this back in 1990, see Section
10.4 in ?. He called it ‘partially binary rule’ (a name that we consider a
bit misleading). Following this idea, Serra and colleagues (??) presented
a discrete location model using the multi-deterministic rule, but in which
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the utility of a facility for a demand point was determined by the distance
between them only. The multi-deterministic rule has also been addressed
in networks in papers by Suárez-Vega and colleagues (??), where some dis-
cretization results are shown. However, to the extent of our knowledge, this
is the first paper to address the problem in a continuous setting, and we do
it using a general attraction function and including the quality as a third
variable to be determined in the problem.

As in the previous section, we consider the problem of locating a single
facility in the plane, with static competition and inelastic demand, where the
attraction function depends on both the location and the quality of the facili-
ties. These two last factors are the variables of the problem. The objective is
again to maximize the profit obtained by the chain, to be understood as the
income due to the market share captured by the chain minus its operational
costs. As before, several firms are present in the market, but now customers
split their demand among the firms by patronising only one facility from each
firm, the one with the highest utility, and the demand is split among those
facilities proportionally to their attraction.

The market share captured by the locating chain (chain c = 1) is

MM(x, α) =
imax∑
i=1

wi
max{ui0(x, α), u

1
i }

max{ui0(x, α), u1
i }+

∑cmax

c=2 uc
i

. (2)

As can be seen in the formula, it is assumed here that the attraction of
the customers at pi towards a chain is determined only by the facility of the
chain to which they are attracted most. The rest of the facilities of the chain
do not play any role. But unlike the deterministic rule, now all the chains
capture part of the demand at pi.

The market share captured by the new facility is

mM0(x, α) =
imax∑
i=1

wi
ũi0(x, α)

max{ui0(x, α), u1
i }+

∑cmax

c=2 uc
i

,

where

ũi0(x, α) =

{
ui0(x, α) if ui0(x, α) ≥ u1

i

0 otherwise

The corresponding continuous competitive facility location and design
problem is given by (1), where M(x, α) is given by (2). Figure 1 gives the
graph of the objective function on the location domain for a problem with
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setting (imax = 71, jmax = 5, c = 2, j1max = 2, j2max = 3) for a fixed value
of the variable α. Figure 2 is the corresponding contour graph in location
space. The white holes in the graphs correspond to the forbidden regions
around the demand points. As can be seen, this problem is a highly nonlinear
optimisation problem which requires global optimisation techniques to be
solved. Notice that when the number of facilities of each competing chain is
equal to one, and the locating chain is a newcomer, the model reduces to the
standard probabilistic model introduced in ?.

Figure 1: Objective function of an instance with setting (imax = 71, jmax = 5, c =
2, j1max = 2, j2max = 3) when α = 0.5.

Figure 2: Contour projected in the 2-dimensional location space of an instance with setting
(imax = 71, jmax = 5, c = 2, j1max = 2, j2max = 3) when α = 0.5.
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3. Solving the multi-deterministic location model

As stated above, problem (1) with the multi-deterministic choice rule
(2) (and also with the other rules) is very difficult to solve due to the non-
convexity of the objective function (see Fig. 1) and the non-convexity (maybe
even non-connectedness) of the feasible set. Hence, it requires global optimi-
sation techniques to be solved. Next, both exact and heuristic methods are
suggested to cope with it.

3.1. An exact interval branch-and-bound method

Branch-and-bound (B&B) algorithms are probably the most used exact
methods to cope with difficult problems. Their success relies on the goodness
of the bounds obtained through the process. Interval analysis tools can
be used both to compute bounds automatically and to discard suboptimal
regions. Essential reading, including useful references in this area, can be
found in the books by ?? and ?.

Interval B&B methods have been successfully applied to solve location
problems (see for instance ?? and the references therein). In particular, in ?
(see also ?) an exact interval branch-and-bound method (iB&B in what fol-
lows) was proposed and applied to solve the corresponding location problem
with probabilistic patronising behaviour of customers described in Section
1. The method produces a list of 3-dimensional intervals which contain any
global optimal solution. The same method can handle the multi-deterministic
model thanks to the use of the interval tools employed to compute the bounds.
However, only up to medium size instances can be solved with iB&B, as we
will see. One of the challenges in our problem is that the objective function
is given as a sum of functions which in turn are defined by maximum of
functions. To overcome this difficulty, we have employed a similar strategy
to the one used in ? for piece-wise functions.

3.2. A multi-start heuristic

A local-search method is proposed in ? (see also ?) for addressing the
problem with probabilistic patronising behaviour of customers. The algo-
rithm is a steepest descent type method which takes discrete steps along the
search directions and, usually, converges to a local optimum. In this method,
the derivatives of the objective function are equated to zero and the next it-
erate is obtained by implicitly solving these equations. In location literature
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these types of methods are known as Weiszfeld-like methods, in honour of E.
Weiszfeld, who first proposed that strategy (?).

When solving the probabilistic case, all the demand points are taken
into account as the new facility captures some demand from all of them. A
similar algorithm can be applied to the multi-deterministic case, but taking
into account only the demand points actually served by the new facility.

In order to detail the steps of the algorithm, we need to have specific
expressions for functions F and G. In what follows, for instance, we will
assume F to be linear, F (M(x, α)) = c · M(x, α), and G to be separable,
in the form G(x, α) = G1(x) + G2(α), where G1(x) =

∑imax

i=1 Φi(di(x)), with

Φi(di(x)) = wi/((di(x))
ϕi0 + ϕi1), ϕi0, ϕi1 > 0 and G2(α) = e

α
β0

+β1 − eβ1 , with
β0 > 0 and β1 given values. Other possible expressions can be found in ?.
Depending on the particular problem the most suitable functions should be
ascertained. We also need gi and di to be differentiable.

Consider in formula (2) only the demand points to be served by the new
facility. The market share that it captures is given by

m0(x, α) = mM0(x, α) =
∑

{i:ui0(x,α)≥u1
i }

wi
ui0(x, α)

ui0(x, α) +
∑cmax

c=2 uc
i

.

To develop a Weiszfeld-like algorithm, the function

π0(x, α) = F (m0(x, α))−
imax∑
i=1

Φi(di(x))−G2(α)

is used as a surrogate for the objective function Π. We use π0 instead of
Π because the function giving the market share captured by the chain (see
formula (2)) is not differentiable (it includes a maximum function), whereas
the market share captured by the new facility (see m0(x, α)) is differentiable
at any feasible point.

In the Appendix, the partial derivatives of π0 are equated to zero. From
(4), (6) and (7) a Weiszfeld-like algorithm similar to the one described in
? can be constructed. Notice that it is designed to improve the location
and quality of the new facility when π0 is considered as objective function.
But as we sill see, Π usually improves as π0 does (the computational studies
corroborate that this is usually the case).

Also notice that as the algorithm goes on, the demand points to be served
by the new facility may vary. This is taken into account as follows: when the
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Weiszfeld-like algorithm stops, we check whether the set of demand points
served by the facility has changed. If so, the algorithm is called again, but
considering the new set of demand points served by the facility. Otherwise,
the process stops.

Observe that this is just a local procedure. Thus, in order to have a
good chance of finding the optimal solution, one should apply the algorithm
repeatedly using different starting points, and then select the solution that
obtains the maximum profit. When generating the seed points to start the
procedure described above, only those points which serve at least one demand
point should be taken into account. This multi-start strategy will be one
of the procedures studied to solve problem (1). Next, we present another
heuristic procedure, UEGO, introduced in ?, to cope with the problem.

3.3. An evolutionary algorithm

In ? an evolutionary algorithm called UEGO was studied for solving the
corresponding model with probabilistic choice rule. It has also been applied
to other competitive location problems as well (??), as it is a general algo-
rithm able to solve many global optimisation problems. Only the local search
procedure used within UEGO needs to be adapted for each particular prob-
lem. UEGO has also been used in this paper to solve the new location model
introduced above, using the Weiszfeld-like algorithm developed in Subsection
3.2 as local search. Additionally, the parameters that control UEGO have to
be tuned to this new problem. They have been set to L = 10, RL = 0.03,
M = 400 and N = 2 · 106. The reader is referred to ?? for a more detailed
description of UEGO.

4. The influence of the choice rule on the location and costs

Since we have several ways of modelling the patronising behaviour of cus-
tomers, and hence, of estimating the market share captured by the facilities,
the following question arises: how much does the choice of a particular pa-
tronising behaviour affect the location decision of the new facility and the
profit obtained by it and by the whole locating chain?

We will study this point by solving some location problems with both the
probabilistic and the multi-deterministic choice rules. We will solve them
using the interval branch-and-bound algorithm iB&B described in Subsection
3.1 (see also Section 5 for details about the implementation), as the optimal
solution is required to have a fair comparison.
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Let us denote by ΠP (·) the objective function of location problem (1)
when the probabilistic choice rule is employed, by LP the list of solution
boxes provided by iB&B, and by (x∗

P , α
∗
P ) the best point found by iB&B

during the execution, and by ΠM(·), LM and (x∗
M , α∗

M) the corresponding
items when the multi-deterministic choice rule is employed.

We will compute the Euclidean distance between x∗
P and x∗

M , denoted
by distloc, and the difference between the qualities, distqual = |α∗

P − α∗
M |, to

measure the difference between the optimal solutions.
We will also compute the relative profit loss incurred when the proba-

bilistic choice rule is assumed in a problem where the multi-deterministic
rule should have been chosen,

loss(P |M) = 100 · (ΠM(x∗
M , α∗

M)− ΠM(x∗
P , α

∗
P ))/ΠM(x∗

M , α∗
M),

and the relative profit loss incurred when the multi-deterministic choice rule
is assumed in a problem where the probabilistic rule should have been chosen,

loss(M |P ) = 100 · (ΠP (x
∗
P , α

∗
P )− ΠP (x

∗
M , α∗

M))/ΠP (x
∗
P , α

∗
P ),

to measure the cost of choosing the wrong model for the chain as a whole.
Finally, in order to measure the cost of choosing the wrong model in the

profit increment because of the new facility, the relative profit lost due to the
new facility only when the probabilistic choice rule is assumed in a problem
where the multi-deterministic rule should have been chosen,

loss(P |M)0 = 100·(IncrΠM(x∗
M , α∗

M)−IncrΠM(x∗
P , α

∗
P ))/IncrΠM(x∗

M , α∗
M),

is computed, where IncrΠM(x∗
M , α∗

M) = ΠM(x∗
M , α∗

M) − ΠM(before) and
IncrΠM(x∗

P , α
∗
P ) = ΠM(x∗

P , α
∗
P ) − ΠM(before), and ΠM(before) stands for

the profit obtained by the chain before the location of the new facility. Anal-
ogously, loss(M |P )0 will be computed too.

4.1. A case study

First we will research a quasi-real example dealing with the location of a
shopping mall in an area around the city of Murcia, in south-eastern Spain.
A working radius of 25 km around Murcia was considered. 632558 people
live within the circle, distributed over imax = 71 population centres, with
population varying between 1138 and 178013 inhabitants. In this study we
have considered each population centre as a demand point, with buying power
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proportional to its total population (one unit of buying power per 17800
inhabitants). Their position and population can be seen in Figure 3: each
demand point is shown as a grey circle (or a black dot), whose radius is
proportional to the buying power. Note that here the grey circles also show
the forbidden regions. There are five shopping malls present in the area: two
from a first chain A (marked with a red •, and three from another chain B,
marked with a green×. Figure 3 shows the location of each mall. The feasible
set S was taken exactly as depicted in Figure 3, i.e. the smallest rectangle
containing all demand points. This is approximately a square centred in
Murcia and of sides close to 45 Km.

The coordinates of the population centres and the malls were obtained
with the geographical information system called VisualMap ?, and were
rescaled from coordinates ([200, 245], [243, 285]) to an approximate standard
square ([0, 10], [0, 10]). Thus, the units correspond approximately to 4.5 Km.
The minimum distance dmin

i at which the new facility must be from the popu-
lation centre i was chosen to be wi/30. The qualities of the existing facilities
lie in the interval [0.4, 4] and for the new facility in the interval [0.5, 5]. And
the parameter γi modulating the quality of the facilities as perceived by the
demand point pi in the interval [0.75, 1.25]. For more details about the data
set, the interested reader is referred to ?.

The basic data described above have been used to define several different
competitive market structures:

Scenario ‘newcomer 1’: cmax = 2 (number of chains), and the number
of existing facilities belonging to each chain is 0 and 5, respectively.
Notice that in this case the locating chain (chain c = 1) has no existing
facilities and all the existing facilities are assumed to belong to the
same chain.

Scenario ‘newcomer 2’: cmax = 3 , and the number of existing facilities
belonging to each chain is 0, 3 and 2, respectively. Again, in this case,
the locating chain has no existing facilities, so it is a new entering firm.
But now the existing facilities are assumed to belong to two different
chains.

Scenario ‘small chain A’: cmax = 2, and the number of existing facilities
belonging to each chain is 2 and 3, respectively. The locating chain is
the small one, chain A.
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Figure 3: Case study: scenario large chain B.

Scenario ‘large chain B’: cmax = 2, and the number of existing facilities
belonging to each chain is 3 and 2, respectively. The locating chain is
the greater one, chain B.

The results obtained are shown in Table 1. As we can see, for the
second and third scenarios the differences are rather slight. However, in
the ‘newcomer 1’ scenario, the relative profit loss incurred when the multi-
deterministic choice rule is assumed instead of the probabilistic rule is more
than 6%.
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For the ‘large chain B’ scenario the differences are much higher. The
relative profit loss incurred for the chain when the probabilistic choice rule
is assumed instead of the multi-deterministic rule is more than 10%. This
is a rather high loss, especially taking into account that the locating chain,
chain B, is dominant in the market, and after the location will have four
facilities, against the two facilities of the competitor. But the loss for the
new facility is much higher, more than 400%, which clearly shows that the
location chosen for the new facility in that case is completely wrong. If the
patronising behaviour of customers was probabilistic, then the corresponding
relative profit loss incurred for the chain and for the facility will be 1.13%
and 23.51%, respectively. As we can see, although the loss for the chain as a
whole is not that big, the loss for the new facility is rather high, too.

In Figure 3 we can see a picture of this last scenario projected onto the
2-dimensional locational space. When the probabilistic choice rule is used,
the boxes of the solution list LP , marked in dark blue in the picture, are
around the city of Murcia, the big grey circle where most of the inhabitants
of the region live. Even though the chain already has a facility in the South-
East of the city, it is still more advantageous for the chain to locate the new
facility there, either close to one of the existing facilities of the competitor
or opposite it, and also from the second facility of the competitor chain.
However, when the multi-deterministic choice rule is used, those areas are
no longer an optimal solution, as the existing facility of the chain already
captures a large part of the demand from Murcia. Locating the new facility
close to Murcia will not increase the captured demand too much (most of
the demand that the new facility will capture will be stolen from its own
existing facility, an effect known as cannibalisation). That is why the optimal
solution in this case is to locate the new facility in the surroundings of the
fourth most populated city of the region, where the locating chain does not
have any facility yet. The area covered by the list LM is drawn in brown

Table 1: Case study: differences in the solutions obtained by the probabilistic and multi-
deterministic choice rules.

Scenario distloc distqual loss(P |M) loss(M |P ) loss(P |M)0 loss(M |P )0
newcomer 1 0.67 0.14 1.06 6.31 1.06 6.31
newcomer 2 0.09 0.14 0.39 0.49 0.39 0.49
small chain A 0.15 0.07 0.02 0.02 0.16 0.17
large chain B 2.23 3.44 10.06 1.13 418.53 23.51
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colour, and is located in the South-West of the fourth most populated city.
As we can see in the example, the probabilistic choice rule is more prone to
the concentration of facilities around the areas with more demand, whereas
the multi-deterministic choice rule favours the dispersion of facilities more.

Not only is the location for the new facility different, the quality is too.
When the probabilistic rule is used, the facility has to be located in Mur-
cia, where there already exist other facilities. So, the new facility needs to
have a high quality in order to capture more demand (the optimal value for
the parameter α lies in the interval [3.35, 4.72]). However, when the multi-
deterministic rule is employed, the facility is located in an area where there
are no facilities around, hence a small quality is enough to capture most of
the demand of the area (the optimal value of the variable α lies in this case
in the interval [0.60, 0.68]).

As we have seen in the case study, the assumption of a wrong customer
choice rule may, depending on the location of demand points and existing
facilities, provoke high losses in profit.

4.2. Random problems

Next, we will research the differences between the solutions obtained by
the probabilistic and multi-deterministic choice rules in a set of random prob-
lems. We have generated location problems with different (imax, cmax, jmax)
settings. Let us denote by ⌊z⌋ the greatest integer lower than or equal to
z. The number of existing facilities belonging to each chain has been ob-
tained as ⌊jmax/cmax⌋, and in case ⌊jmax/cmax⌋ < jmax/cmax the remaining
jmax − cmax⌊jmax/cmax⌋ facilities have been assigned to the first chains, one
facility to each of those chains. The settings employed can be seen in the
first column of Table 2. For every setting, five problems were generated
by randomly choosing the parameters of the problems uniformly within the
following intervals:

• pi, fj ∈ S,

• ωi ∈ [1, 10],

• γi ∈ [0.75, 1.25],

• aj ∈ [0.4, 4],

• G(x, α) =
∑imax

i=1 Φi(di(x)) +G2(α) where
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• Φi(di(x)) = wi
1

(di(x))ϕi0+ϕi1
with ϕi0 = ϕ0 = 2, ϕi1 ∈ [0.5, 2]

• G2(α) = e
α
β0

+β1 − eβ1 with β0 ∈ [5, 7], β1 ∈ [4, 5]

• c ∈ [2, 3.5], the parameter for F (M(x, α)) = c ·M(x, α),

• b1, b2 ∈ [1, 2], parameters for di(x) =
√
b1(x1 − pi1)2 + b2(x2 − pi2)2

Those intervals were obtained by varying the value of the parameters of the
quasi-real problem studied in Subsection 4.1 up and down.

The meaning of the columns in Table 2 correspond to those of Table
1. However, in order to avoid giving detailed results of each problem, we
give for each setting the average value of the five problems, followed by the
corresponding maximum.

Table 2: Random problems: differences in the solutions obtained by the probabilistic and
multi-deterministic choice rules.

Setting distloc distqual loss(P |M) loss(M |P ) loss(P |M)0 loss(M |P )0
(100,2,5) (0.49;1.20) (0.22;0.73) (0.6;2.0) (0.4;1.0) (13.0;40.6) (8.6;26.3)
(100,2,10) (0.13;0.62) (0.10;0.48) (0.0;0.2) (0.0;0.2) (7.5;37.0) (2.6;11.4)
(100,3,10) (0.13;0.43) (0.06;0.15) (0.1;0.4) (0.0;0.2) (6.0;20.7) (1.8;6.3)
(100,3,15) (1.83;4.91) (1.01;2.36) (1.1;3.6) (1.1;3.7) (109.8;454.9) (33.1;120.0)
(100,4,15) (3.97;10.00) (1.05;3.45) (1.3;2.4) (1.2;3.8) (18.7;40.4) (67.8;301.9)
(1000,3,15) (0.17;0.31) (0.00;0.00) (0.1;0.1) (0.0;0.0) (4.2;15.4) (0.8;1.5)
(1000,4,30) (0.51;1.13) (0.55;2.76) (0.5;1.0) (0.4;0.8) (16.9;33.3) (13.8;37.7)
(1000,6,30) (7.40;14.14) (0.30;1.48) (2.0;5.9) (0.6;0.8) (31.8;131.3) (7.7;15.6)
(1000,5,40) (4.23;10.29) (0.00;0.00) (1.5;4.6) (1.2;4.9) (31.0;65.1) (28.0;53.2)
(1000,8,40) (2.71;10.47) (0.52;1.35) (1.0;2.0) (1.7;5.4) (5.8;13.6) (7.9;18.9)

From the results in column distloc, we can see that the location of the
facility may vary considerably depending on the behaviour of customers as-
sumed when solving the problem. This is also true for the quality of the
facility to be located (see the results in distqual).

But for a decision maker it is the profit that makes a difference. As
we can see, the average relative profit loss for the locating chain is not too
big, regardless the choice rule assumed. Since the problems are generated
at random, with the demand points and the existing facilities uniformly dis-
tributed over the feasible set, the chances of having clusters of points with
high demand concentration and with facilities belonging to the locating chain
around those clusters (as in the case study) is small. Still, notice that the
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relative profit loss is greater than 4.5% in at least 4 of the problems (see the
maximum values of columns loss(P |M) and loss(M |P )).

The differences are much clearer regarding the average relative profit loss
for the new facility. In this case, it is over 5% in most of the settings,
regardless the customer choice rule assumed. And in 6 of them the average
loss is over 25%. Concerning the maximum values, they are greater than
25% in at least 12 settings.

5. Solving large instances: a computational study

As we have seen how important to select the right choice rule is, it is
clear that we need methods for solving the corresponding location problems
accurately. Interval branch-and-bound algorithms can manage small size
problems, as we have seen in the previous subsection, and also medium size
problems, as we will see in this section. For large size problems, heuristics
procedures are required. In particular, the multi-start heuristic (denoted in
what follows as MSH) and the evolutionary algorithm UEGO described in
Section 3 will be analysed in this section.

All the computational studies have been carried out in a cluster with 18
nodes of shared memory and 8 GPUs. Each node has 16 cores (Intel Xeon
E5 2650) and 64 GB of memory and 128 GB of solid-state drive. In total,
288 cores, 1151 GB of memory and 2304 GB of SSD. The interconnection
networks are Infiniband and Ethernet. In our computational studies, each
problem was run in one of the cores of the nodes (one problem at a time).
The algorithms have been implemented in C++. For the interval branch-and-
bound method (iB&B) we used the interval arithmetic in the PROFIL/BIAS
library (?), and the automatic differentiation of the C++ Toolbox library (?).

In order to evaluate the performance of the algorithms, a new set of loca-
tion problems has been generated, by increasing the number imax of demand
points, and varying the number cmax of firms and the number jmax of ex-
isting facilities accordingly. The settings (imax, cmax, jmax) employed in the
problems can be seen in Table 3.

For every setting, one problem was generated by randomly choosing the
parameters of the problems uniformly within the intervals described in Sub-
section 4.2.

For the problems with imax = 2000 demand points the multi-start al-
gorithm (denoted by MSH) performed the local search from 1000 different
starting points, and for the problems with imax ≥ 5000 from 500 points. As
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Table 3: Settings of the test problems.

imax 2000 5000 10000
cmax 30 40 50 40 50 60 60 70 80
jmax 5,10 8,15 10,25 8,15 10,15 15,25 15,25 15,30 23,30
S x ∈ ([0, 100], [0, 100]), α ∈ [0.5, 5]

imax 20000 30000 50000
cmax 80 90 100 80 90 100 80 90 100
jmax 23,30 32,40 40,50 23,30 32,40 40,50 32,40 40,50
S x ∈ ([0, 200], [0, 200]), α ∈ [0.5, 5]

the heuristic algorithms may produce different results in each run, each prob-
lem has been solved 10 times with MSH and UEGO, and average values have
been considered.

It is important to mention that the exact iB&B method is not able to
solve all the instances. On the contrary, it starts experiencing difficulties for
problems with imax = 20000. In particular, the computer run out memory
for the cases with imax = 20000 and cmax = 100 and for problems with
imax ≥ 30000

Table 4 summarizes the results obtained by the three algorithms for the
instances where iB&B was able to provide a solution. The first column refers
to the algorithm employed and the second one to the number of demand
points. The third one gives the average CPU time employed by the algorithm
when considering all the problems with the same imax value. Max Dist gives
the maximum Euclidean distance (in locational space) between any pair of
solutions given by the algorithm in different runs. Then the minimum (Min),
average (Av), maximum (Max) and standard deviation (Dev) of the objective
function value is given. To check whether UEGO and MSH have obtained
the global optimal solution, we have also solved the problems using the ex-
act interval branch-and-bound method iB&B described in ?. The problems
were solved only once with this method, as it is a deterministic one. Column
Imp(T) gives the reduction in CPU time obtained by the heuristics as com-
pared to iB&B, in percentage. Finally, column %Succ. gives the number of
times that the heuristic algorithm has obtained the global optimal solution,
in percentage. We say that a heuristic algorithm has obtained the global
optimal solution when the solution provided by the algorithm is included in
the list of 3-dimensional intervals provided by iB&B as a solution.
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Table 4: Computational results. iB&B has been able to solve these problems.
Alg. imax Av(T) Max Objective Function

Secs. Dist Min Av Max Dev Imp(T) %Succ.
UEGO 2000 19.705 0.004 1529.175 1529.175 1529.175 0.000 80 100

5000 55.861 0.004 3661.786 3661.786 3661.786 0.000 83 100
10000 125.125 0.005 6340.107 6340.107 6340.107 0.000 83 100
20000 268.605 0.001 9465.572 9465.572 9465.572 0.000 78 100

MSH 2000 34.654 0.094 1529.162 1529.173 1529.175 0.004 65 94
5000 60.849 0.022 3661.783 3661.783 3661.786 0.001 81 85
10000 215.191 0.796 6338.288 6339.719 6340.097 0.573 71 43
20000 312.385 0.254 9465.362 9465.545 9465.572 0.066 74 87

iB&B 2000 99.440 - 1529.175 - 1529.176 -
5000 319.733 - 3661.786 - 3661.787 -
10000 752.847 - 6340.107 - 6340.108 -
20000 1223.935 - 9465.572 - 9465.572 -

As we can see, although the average objective function value obtained by
both heuristic algorithms is quite close to the optimal one, UEGO is more
reliable, as it always obtains the global optimal solution with 100% success,
i.e., it has obtained the global optimal solution in all the problems and in
all the runs, whereas the percentage of success of the multi-start strategy is
smaller, achieving just 43% for the problems with 10000 demand points.

Table 5 shows the behaviour of the heuristic algorithms for those problems
which could not be solved by iB&B. The columns have the same meaning
as in Table 4, although in this case, columns Imp(T) and %Succ have been
omitted, since we do not have the exact solutions. As can be seen, UEGO
is the algorithm providing the best quality results. In fact, the maximum
Euclidean distance (Max Dist) and the standard deviation (Dev) are very
small, showing the high reliability of this algorithm. The objective values
of the solutions obtained by MSH are also fairly good, although higher Max
Dist values are obtained. This means that MSH may get trapped in a local
optima in some of the runs.

6. Conclusions and future research

The estimation of the market share captured by a facility in a competitive
environment depends largely on both the utility of the facility perceived by
the customers and how the customers decide to patronise among the existing
facilities. The influence of the second issue in the location of new facilities
has been researched in this paper. In particular, the problem of locating a
single new facility in the plane has been considered. The new customer choice
rule employed in this paper, named multi-deterministic choice rule, assumes
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Table 5: Computational results. iB&B has not been able to solve these problems.

Alg. imax Av(T) Max Objective Function
Secs. Dist Min Av Max Dev

UEGO 20000 359.849 0.000 6531.324 6531.324 6531.324 0.000
30000 443.475 0.016 10404.803 10404.804 10404.805 0.001
50000 934.622 0.015 25168.374 25168.375 25168.376 0.001

MSH 20000 375.729 3.003 6527.321 6530.647 6531.324 1.470
30000 533.178 1.588 10403.647 10404.656 10404.804 0.350
50000 1639.625 0.734 25167.186 25168.288 25168.376 0.289

that customers split their demand among all the firms by patronising only
one facility from each firm, the one with the highest utility, and the demand
is then split among those facilities proportionally to their attraction. The
corresponding location problem for profit maximisation has been formulated,
and an exact interval branch-and-bound method, as well as a multi-start
heuristic and an evolutionary algorithm have been developed to solve the
problem. The interval branch-and-bound algorithm can solve problems with
up to 20000 demand points exactly. For larger instances, the evolutionary
algorithm UEGO (using a Weiszfeld-like algorithm as local search) provides
better and more robust results than a multi-start algorithm based on the
same local search.

According to the computational results, the optimal location of the new
facility as well as the profit obtained by the chain and by the new facility may
vary considerably depending on the customer choice rule employed. Hence,
the selection of the choice rule to be used in real applications should be made
with care.

As already stated in ?, competitive location is a difficult field not only
because it involves rather complex mathematical models, but also because
customer behaviour cannot easily be transcribed into neat equations. Mod-
els provide only an approximation to reality. More research on customer
behaviour modelling, as we have done here, is required. In particular, the
influence of the attraction function in the location of facilities deserves its
own study. The extension of the single facility location model with multi-
deterministic choice rule to the case of the location of more than one facility
(?), and to the case where competitors react by locating new facilities too
(?), should also be studied. Variable demand (?) is also an extension that
should be researched in the future. From a computational point of view, the
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design of new algorithms able to solve bigger instances, or the parallelisation
of the introduced ones, is another field for research.
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Appendix

When using the multi-deterministic choice rule, the market share cap-
tured by the new facility is given by

m0(x, α) = mM0(x, α) =
∑

{i:ui0(x,α)≥u1
i }

wi
ui0(x, α)

ui0(x, α) +
∑cmax

c=2 uc
i

=
∑

{i:ui0(x,α)≥u1
i }

wi

(
1−

∑cmax

c=2 uc
i

ui0(x, α) +
∑cmax

c=2 uc
i

)
.

If we set

w̃ =
∑

{i:ui0(x,α)≥u1
i }

wi, ri =
cmax∑
c=2

uc
i , ti = wiri

then

m0(x, α) = w̃ −
∑

{i:ui0(x,α)≥u1
i }

tigi(di(x))

γiα + rigi(di(x))
.

We will develop a Weiszfeld-like algorithm using the function

π0(x, α) = F (m0(x, α))−
imax∑
i=1

Φi(di(x))−G2(α)

as a surrogate for the objective function Π.
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Assuming an unconstrained problem, a necessary condition for a vector
(x∗, α∗) to be a local or global maximum of

π0(x, α) = F (m0(x, α))−
imax∑
i=1

Φi(di(x))−G2(α)

is that the partial derivatives of π0 at that point must vanish.

• With regard to the first variable, x1, we have that

∂π0

∂x1

= 0 ⇐⇒ dF

dm0

· ∂m0

∂x1

−
imax∑
i=1

∂Φi

∂x1

= 0.

Doing some calculations the previous expression is equivalent to

dF

dm0

·
∑

{i:ui0(x,α)≥u1
i }

−αγitig
′
i(di(x))

(γiα + rigi(di(x)))2
· ∂di(x)

∂x1

−
imax∑
i=1

dΦi

ddi(x)

∂di(x)

∂x1

= 0,

which can be rewritten as
imax∑
i=1

Hi(y)
∂di(x)

∂x1

= 0,

where y = (x, α) and

Hi(y) =


dF

dm0

· αγitig
′
i(di(x))

(γiα + rigi(di(x)))2
+

dΦi

ddi(x)
if ui0(x, α) ≥ u1

i

dΦi

ddi(x)
otherwise

.

Assume now that di(x) is a distance function such that

∂di(x)

∂x1

= x1Ai1(x)−Bi1(x), (3)

where Ai1(x) and Bi1(x) are functions of x, then

∂Π

∂x1

= 0 ⇐⇒ x1 =

imax∑
i=1

Hi(y)Bi1(x)

imax∑
i=1

Hi(y)Ai1(x)

. (4)
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• Analogously, if
∂di(x)

∂x2

= x2Ai2(x)−Bi2(x), (5)

then

∂π0

∂x2

= 0 ⇐⇒ x2 =

imax∑
i=1

Hi(y)Bi2(x)

imax∑
i=1

Hi(y)Ai2(x)

. (6)

• Finally,

∂π0

∂α
= 0 ⇐⇒ dF

dm0

·
∑

{i:ui0(x,α)≥u1
i }

γitigi(di(x))

(γiα + rigi(di(x)))2
− dG2

dα
= 0.

(7)

Notice that this last equation, when we fix x = (x1, x2), has just one
variable, α. Thus we could solve it by using any algorithm for solving
equations of a single variable. Furthermore, π0, as a function of the
α variable alone, is concave: regardless the strictly increasing differen-
tiable function F (·) considered, the second derivative of π0 with regard
to α is negative, since

∂2π0

∂α2
= − dF

dm0

·
∑

{i:ui0(x,α)≥u1
i }

2γ2
i tigi(di(x))(γiα + rigi(di(x)))

(γiα + rigi(di(x)))4
− d2G2

dα2
,

and d2
G2

dα2
> 0 ∀α > 0. So, the solution of the previous equation is

guaranteed to be a global maximum.

The l2b distance, given by

di(x) =
√

b1(x1 − pi1)2 + b2(x2 − pi2)2,

satisfies the conditions (3) and (5) given above. Furthermore, it has proved
to be a good distance predicting function (see ?), and it is therefore a good
distance function to be used in competitive location models, as it measures
distances (or travel times) as they are perceived by customers on their ways
to and from facilities.
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