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Abstract

The classical probabilistic choice rule assumes that customers patronize all
the existing facilities. As this assumption may not be appropriate in some
cases, in this paper a variant is investigated, in which a customer only pa-
tronizes those facilities for which he/she feels an attraction greater than or
equal to a threshold value. Implicitly, this implies that there may be some
unmet demand. We apply this modified rule to the problem of locating a sin-
gle new facility in the plane. A comparison of the location decisions derived
from the modified rule with those obtained with the classical proportional
choice rule when solving the location model reveals that the profit that the
locating chain may lose if an inadequate choice rule is employed may be quite
high in some instances.
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1. Introduction

The patronizing behavior of customers is one of the core inputs in many
business and economic indicators. This is the case for the estimation of the
market share captured by the facilities in a competitive environment. When
there exist several facilities offering the same product, the way in which
customers decide to spend their buying power among them may determine
the success or the failure of the facilities. Consumer behavior is a function
of the attraction that consumers feel for the facilities. This attraction is the
result of several factors, but the two most important forces are the location
of the facilities and their quality.

Deciding the location and the quality of the new facilities to be opened
is a hard task. There are many competitive location models in literature for
that purpose. See for instance Eiselt and Laporte (1996), Eiselt et al. (1993),
Plastria (2001) and the references therein. Depending on the location space,
the number of facilities to be located, the type of competition, the demand
and the way the attraction is measured, different location models have been
proposed. Recently, in some of them, the quality of the new facility is also
included as a variable to be determined (see Aboolian et al. (2007), Drezner
et al. (2012), Fernández et al. (2007), Redondo et al. (2012, 2009b), Saidani
et al. (2012)).

Of course, the patronizing behavior of customers is also taken into ac-
count in location models, and this is the topic this paper is devoted to. Two
choice rules are usually employed in literature. In the deterministic rule
consumers are assumed to patronize only one facility, the one for which cus-
tomers feel more attraction. However, this hypothesis has not found much
empirical support, except in areas where shopping opportunities are limited
and transportation is difficult. On the contrary, in the probabilistic rule,
consumers patronize all the existing facilities, although the amount spent at
each of them is different, and depends on the attraction of the consumers
towards the particular facility. In general, this second rule has proved to ap-
proximate the market share captured by the facilities more accurately than
other alternatives.

However, does a customer really go to all the available facilities offering
the product to satisfy his/her needs? To what extent does this assumption
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have an influence on the selection of the location and the quality of the new
facilities to be located? This is the research question studied in this paper. If
the attraction that a demand point feels towards a facility is strictly positive,
then, no matter how small that attraction is, according to the probabilistic
rule the facility will capture part of the demand of the demand point. This
may be unrealistic in some cases.

The idea of patronizing only some of the existing facilities is not new.
For example, in marketing literature, some theories of consumer behavior
involve thresholds or discontinuities. For instance, in Gilbride and Allenby
(2004) the authors investigate consumers’ use of screening rules as part of a
discrete-choice model and they present a model that accommodates conjunc-
tive, disjunctive, and compensatory screening rules. However, in the location
literature this topic has been hardly investigated. We are only aware of three
location papers. In the first one, the so-called Pareto-Huff rule (see Peeters
and Plastria (1992)) was introduced. According to it, a customer patronizes
a more distant facility only if that facility has a higher quality. The second
paper Suárez-Vega et al. (2007) introduces another variant, in which cus-
tomers only patronize a facility provided that it offers a minimum attraction
to them. Both papers deal with network location problems. The third paper
is Ghosh and Craig (1991), where the related concept of reservation distance
is used in a discrete location model. In all the three papers it is assumed that
the quality of the new facilities to be located are fixed and given beforehand.

In this paper we follow the idea in Suárez-Vega et al. (2007), i.e., cus-
tomers at each demand point have associated a minimum level of attraction
in order to patronize a facility, and then they share their buying power among
the facilities that pass this threshold. However, this paper differs from Ghosh
and Craig (1991), Peeters and Plastria (1992) and Suárez-Vega et al. (2007)
in two key points: (i) we analyze location problems in the plane, and (ii) the
quality of the new facilities is not given beforehand, but it is considered to be
an additional variable of the problem to be determined. Both things make
the problem much more challenging from the optimization point of view. It
also differs from Peeters and Plastria (1992) and Suárez-Vega et al. (2007) in
two additional points: (iii) the function of the distance used in the attraction
function does not have to be necessarily concave, and (iv) the locating chain
does not have to be a new entrant in the market, it may already own some
of the existing facilities. The variant of the probabilistic rule used in this pa-
per, which will be referred to as partially probabilistic choice rule hereinafter,
is in many cases a more realistic assumption than that of the probabilistic
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rule. Notice that when the attraction threshold is very low, this rule is sim-
ilar to the proportional one. For higher threshold values this procedure may
coincide with the deterministic rule. For intermediate threshold values, the
customers’ choices may be different from both cases.

The use of attraction thresholds is related to the constrained choice-set
concept used in Thill (2000) for the analysis of non-cooperative competition
between multi-branch networks when consumers have heterogeneous prefer-
ences. The implications of thresholds has also been investigated in some
discrete choice models studies from different perspectives, considering them
as minimum perceptible changes in attributes required for a decision maker
(DM) to differentiate among alternatives (see for example Cantillo et al.
(2010, 2006), Cantillo and Ortúzar (2006)). Those studies reveal that where
perception thresholds exist in the population, the use of models without them
leads to errors in estimation and prediction. However, in those papers the
purpose is to analyze how the thresholds affect the decisions made by DMs,
whereas in this paper we assume that perception thresholds exist in the cus-
tomers and want to investigate its final influence in the location of the new
facility.

In the location literature the use of thresholds is usually related to the
distance. For example, in the location of some emergency facilities, the emer-
gency facility is assumed not to provide a good response to a demand point
if it is at a distance greater than a given threshold (see for instance Holmes
et al. (1972) or Li et al. (2011)). In the location of some undesirable facilities,
the undesirable effects produced by the facility are supposed to be negligible
for a demand point if the facility is further than a given threshold distance
(see for instance Plastria and Carrizosa (1999) or Yapicioglu et al. (2007)).
In covering location problems, a demand point is assumed to be covered by
a facility if their interdistance is less than a given threshold (see Berman
et al. (2010) and references therein). There are also competitive location
papers where thresholds are used. For instance, there are location models
in which the facilities to be located are required to capture a minimum level
of demand (see for instance Colomé et al. (2003)). When the deterministic
choice rule is used, the location of the competitive facilities is fixed, and only
the location is to be determined, then profit changes only occur at partic-
ular threshold qualities (see Plastria and Carrizosa (2004)). There are also
competitive location models where two facilities with the same quality are
regarded as similar for a customer if the difference between the distances
from the customer to the facilities is less than a given threshold (see Kress
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and Pesch (2012) for a survey of that type of models on networks). The
requirement of minimum level of attraction is also suggested in Arenoe et al.
(2015) (apart from Thill (2000) and Suárez-Vega et al. (2007)).

Notice that if for a given demand point none of the facilities attains the
minimum attraction level, then the demand at that demand point will not be
served. Hence, in our model, it may exist some unmet demand. This feature
also makes our model different from most of the models in the literature,
where it is usually assumed that the whole demand is fully served. The most
remarkable exceptions are the papers by Drezner and Drezner (2008, 2012),
where the authors try to model the lost demand in a competitive environment
similar to the one used in our paper (the probabilistic choice rule is explicitly
considered in those two papers). However, the way in which lost demand is
considered in those papers is different from the way it is done in our model.
In those papers, (i) all customers are partially served (part of their demand
is not served) and (ii) the demand actually served at any given demand point
is served from all the existing facilities. Furthermore, (iii) in Drezner and
Drezner (2008) an exponential distance decay function is assumed to model
the disutility of the facility as the distance between the demand point and
the facility increases. On the contrary, in our model (i) some customers are
fully served, whereas others may be not served at all, (ii) the demand at
a given demand point may be served by only some of the existing facilities
(not necessarily all) and the facilities which serve a demand point depend on
the demand point, and (iii) a general distance decay function can be used
in our model (in the computational studies we use a particular one, namely,
a power of the distance, but other types of distance decay functions could
be used as well, and the algorithms proposed in this paper can also handle
them).

As we will see, the partially probabilistic choice rule can be modeled in
continuous location problems without major difficulties. And even though
the resulting problems are usually hard-to-solve global optimization problems
(perhaps one of the reasons for which this choice rule has not been used before
in continuous problems), they can be handled with the techniques presented
in this paper. The aim of this paper is to study whether the location and
quality of the new facilities to be located suggested by the location models
differ depending on the choice rule employed.

The paper is organized as follows. The classical probabilistic choice rule
is reviewed in the next section in the context of a continuous competitive
facility location and design model. The partially probabilistic choice rule is
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then introduced in the next section. Different approaches to solve the corre-
sponding location problem are presented in Section 4. Some implementation
issues related to the estimation of the parameters of the model are discussed
in Section 5. The study of the influence of a particular customer choice rule in
the decision about the optimal location and quality of a new facility is given
in Section 6, whereas Section 7 shows a sensitivity analysis of the model to
some of its parameters. Section 8 reports some computational studies to in-
vestigate the effectiveness and efficiency of the methods proposed. The paper
ends with Section 9 offering some conclusions and pointing lines for future
research.

2. The probabilistic choice rule

A demand point aggregates the demand of all the consumers that it rep-
resents. The probabilistic choice rule assumes that the demand at a demand
point (or the buying power concentrated at it) is split probabilistically over
all the facilities in the market proportionally to his/her attraction to each
facility. Alternatively, it can be interpreted that customers patronize all the
existing facilities (not just the most attractive to them), but the amount
spent at each facility is proportional to the attraction that the customers feel
towards the facility. This is the interpretation used throughout this paper,
as well as in most of the location papers in the literature.

We will assume the following particular scenario (see Fernández et al.
(2007) for more details). A single new facility is going to be located in a given
region of the plane by a chain. There already exist other facilities around
selling the same goods or product. Some of those facilities may belong to the
locating chain. The demand to be served, known and fixed, is concentrated
at some demand points, whose locations are known. The location and quality
of the existing facilities are also known. The attraction function of a demand
point towards a facility is modeled as perceived quality divided by perceived
distance.

The maximization of the profit obtained by the chain after the location
of the new facility is the objective to be achieved, to be understood as the
income due to the market share captured by the chain minus its operational
costs. The aim is to find both the location and the quality of the new facility
to be located.

The following notation will be used in the mathematical formulation of
the location models:
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Indices
i index of demand points, i = 1, . . . , imax.
j index of existing facilities, j = 1, . . . , jmax (we assume that the first

k of those jmax facilities belong to the locating chain (0 ≤ k < jmax).

Variables
x location of the new facility, x = (x1, x2).
α quality of the new facility.

Data
pi location of demand point i.
wi demand (or buying power) concentrated at pi.
fj location of existing facility j.
dij distance between demand point pi and facility fj.
αj quality of facility fj.
gi(·) a non-negative non-decreasing function.

uij attraction that pi feels for fj. In this paper, uij = αj/gi(dij).
dmin
i minimum distance from pi at which the new facility can be

located.
αmin minimum level of quality.
αmax maximum level of quality.
S region of the plane where the new facility can be located.
Gex fixed costs due to the existing chain-owned facilities.

Miscellaneous
di(x) distance between demand point pi and the new facility.
ui0(x, α) attraction that pi feels for the new facility; ui0(x, α)

= α/gi(di(x)).

When a probabilistic rule is used, the market share captured by the chain
is given by

MP (x, α) =
imax∑
i=1

wi
ui0(x, α) +

∑k
j=1 uij

ui0(x, α) +
∑jmax

j=1 uij
.

In order to determine the optimal location and quality for the new facility,
the problem to be solved is

max ΠP (x, α) = F (MP (x, α))−G(x, α)−Gex

s.t. di(x) ≥ dmin
i ∀i

α ∈ [αmin, αmax]
x ∈ S ⊂ R2

(1)

7



where F (·) is a strictly increasing differentiable function which transforms
the market share into expected sales, G(x, α) is a differentiable function
which gives the operating cost of a facility located at x with quality α, and
ΠP (x, α) is the profit obtained by the chain. The constraints di(x) ≥ dmin

i ,
with dmin

i > 0, are included for technical reasons. They avoid the new facility
to be located on a demand point. Notice that if the new facility is located
exactly at a demand point, then di(x) = 0 and we will have divisions by 0 in
the objective function. Apart from that, notice that the values dmin

i can be
set arbitrarily small. Alternatively, the distance corrected function suggested
in Drezner and Drezner (1997) could be used.

In this paper the function F is assumed to be linear, F (MP (x, α)) =
c ·Mp(x, α), where c is the income per unit of goods sold. And for simplicity
it is also assumed that c is the same across different facilities (which may
not be true in the real world cases). Of course, other functions can be
more suitable depending on the real problem considered (see Fernández et al.
(2007)). Function G(x, α) should increase as x approaches one of the demand
points, since it is rather likely that at around those locations the operational
costs of the facility will be higher (due to the value of land and premises,
which will make the cost of buying or renting the location higher). On the
other hand, G will be in many cases a non-decreasing and convex function in
the variable α, since the more quality we require of the facility, the higher the
costs will be, at an increasing rate. But other more general functions could
be considered if appropriate. In the problems solved in this paper we have
assumed G to be separable, i.e. of the form G(x, α) = G1(x) + G2(α), with
G1(x) =

∑imax

i=1 Φi(di(x)), with Φi(di(x)) = wi/((di(x))ϕi0 + ϕi1), ϕi0, ϕi1 > 0

given parameters, and G2(α) = e
α
β0

+β1−eβ1 , with β0 > 0 and β1 given values
(see Fernández et al. (2007) for more details and other possible expressions).
And the Euclidean distance has been used to measure distances between
points.

3. The partially probabilistic choice rule

Although in some cases it may be true that the demand concentrated at
the demand point is split among all the existing facilities (especially when
the number of facilities is small and their attraction is high), there are other
cases in which this is no longer true and the probabilistic choice rule may
not represent customer behavior properly. We propose to use a modification,
which will be called the partially probabilistic choice rule, according to which
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the demand concentrated at a demand point is split only among those fa-
cilities which have a minimum level of attraction, and the demand is split
only among those facilities, proportionally to their attraction. Alternatively,
it can be interpreted that customers patronize all the facilities which have a
minimum level of attraction.

In order to give a mathematical formulation, we consider the same lo-
cation scenario and notation as in the previous section. Let us denote u
the minimum level of attraction that a facility must have for a customer to
spend some of his/her buying power there. For simplicity, we assume that
minimum level to be the same for all the demand points, but we could have
a different value ui for each demand point i. Let us define

ũij =

{
uij if uij ≥ u
0 otherwise

and

ũi0(x, α) =

{
ui0(x, α) if ui0(x, α) ≥ u

0 otherwise

Then, the market share captured by the chain with the modified choice rule
is

MPP (x, α) =
∑

{i:max{ui0(x,α),max{uij :j=1...,jmax}}≥u}

wi
ũi0(x, α) +

∑k
j=1 ũij

ũi0(x, α) +
∑jmax

j=1 ũij
. (2)

Notice that if for a given demand point i

max{ui0(x, α),max{uij : j = 1 . . . , jmax}} < u,

then the demand at i is not served by any facility. Hence, in this model,
some of the demand may be unmet. Notice that, in particular, this means
that the model is suitable only for inessential goods.

The corresponding continuous competitive facility location and design
problem is the same as (1), except that MP (x, α) is replaced by MPP (x, α)
as given by (2). Accordingly, its objective function will be denoted by ΠPP .

It is known that (1) is a hard-to-solve global optimization problem, with
many local maximum points which are not global optimal points (Fernández
et al. 2007). The corresponding problem with the modified choice rule is even
harder, as in addition to this, it also has many discontinuities. As an example,
consider Figure 1, which gives the graphs of the objective function on the
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Figure 1: Objective function of an instance with setting (imax = 71, jmax = 5, k = 2)
when α = 1.545898: in the top figure, using the probabilistic rule, in the bottom figure
with the partially probabilistic choice rule with u = 2.

location domain for a problem with setting (imax = 71, jmax = 5, k = 2) when
the variable α is fixed to its optimal value for the partially probabilistic
problem: in the top figure, using the probabilistic choice rule, and in the
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Figure 2: Objective function of an instance with setting (imax = 71, jmax = 5, k = 2)
when (x1 = 3.989257, x2 = 7.065429): in the top figure, using the probabilistic rule, in the
bottom figure with the partially probabilistic choice rule with u = 2.

bottom figure, with the partially probabilistic rule when u = 2. The white
holes in the graphs correspond to the forbidden regions around the demand
points. As can be seen, both problems are highly nonlinear and require
global optimization techniques to be solved, although the discontinuities of
the problem with the partially probabilistic choice rule, due to the capture
or loss of new customers, make it much more challenging. Something similar
can be seen in Figure 2, where the graphs of the objective functions are
shown when the location of the new facility is fixed at the optimal location
of the partially probabilistic problem. As it can be seen, whereas for the
probabilistic choice rule the function is differentiable and concave with regard
to α (top picture), this is no longer true for the problem with the partially
probabilistic choice rule (bottom picture).
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4. Solving the partially probabilistic location model

Both rigorous (Fernández et al. 2007) and heuristic (or incomplete) meth-
ods (Redondo et al. 2009a, 2008) have been proposed to cope with the proba-
bilistic model. By a rigorous method we mean a deterministic method which
can obtain with certainty the global optimal solution of the problem within
prescribed tolerances, even with approximate computations (see Neumaier
(2004) for a taxonomy of global optimization strategies). Hence, in this sec-
tion we only concentrate on the partially probabilistic model. Next, both
rigorous and heuristic methods are suggested to cope with it.

4.1. A rigorous interval branch-and-bound method, iB&B

Among the rigorous methods to cope with global optimization problems,
branch-and-bound (B&B) algorithms are among the most used. Their suc-
cess relies on the goodness of the bounds they employ, although obtaining
those bounds is sometimes a difficult task too. Interval analysis tools can
be used both to compute bounds automatically (thanks to the use of in-
clusion functions, see the definition below) and to speed up the process by
discarding suboptimal regions (using the so-called discarding tests). The in-
terested reader will find the books by Hansen and Walster (2004) and Tóth
and Fernández (2010) very helpful. Here we just introduce some notation
and a few basic concepts used later on.

The set of compact intervals will be denoted by IR, intervals in boldface
letters, and lower and upper bounds of intervals by ‘underlines’ and ‘over-
lines’, respectively. The width of an interval y = [y, y] ∈ IR will be denoted
by w(y) = y−y and its relative width by wrelat(y) = w(y)/max{1,min{|y| :
y ∈ y}}. The width of an interval vector y = (y1, . . . ,yn)T ∈ IRn (also
called a ‘box’) is to be understood as w(y) = max{w(yi) : i = 1, . . . , n}.

Definition 1. A function f : IRn → IR is said to be an inclusion function
for f : Rn → R provided

{f(y) : y ∈ y} ⊆ f(y)

for all boxes y ⊂ IRn within the domain of f .

Observe that if f is an inclusion function for f then we can directly obtain
lower and upper bounds of f over any box y within the domain of f , hence
its usefulness in B&B methods. There exist programming languages and
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libraries which have the interval arithmetic implemented (see URL (2017)),
and they provide inclusion functions for predeclared functions (sin, exp,. . . ).
By using them, the natural interval extension or other techniques can be
used to compute an inclusion function for other general functions (Hansen
and Walster 2004, Tóth et al. 2007).

Interval B&B methods (iB&B in what follows) have been successfully
applied to solve location problems (see for instance Fernández and Pelegŕın
(2001), Tóth and Fernández (2010) and the references therein). In particular,
in Fernández et al. (2007) such an iB&B method was applied to solve the
corresponding probabilistic problem described in Section 2. A similar method
can handle the partially probabilistic model, thanks to the use of the interval
tools employed to compute the bounds.

A point that deserves to be clarified here is how to compute an inclusion
function ũi0(x,α) for ũi0(x, α), as this function is given by an ‘if’ condition.
This can be achieved by defining

ũi0(x,α) =


0 if ui0(x,α) < u
ui0(x,α) if ui0(x,α) ≥ u[
0,ui0(x,α)

]
otherwise

where ui0(x,α) is an inclusion function for ui0(x, α). One can see that this
is the cause of the discontinuity of the objective function, and it makes im-
possible to use any advanced tools that use differentiability or even continu-
ity inside an iB&B. Therefore, only the basic discarding tests described in
Fernández et al. (2007) can be used for the new problem, namely, the cut-
off and the feasibility tests. It is still a valuable result that a discontinuous
function can be optimized by a reliable method.

The output of the method is a list of 3-dimensional boxes, L = {y1, . . . ,yr},
which contain any global optimal solution. The best point found by the algo-
rithm during its execution, ybest = (xbest1 , xbest2 , αbest), is also offered as output.
Let us denote by Π either ΠP or ΠPP depending on the problem to be solved.
Notice that any point in

⋃r
l=1 yl will have its objective function value within

the interval

[min{Π(yl) : l = 1, . . . , r},max{Π(yl) : l = 1, . . . , r}]

although the optimal objective function value Π∗ of our problem is within
the narrower interval

[Π(ybest),max{Π(yl) : l = 1, . . . , r}].
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The stopping rule sends a box y to the solution list L provided that

w(y) < ε or wrelat(Π(y)) < ε.

In the computational studies carried out in this paper we have established
that ε = 0.0001.

4.2. An evolutionary algorithm

In Redondo et al. (2009a), the algorithm called UEGO was proposed for
solving the corresponding model with the probabilistic choice rule. In fact,
it has also been applied to other competitive location problems as well (see
for instance Redondo et al. (2012)). UEGO can be classified as a global
evolutionary optimization method. It applies procedures based on nature
on a pool of M independent candidate solutions (individuals), which form a
population. In other words, it applies methods, as reproduction or selection,
to address the population towards the global (or local) optima. In this sense,
UEGO can also be considered as a multimodal optimization algorithm, since
each candidate solution in the population is intended to occupy a local or
global optimum of the fitness landscape.

Each candidate solution in UEGO represents a subspace (in fact, a hy-
persphere) of the whole searching region by means of a radius. The main
goal of the radius is to focus the optimization efforts on a particular sub-area.
The solution is considered to be in the center of the corresponding subspace.
During the optimization procedure, several candidate solutions with differ-
ent radii can coexist simultaneously. Therefore, at the same stage of the
optimization procedure, new promising regions are systematically analyzed
(those with a bigger radius), while others are examined thoroughly (those
with a smaller radius). The term “independent” signifies that a candidate
solution has the ability of reproducing by itself, i.e. a new offspring can arise
from a single individual independently of the rest of the population. It means
that many peaks can be investigated in parallel and hence, the effects of the
genetic drift can be prevented.

The radius associated to a candidate solution depends on the instant
where it was created. Solutions created at the beginning of the search will
examine big regions, while solutions created during the latest cycles will
focus on smaller promising areas. More precisely, the radius of a candidate
solution created at iteration i, is given by a decreasing exponential function
that depends on the initial domain landscape, R1, and an input parameter,
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RL, which represents the smallest radius. This mechanism has been designed
to balance exploration and exploitation.

UEGO works as follows. Initially, a population of candidate solutions is
created. The fitness is used to determine the relative merit of each individ-
ual. Once the initial population is obtained, an iterative process is carried
out. At each cycle, UEGO mimics natural evolution on the population by
applying procedures for the reproduction of individuals, the improvement of
their offspring by means of a local optimizer, and the promotion of the best
candidate solutions to the next generation. As UEGO applies a local search
algorithm to each individual of the population, it can be also classified as a
memetic algorithm (Moscato (1989)). In fact, only the local search procedure
used within UEGO needs to be adapted for each particular problem.

UEGO has four user input parameters: (i) a maximum number of func-
tion evaluations for the whole optimization procedure, N ; (ii) a maximum
number of individuals in the population, M ; (iii) a maximum number of cy-
cles or iterations, L; and (iv) the radius of the smallest candidate solution
RL. The function evaluations, N , are distributed among the individuals in
the population at each iteration, in such a way each one has a budget to
generate new candidate solutions and to improve them. These budgets are
mathematically computed by means of equations that depends on the pre-
viously mentioned input parameters. See Redondo et al. (2009a) for a more
detailed description of the algorithm and its parameters.

In view of its success at solving different competitive location problems,
UEGO has also been adapted to the problem with the partially probabilistic
choice rule. The most important adjustment consisted of selecting an appro-
priate local optimizer. Initially, a Weiszfeld-like algorithm was considered as
a local optimizer, following the lines in Redondo et al. (2009a). However,
the obtained results were not as good as expected and it was rejected. The
general purpose stochastic hill climber SASS (Solis and Wets 1981) was fi-
nally included in this work, but with some modifications, which are briefly
described next.

Algorithm SASS is a derivative-free optimization algorithm that can be
applied to maximize an arbitrary function over a bounded subset of RN ,
although internally SASS assumes that the range in which each variable
is allowed to vary is the interval [0, 1]. Since this is not our case, when
necessary we use functions to rescale (normalize) the variable values to the
interval [0, 1], and to invert (denormalize) this process. In SASS, the new
points are generated using a Gaussian perturbation ξ ∈ R3 over the search
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point (x, α) and a normalized bias term b ∈ R3 to direct the search. The
standard deviation σ specifies the size of the sphere that most likely contains
the perturbation vector. In this work, its upper bound σub should have
the same value than the normalized radius of the caller solution. Then, the
parameter σub is also considered an argument of SASS. Hence, any single step
taken by the optimizer is no longer than the radius of the calling candidate
solution. Finally, the stopping rules are determined by a maximum number
of iterations (icmax) and by the maximum number of consecutive failures
(Maxfcnt). The use of SASS as the local optimizer within UEGO has also
worked fine for other location problems with discontinuities (see for instance
Redondo et al. (2013)).

The parameters that control UEGO have been tuned to this new problem
by trying several combinations of parameter values on a reduced set of ran-
dom problems. Finally, they have been set to L = 15, RL = 0.5, M = 100
and N = 3 · 106.

5. On the estimation of the parameters of the model

In order to apply the location model to a particular real problem, the
parameters of the model have to be estimated. Next we discuss how that
estimation can be carried out.

The distances dij between demand points and existing facilities can be
obtained directly using road maps or the shortest distance capabilities of
Geographic Information Systems (GIS) or Geographic Positioning Systems
(GPS). Then, with those data, a distance predicting function (DPF) can
be tailored to the geographical region under consideration (Brimberg and
Love 1995, Fernández et al. 2002), which provides an estimation of the travel
distance between two points, given their geographical coordinates. That DPF
can be used as di(x).

On the other hand, the function gi(d) modulating the distance is usually
of the form gi(d) = dλ or gi(d) = exp(−λd). For the simultaneous estimation
of the parameter λ defining gi(d) and the qualities of the existing facilities,
ordinary least squares could be used as proposed in Nakanishi and Cooper
(1974, 1982). However, the strategies proposed in Drezner (2006) or Drezner
and Drezner (2002) provide similar results and are easier to implement.

The functional forms of F and G should also be ascertained so that they
reflect the reality as close as possible. Whereas for the income function F this
seems to be an easy task (considering the experience of the managers of the
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locating chain), the functional form of G could be more tricky. The difficulty
of the determination of those functions will depend on the particular type of
facility to be installed, and on the ability and knowledge of the managers.

The estimation of the threshold values is also a critical issue, as we will
see in Section 6. Using the probabilistic choice rule, the proportion of the
demand concentrated at pi captured by facility j is given by

pij =
uij∑jmax

k=1 uik
.

If we assume that when pij is less than a predefined small value p̃ (for instance,
let say p̃ = 0.05), then it is not ‘normal’ for a customer at pi to go to fj, then
we can consider that the threshold for demand point pi, denoted by ui (the
minimum level of attraction that a facility must have for the customers at pi
to spend some of his/her buying power there), lies in the interval, [ulbi , u

ub
i ],

where

ulbi = max
j
{uij : pij < p̃}, and uubi = min

j
{uij : pij ≥ p̃}.

That interval can be computed easily using the available data and param-
eters. However, in order to choose the value ui ∈ [ulbi , u

ub
i ] that better fits

the tastes of the customers at pi more information is needed. Let us denote
by flbi the facility where ulbi is attained, and by fubi the one for which uubi
is attained. A survey could be carried out among the customers at demand
point i asking: (i) how much closer should the facility flbi be so you would
go there to buy goods or use its services?, and (ii) how much further should
the facility fubi be so you would not go there? The average distance of the
answers of each of those questions is then computed, and from those two
distances, two attraction thresholds for pi can be computed. The mean value
of those thresholds could be set as ui.

If a unique threshold value u is required for all the demand points, then
the minimum of the ui values, or its mean, or its weighted mean could be
used.

6. Probabilistic choice rule versus partially probabilistic choice rule

To what extent is the difference between the probabilistic and the partially
probabilistic choice rules important when deciding the location of the new
facility? How much does it affect the optimal profit? We study these and
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other issues first using a quasi-real example of the location of a hypermarket,
and then analyzing some random problems. In both studies we will solve
the same location problems using both rules, and using the exact interval
branch-and-bound method mentioned in Subsection 4.1, so as to have the
optimal solutions and carry out a fair comparison.

6.1. A case study

In this subsection, we investigate a quasi-real example dealing with the
location of a hypermarket in an area around the city of Murcia, in south-
eastern Spain. In the study, we have considered a working radius of 25 km
around Murcia. 632558 inhabitants live within the circle, distributed over
imax = 71 population centers. Their population varies between 1138 and
178013 inhabitants. Each population center has been considered a demand
point, with buying power proportional to its total population (one unit of
buying power per 17800 inhabitants), resulting the demand’s spectrum in
[0.064, 10]. Their location and population can be seen in Figure 3: each
demand point is shown as a gray circle (or a black dot) with a radius pro-
portional to its buying power. The surrounding gray circles also show the
forbidden regions around the cities. Five hypermarkets are present in the
area: two from a first chain A (marked with a red •), and three from another
chain B (marked with a green ×). Figure 3 shows the location of each hyper-
market. The feasible set S was considered the smallest rectangle containing
all demand points (approximately a square centered at Murcia whose sides
have a length close to 45 Km).

The coordinates of the population centers and the hypermarkets were
re-scaled to an approximate square ([0, 10], [0, 10]), in which the units corre-
spond approximately to 4.5 Km. The radius of the forbidden circular area
surrounding demand point pi was set to wi/30.

Approximate values for the quality parameters αj for the five existing
hypermarkets were obtained through a small survey among people who had
visited all five hypermarkets. Each respondent was asked to rank the hy-
permarkets in increasing order of their perceived quality and to indicate
the difference in quality between any two consecutive hypermarkets in their
ranking by a score between 1 (small) and 4 (big). That information yielded
individual marks for all hypermarkets, by starting from a lowest mark of 1
and adding each difference score to obtain the mark of the next hypermar-
ket in their ranking. Finally, these marks were rescaled to the interval [3,4],
because, according to all the respondents, in a proposed scale from 0.5 to 5,
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all considered hypermarkets have a quality above the mean (2.75). But they
all still have a large margin for improvement. The qualities αj considered
are the average rescaled marks over the respondents. But see Section 5 for
a better way to estimate the qualities of existing facilities in real problems.
The quality of the new facility lies in the interval [0.5, 5].

For the rest of the parameters, we used the following initial settings: the
income per unit of good sold c = 12, in the location cost function G1 we
chose the parameter ϕi0 = 2 for all i, while the value of ϕi1 decreases as the
population increases. Finally, the parameters of the quality cost function G2

were initially set to β0 = 7 and β1 = 3.75. The interested reader is referred
to Tóth et al. (2009) for more details about this example.

Three different scenarios have been considered:

1. Scenario ‘small chain A’: The locating chain is the small one, chain A,
which owns k = 2 of the jmax = 5 existing facilities.

2. Scenario ‘large chain B’: The locating chain is the greatest one, chain
B, which owns k = 3 of the 5 existing facilities.

3. Scenario ‘newcomer’: The locating chain is new in the market (k = 0),
and the new facility will have to compete with the 5 existing facilities.

The following notation will be used when analyzing the results: ΠP (·) is
the objective function of location problem (1) when the probabilistic choice
rule is employed, LP gives the output list of 3-dimensional boxes which con-
tain any optimal solution, and (x∗P , α

∗
P ) represents the best point found by

the algorithm during the execution. The corresponding items for the problem
with the partially probabilistic choice rule will be denoted by ΠPP (·), LPP
and (x∗PP , α

∗
PP ).

We will compute the Euclidean distance between the locations x∗P and
x∗PP , which is denoted as distloc, as well as the absolute difference between
the qualities α∗P and α∗PP , denoted as distqual, to measure the difference
between the optimal solutions.

The objective function value of the partially probabilistic model before
(ΠPP (before)) and after (ΠPP (x∗PP , α

∗
PP )) the location of the new facility will

be shown, as well as the cost due to the new facility, G(x∗PP , α
∗
PP ). We will

compute the relative profit loss incurred when the probabilistic choice rule
is assumed in a problem where the partially probabilistic rule should have
been chosen,

lost(P |PP ) = 100 · (ΠPP (x∗PP , α
∗
PP )− ΠPP (x∗P , α

∗
P ))/ΠPP (x∗PP , α

∗
PP ),
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and the relative profit loss incurred when the partially probabilistic choice
rule is assumed in a problem where the probabilistic rule should have been
chosen,

lost(PP |P ) = 100 · (ΠP (x∗P , α
∗
P )− ΠP (x∗PP , α

∗
PP ))/ΠP (x∗P , α

∗
P ),

to measure the cost of choosing the inadequate model for the chain as a
whole.

Similarly, to measure the cost of choosing the inadequate model in the
profit increment due to the new facility, the relative profit lost due to the
new facility only when the probabilistic choice rule is assumed in a problem
where the partially probabilistic rule should have been chosen,

lost(P |PP )0 = 100 · IncrΠPP (x∗PP , α
∗
PP )− IncrΠPP (x∗P , α

∗
P )

IncrΠPP (x∗PP , α
∗
PP )

,

will be computed, where IncrΠPP (x∗PP , α
∗
PP ) = ΠPP (x∗PP , α

∗
PP )−ΠPP (before)

and IncrΠPP (x∗P , α
∗
P ) = ΠPP (x∗P , α

∗
P )−ΠPP (before).Analogously, lost(PP |P )0

will be computed too. For the newcomer case these two values are not com-
puted, as they coincide with lost(P |PP ) and lost(PP |P ), respectively.

As the demand actually served by the facilities may vary depending on the
threshold value u employed (remember that we may have unmet demand),
we will also compute the percentage of the total demand really served before
(%WTB) and after (%WTA) the location of the new facility, the percentage
of the total demand captured by the locating chain before (%WCB) and after
(%WCA) the new facility is located, and the percentage of the total demand
captured by the new facility (%Wnew). Notice that %WCB + %Wnew may be
different from %WCA, since the new facility may steal part of the demand to
the existing chain-owned facilities (an effect known as cannibalization). The
total demand in the region in all the cases is W =

∑imax

i=1 wi = 35.53. For the
newcomer case, %WCB and %WCA are omitted, as the locating chain has no
existing facilities. For the sake of completeness, we also show the quality of
the new facility for each value of u.

The results obtained for each of the three scenarios are shown in tables
1, 2 and 3, respectively.

As we can see, in the scenario ‘small chain A’ (see Table 1), even for
the threshold u = 0.5 (a small value with which 95% of the total demand
is still served) we can observe that both the location and the quality of the
new facility to be located are different from those of the probabilistic choice
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Figure 3: Case study: scenario small chain A.

rule (see Figure 3, where the optimal locations for the different values of
u are drawn as small squares in different colors). However, the differences
are not too important, as the optimal solution is still to locate the new
facility close to Orihuela, the second most populated city, in the North-East
of the map, where one of the facilities of the competing chain is set up (the
chain already has two facilities in the surroundings of the most populated
city, Murcia, so this is not the optimal place to expand the chain, due to
the cannibalization). In fact, the differences in objective function value are
almost negligible. It is for u = 1 where we can observe a big change, both in
location and quality. In this case, the optimal location changes to the third
most populated city, Molina (in the North-West of the map, where another
facility of the competing chain operates). The reason is that Molina is closer
to Murcia, and the new facility not only competes against the competitor’s
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Table 1: Case study: differences in the solutions obtained by the probabilistic and the
partially probabilistic choice rules for the scenario ‘small chain A’.

u 0 0.5 1.0 1.5 2.0 2.5 3.0

quality 1.45 1.24 4.70 0.70 1.49 1.86 2.24
distloc 0.16 5.31 6.35 5.88 5.88 5.90
distqual 0.22 3.24 0.76 0.03 0.41 0.78
ΠPP (before) 176.2 151.4 141.1 133.4 127.4 123.6
ΠPP (x∗PP , α

∗
PP ) 197.0 182.6 166.9 162.6 157.1 153.6

G(x∗PP , α
∗
PP ) 12.5 47.4 11.0 17.8 20.6 23.6

lost(P |PP ) 0.1 8.3 5.9 8.1 8.7 9.3
lost(PP |P ) 0.1 8.0 9.8 11.4 11.6 12.1
lost(P |PP )0 1.4 48.6 37.9 45.0 46.1 47.4
lost(PP |P )0 0.8 77.7 94.2 110.2 112.5 117.1
%WTB 95.0 83.3 76.9 76.2 72.2 66.5
%WTA 95.0 91.4 85.5 84.4 82.0 78.9
%WCB 41.3 35.5 33.1 31.3 29.9 29.0
%WCA 49.1 53.9 41.7 42.3 41.7 41.6
%Wnew 7.9 19.1 8.6 11.0 11.9 12.6

facility in Molina, but also attracts part of the demand from Murcia and
Alcantarilla (the fourth most populated city), thanks to its high quality.
Notice that when the facility is located in Orihuela, if u = 1, even a high
quality is not enough to attract demand from Murcia. As can be seen in
Table 1, when u = 1 an inadequate choice in the patronizing behavior of
customers may lead to a considerable relative profit lost of around 8%. In
fact, in this case the new facility captures 19.1% of the total demand, more
than 1/3 of the demand captured by the chain. When u = 1.5 we can
observe another change in the location, which moves to the South-West,
close to Alcantarilla and closer to Murcia; now the quality of the new facility
is small, which reduces the costs, but still allows to capture most of the
demand from Alcantarilla and its surroundings. Finally, for u = 2, 2.5 and 3
a final change can be observed, where the location is the same for all those
values, and only the quality changes. Now, although the new facility is at
a similar distance from the most populated city, it is set up in a cheaper
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place and it is closer to the competitor’s facility in Murcia, which allows to
compete against it and to capture part of the demand from the South-West
area (although at the cost of a higher quality.

Note that an increase in the market share captured does not necessarily
means an increase in the profit, since the increment in the market share
captured can be due to a higher quality or a better and more expensive
location, and in both cases this implies a higher cost, and maybe the cost
exceeds the income obtained from the market share captured. For instance,
from u =0.5 to 1.0 the chain capture more market share (from 49.1% to
53.9%, which is an increase of 9.77%), but the profit decreases (from 197.0
to 182.6, a 7.30%) since the cost due to the new facility increases from 12.5
to 47.4, mainly due to the increment in the quality (from 0.22 to 3.24).

[2.5,3]
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Figure 4: Case study: scenario large chain B.

In the scenario ‘large chain B’, for both the probabilistic choice rule (u =
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Table 2: Case study: differences in the solutions obtained by the probabilistic and the
partially probabilistic choice rules for the scenario ‘large chain B’.

u 0 0.5 1.0 1.5 2.0 2.5 3.0

quality 0.58 0.50 4.33 3.87 0.92 1.16 2.25
distloc 0.07 2.13 1.57 0.28 0.28 0.89
distqual 0.08 3.75 3.29 0.35 0.58 1.67
ΠPP (before) 229.0 203.7 186.7 191.6 180.6 159.9
ΠPP (x∗PP , α

∗
PP ) 236.0 236.6 212.5 215.8 203.2 189.4

G(x∗PP , α
∗
PP ) 10.7 48.8 43.8 12.6 14.2 23.6

lost(P |PP ) 0.2 7.2 4.0 4.3 4.5 8.5
lost(PP |P ) 0.0 1.6 0.8 1.3 1.4 3.8
lost(P |PP )0 5.4 51.9 33.3 38.2 40.5 54.4
lost(PP |P )0 1.2 61.9 30.8 51.2 52.3 147.6
%WTB 95.0 83.3 76.9 76.2 72.2 66.5
%WTA 95.7 91.5 84.6 84.9 80.9 78.9
%WCB 53.7 47.8 43.8 44.9 42.3 37.5
%WCA 57.9 66.9 60.1 53.6 51.0 50.0
%Wnew 7.4 25.1 22.0 8.6 8.6 12.6

0) and the partially probabilistic choice rule with threshold value u = 0.5,
the optimal solution is to locate the facility close to Alcantarilla, the fourth
most populated city, with a very small quality: since there exist no other
facilities around, the new facility captures most of its demand (see Figure 4)
with a low cost.

However, when u = 1 the optimal location moves to the surroundings
of Murcia, the most populated city, between the two existing facilities of
the competing chain, and this, despite the fact that the chain already owns a
facility in the South-East of that city; to compete against them, a high quality
is required. Notice that with u =0.5, the total market share served before the
location of the new facility was 95.0%; whereas with u =1.0 it is only 83.3%.
This means that part of the demand at Murcia (and other cities around) is
not served by the existing facilities, and so, there is an opportunity for the
new facility to capture that unserved demand. In fact, after the location of
the new facility, the total demand served increases to 91.5%. As we can see,
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in this case, lost(P |PP ) = 7.2%, a very high value taking into account that
the locating chain is dominant in the market and that 91.5% of the total
demand is served after the location of the new facility. In this case, the new
facility captures 25.1% of the total demand, whereas the chain, considering all
the facilities, gets 66.9% of the total demand, i.e., the new facility captures
37.5% of the demand of the chain. This is, however, at the expense of
suffering some cannibalization: notice that %WCB + %Wnew = 72.9%, more
than %WCA = 66.9%. When u = 1.5 the optimal location moves to another
part of the city of Murcia, far from the existing competing facilities, which
allows the reduce the quality, and hence, the costs, but still capturing a good
part of the demand at Murcia, even though suffering some cannibalization.
When u =2.0 the location changes again, close to Alcantarilla, again with a
low quality. Since the costs are again much smaller, the profit increases, and
this despite capturing a smaller percentage of the market. And finally, for
u = 2.5 and 3, a new location is obtained, similar to that of the small chain
scenario, not too close to Murcia nor to Alcanrilla to reduce the location
costs (see Figure 4), and with a medium quality. Notice that, as expected,
the cannibalization decreases as u increases.

Table 3: Case study: differences in the solutions obtained by the probabilistic and the
partially probabilistic choice rules for the scenario ‘newcomer’.

u 0 0.5 1.0 1.5 2.0 2.5 3.0

quality 5.00 5.00 4.92 4.16 4.37 5.00 2.24
distloc 0.10 0.67 0.04 0.01 0.09 1.29
distqual 0.00 0.08 0.84 0.62 0.00 2.76
ΠPP (before) 0.0 0.0 -0.0 0.0 0.0 0.0
ΠPP (x∗PP , α

∗
PP ) 45.6 60.9 52.2 50.6 43.3 30.1

G(x∗PP , α
∗
PP ) 56.7 55.7 46.8 49.3 56.6 23.6

lost(P |PP ) 0.9 11.8 3.7 4.1 45.0 17.4
lost(PP |P ) 0.7 5.8 3.8 2.3 10.2 64.5
%WTB 95.0 83.3 76.9 76.2 72.2 66.5
%WTA 95.7 91.5 84.6 83.4 80.8 78.9
%Wnew 24.0 27.3 23.2 23.4 23.4 12.6

Concerning the ‘newcomer’ case, for u = 0 to 2.5, the optimal solution is
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Figure 5: Case study: newcomer.

to locate the new facility in the surroundings of Murcia, the most populated
city (see Figure 5). Even though there already exist three facilities around
Murcia and there will be fierce competition, for the newcomer it is still the
best option, as most of the demand is concentrated there. A high quality is
required, though. It is important to highlight, however, that even with very
small differences in location and quality, the relative profit loss incurred when
an inadequate patronizing behavior of customers is assumed may be very
high. See for instance the case u = 2.5. In this case, the difference in location
is very small (distloc = 0.09) and the difference in quality with regard to the
probabilistic case is almost negligible. Nevertheless, lost(PP |P ) = 10.2%
and lost(P |PP ) = 45.0%. This clearly shows the big difference between
the probabilistic and the partially probabilistic choice rule. For u = 3 the
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relative profit lost is even higher, although in this case the location moves
to a different place, the same as that of the small and large chain scenarios
when u is 2.5 or more (not too close to Murcia nor to Alcanrilla to reduce the
location costs), and the quality is also different from that of the probabilistic
case. In this case, since u is very high, none of existing facilities can capture
the demand from Alcantarilla and the cities around, and the new facility can
capture it, and with a low quality and in a cheap location.

Summarizing, we can see that both the location and/or the quality of the
facility to be located may change drastically as the threshold value varies,
and even when those changes are very small, the relative profit loss incurred
for the chain when an inadequate choice rule is employed may be very high.
This is due to discontinuities of the objective function, see figures 1 and 2:
every time a new demand point is captured or lost (and this may happen with
a small change in the location and/or the quality), a jump in the objective
function happens. This clearly shows that the selection of the choice rule in
competitive location models should be made with care, and the assumption
of the probabilistic choice rule commonly done in literature should only be
considered when it is really the case.

6.2. Random problems

We have done a similar study on a set of 40 random problems, half of them
with n = 500 demand points and the rest with 1000 demand points, although
in this case, for the sake of brevity, only the differences in the location, quality
and objective value have been analyzed. Several settings (imax, jmax, k) have
been considered (see Table 4), and for each of them, five problems were
generated by randomly choosing the parameters of the problems uniformly
within the following intervals:

• pi, fj ∈ S,

• ωi ∈ [0, 100/
√
n],

• αj ∈ [0.4, 6],

• G(x, α) =
∑imax

i=1 Φi(di(x)) +G2(α) where

• Φi(di(x)) = wi
1

(di(x))ϕi0+ϕi1
with ϕi0 = ϕ0 = 2, ϕi1 ∈ [0.5, 1.5],

• G2(α) = e
α
β0

+β1 − eβ1 with β0 ∈ [7, 9], β1 ∈ [6, 6.5],
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Table 4: Random problems: differences in the solutions obtained by the probabilistic and
partially probabilistic choice rules.

u distloc distqual lost(P |PP ) lost(PP |P ) lost0(P |PP ) lost0(PP |P )

(500,6,1)
0.5 (1.5,2.9) (0.0,0.0) (9.5,13.2) (2.2,5.6) (14.6,21.7) (4.0,8.7)
1.0 (1.6,2.2) (0.1,0.2) (21.1,30.7) (3.4,4.7) (32.0,44.7) (7.0,10.5)
2.0 (4.0,7.4) (0.1,0.2) (25.3,31.0) (7.0,11.6) (42.5,58.3) (14.2,24.0)

(500,6,3)
0.5 (2.7,5.3) (0.1,0.4) (7.1,12.0) (2.6,4.0) (20.3,35.0) (15.5,39.0)
1.0 (3.2,6.1) (0.1,0.3) (14.3,20.2) (2.2,4.6) (34.2,66.0) (14.2,44.3)
2.0 (3.5,6.9) (0.2,0.3) (20.0,27.8) (2.6,4.9) (48.5,60.0) (15.8,47.2)

(500,12,3)
0.5 (1.3,3.7) (0.1,0.3) (7.3,18.3) (0.8,2.1) (18.3,39.2) (4.2,14.9)
1.0 (2.0,3.4) (0.1,0.1) (12.0,22.3) (1.7,2.3) (25.9,33.5) (6.7,9.8)
2.0 (1.8,4.0) (0.5,2.0) (18.8,34.0) (2.6,5.1) (39.5,50.3) (9.5,14.4)

(500,12,6)
0.5 (1.6,3.7) (0.0,0.0) (5.8,8.8) (1.0,2.2) (16.7,26.7) (6.4,16.7)
1.0 (2.3,6.2) (0.0,0.1) (10.0,15.1) (2.7,8.5) (27.8,38.5) (13.1,38.3)
2.0 (2.6,3.8) (0.2,0.3) (14.6,20.3) (2.7,4.1) (44.6,53.9) (14.8,28.2)

(1000,12,3)
0.5 (0.8,1.2) (0.0,0.0) (4.5,8.8) (0.9,1.6) (7.5,13.9) (2.2,4.3)
1.0 (0.9,1.5) (0.0,0.0) (6.3,8.4) (1.2,2.7) (11.4,16.1) (3.4,6.5)
2.0 (1.4,2.0) (0.0,0.1) (10.5,14.0) (2.7,5.3) (19.1,25.1) (6.4,10.8)

(1000,12,6)
0.5 (3.8,9.0) (0.4,1.8) (4.5,9.2) (1.3,3.4) (15.0,28.1) (7.2,19.0)
1.0 (4.1,7.8) (0.0,0.0) (9.9,20.0) (1.4,2.1) (28.2,50.7) (8.4,13.7)
2.0 (3.9,7.7) (0.1,0.2) (11.9,24.8) (1.8,3.6) (37.3,66.7) (11.6,26.2)

(1000,25,6)
0.5 (0.5,0.7) (0.0,0.0) (1.2,2.1) (0.5,0.9) (3.1,5.4) (2.2,5.0)
1.0 (1.1,2.1) (0.0,0.2) (5.1,9.2) (1.5,3.0) (13.6,27.8) (6.1,16.2)
2.0 (2.4,6.7) (0.1,0.4) (10.3,16.5) (2.2,3.6) (29.1,53.3) (9.5,20.5)

(1000,25,12)
0.5 (3.6,8.5) (0.4,0.8) (1.5,2.2) (0.6,1.1) (12.7,29.8) (6.7,9.4)
1.0 (4.3,8.6) (0.3,0.7) (5.0,8.4) (1.0,1.5) (31.6,63.0) (12.1,23.1)
2.0 (5.8,10.3) (0.4,1.0) (8.0,10.3) (1.1,2.4) (41.7,66.3) (13.6,29.7)

• c ∈ [10, 11], the parameter for F (M(x, α)) = c ·M(x, α),

The meaning of the columns in Table 4 correspond to those of tables 1, 2
and 3. For each setting and each threshold value u, the average value of the
five problems, followed by the corresponding maximum, are given.

As we can see, even for u = 0.5 we have instances where the relative
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profit loss incurred when the probabilistic choice rule is assumed instead of
the partially probabilistic choice rule is more than 18% (see the maximum
value of lost(P |PP ) for the setting (500, 12, 3)). In fact, the mean is also
rather high for some settings (see the results for (500,6,1)).

We can also see that there are some instances where the relative profit
lost is high despite the location and quality being quite close to that of
the probabilistic choice rule. See for instance the setting (1000, 12, 3) when
u = 1: the difference in quality is negligible, and in location is rather small,
but lost(P |PP ) = 6.3% in average, and the maximum is 8.4%.

As in the example, the relative profit lost increases as the threshold value
increases. Also, the figures of the relative profit lost due only to the new
facility are higher.

7. Sensitivity analysis

We have also carried out a sensitivity analysis of some parameters of
the model, in particular those of the cost function. Remember that the
objective function of the partially probabilistic model is given by ΠPP (x, α) =
F (MPP (x, α)) − G(x, α) − Gex, and in our computational studies we have
assumed that G(x, α) = G1(x) + G2(α), where G1(x) =

∑imax

i=1 Φi(di(x)),
with Φi(di(x)) = wi/((di(x))ϕi0 + ϕi1), ϕi0, ϕi1 > 0 given parameters, and

G2(α) = e
α
β0

+β1 − eβ1 , with β0 > 0 and β1 given values. In our studies the
same ϕi0value was assigned to each i. We have studied the influence of the
parameters ϕi0, ϕi1, β0 and β1 in the optimal solution of the problem. Notice
that this allows us to investigate how the costs due to the new facility affect
the optimal solution of the problem, differentiating between the costs due to
the location and those due to the quality of the facility.

We have proceed as follows. For each of the three basic scenarios consid-
ered in Subsection 6.1 and for each value of the threshold u, we have solved
16 problems, by varying only one of those parameters up or down, and fix-
ing the rest of the parameters to their original values. In particular, each
parameter has been scaled down by multiplying it by 0.50 and 0.75, and
scaled up by multiplying it by 1.33 and 2.00. Since similar conclusions can
be inferred from the three scenarios and every threshold value, here we only
present (see Table 5) the results corresponding to the ‘large chain’ scenario
when u = 0.5, 1.5 and 3.0. The rest of the tables can be obtained from the
authors upon request. The first column in Table 5 gives the parameter that
we have varied; the second one the scale factor applied to the parameter;
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columns distx give the Euclidean distance between the optimal locations of
the facility obtained with the original problem and the modified one; distq
gives the corresponding variation in the quality, computed as quality of the
modified problem minus quality of the original problem; and accordingly,
diff ΠPP and diff G give the variation in the objective and cost functions,
respectively.

Remember from Section 6.1 that for u = 0.5 the optimal solution of the
original problem was to locate the facility at Alcantarilla with α = 0.50, for
u = 1.5 the location was at Murcia with α = 3.87, and for u = 3.0 at some
place to the South between Alcantarilla and Murcia with α = 2.25.

When β0 decreases, G2(α) increases. As a result, in the modified problems
(see the lines for β0 with mult=0.75 or 0.5), the quality of the new facility
decreases (provided it is not at the minimum value 0.5, as it happens when
u = 0.5), which in turns implies that the location of the facility has also to be
moved to a different place. Depending on the final combination of location
and quality the total cost may increase or decrease, but the profit always
decreases. On the other hand, when β0 increases (see the lines for β0 with
mult=1.33 or 2.00), the opposite happens.

Something similar happens with β1. When it decreases, so doesG2. Hence
the quality of the new facilities increases, which in turn provokes a change
in the location. And the optimal profit always increases (although the total
cost may decrease or increase). The opposite happens when β1 increases.

Concerning the parameter ϕi0, it has a smaller influence in the results
than β0 or β1. Notice that G2, as an exponential function, changes more
than G1 when varying its parameters. In addition to not changing too much,
the shape of the modified location cost function is very similar to that of the
original one, so the entire objective function does not change considerably.
When ϕi0 increases, the cost due to the location decreases. This provoke a
change in the location, which in turn implies a change in the quality. And
the final profit increases. The opposite happens when ϕi0 decreases.

As for the parameter ϕi1, its influence in the objective function value is
not too big, either. Again, as expected, when ϕi1 decreases, the cost increases
and hence ΠPP decreases, and viceversa.

8. Solving large problems: a computational study

As each choice rule may lead to a very different location and quality for
the new facility to be located, it is important to have effective methods for
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solving the corresponding location problems. For the probabilistic choice rule
we can find, in literature, both rigorous and heuristic methods (see Fernández
et al. (2007), Redondo et al. (2009a)), and even parallel implementations of
the heuristic proposed to cope with real-size problems (see Redondo et al.
(2008)). Concerning the partially probabilistic choice rule, we have seen that
the interval branch-and-bound algorithm iB&B described in Subsection 4.1
can manage small/medium size problems. It can also solve some large size
problems, as we will see in this section, although heuristic procedures, like
the one proposed in Subsection 4.2, are required in general. But what is
the size of the largest problems that can be solved with iB&B? Is UEGO
a trustworthy algorithm for solving competitive facility location and design
problems when customers follow a partially probabilistic choice rule? These
research questions are studied in this section.

All the computational studies have been carried out in a cluster with
18 nodes of shared memory and 8 GPUs. Each node has 16 cores (Intel
Xeon E5 2650) and 64 GB of memory and 128 GB of solid-state drive. Each
problem was run in one of the cores (one problem at a time). The algorithms
have been implemented in C++. For the iB&B method we used the interval
arithmetic in the PROFIL/BIAS library (Knüppel 1993).

Two new sets of location problems have been used to evaluate the per-
formance of the algorithms. For the first one, 5 problems with n = 5000
demand points have been generated for each of the 4 settings considered, by
randomly choosing its parameters uniformly within the intervals described
in Subsection 6.2. Something similar was done to generate the second set,
composed of 20 problems with n = 10000 demand points. The actual set-
tings employed can be seen in tables 6 to 9. Furthermore, each problem was
solved for the threshold values u = 0 (i.e., with the classical probabilistic
choice rule), 0.5, 1 and 2. It is important to highlight that the interval B&B
algorithm applied to solve the problems with u = 0 has been the same as
the one applied to the problems with a strictly positive threshold (hence,
only discarding tests without differentiability have been used), in order to
study how the increase in the threshold value affects the algorithm. Notice,
however, that using the method described in Fernández et al. (2007), which
also includes discarding tests which make use of the differentiability of the
objective function, more problems with u = 0 could be solved, and faster.

The first important remark to make is that iB&B was not able to solve
the problems for all the threshold values. This has been specified in the
column labelled ‘u’ in tables 6 and 8, where the u values for which iB&B
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was able to solve the problem are shown. As we can see, except for the first
problem with setting (n = 5000, jmax = 50, k = 12), whenever iB&B was able
to solve a given problem for a given value u′, then it was also able to solve
the problem for all the thresholds u ≥ u′, which seems to suggest that the
difficulty of the problem decreases as u increases. Note, however, that iB&B
was not able to solve the problems with u = 0, and just 5 out of 40 problems
with u = 0.5 were solved within the prescribed accuracy. In fact, as it can
be seen in Table 8, half of the problems with n = 10000 demand points were
not solved by iB&B for none of the threshold values (the computer ran out
of memory). This clearly shows the difficulty of the problem at hand, and
the need for a heuristic method to cope with large-size problems.

Tables 6 and 8 summarize the results obtained by the algorithms for
the instances where iB&B was able to provide a solution. The first column
refers to each of the five problems of each setting. Then we have seven
columns related to iB&B. Column ‘Time’ gives the average time (in seconds)
employed by iB&B in solving the problems with the threshold values shown
in column ‘u’. The next three columns indicate the corresponding average
for the minimum, best and maximum objective value, as offered by iB&B. To
be more precise, when solving a problem (with a given threshold value) with
iB&B, we obtain a list of boxes LPP = {y1, . . . ,yr} and the best point found
by the algorithm ybest. min{ΠPP (yl) : l = 1, . . . , r} (resp. max{ΠPP (yl) :
l = 1, . . . , r}) gives the minimum (resp. maximum) objective function value
at any point in the solution boxes. Column ‘Πmin’ shows the average of the
lower limits, ‘Πmax’ that of the upper limits, and ‘Πbest’ the average of the
ΠPP (ybest) values. Column ‘Wid’ indicates the average of the width of the

intervals [min{ΠPP (yl) : l = 1, . . . , r},max{ΠPP (yl) : l = 1, . . . , r}] and
‘S.D.’, the corresponding standard deviation.

The next eight columns refer to the heuristic UEGO. Since it is a stochas-
tic algorithm, each run may lead to a different solution. To take this fact
into account, each problem has been solved 5 times with UEGO, and the
following values have been computed: the average CPU time employed in
solving the problem in the 5 runs, the maximum Euclidean distance between
any pair of solutions, the minimum, average and maximum objective function
values of the solutions and the corresponding standard deviation, the average
reduction in CPU time as compared to the iB&B method and finally the per-
centage of successes (we say that UEGO has solved the problem successfully
in a given run when the solution provided by UEGO is included in one of the
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solution boxes provided by iB&B). The figures in the columns corresponding
to the UEGO algorithm give, in the same order, the averages of those values:
in tables 6 and 8 when considering only the problems solved by iB&B, and
in tables 7 and 9 considering the problems for all the values of u. Notice
that in tables 7 and 9 we omit columns ‘T.R.’ (average time reduction) and
‘Succ’ (average percentage of success), as the interval algorithm is not able
to solve all the generated problems.

As we can see in tables 6 and 8, the best point found by the interval
algorithm is (very close to) the optimal one, as its objective value Πbest is very
close to the upper bound Πmax (remember that the optimal objective function
value lies within the interval [Πbest,Πmax]). And even though the lower bound
Πmin is not that close to Πbest (see column ‘Wid’), the relative width of the
interval [Πmin,Πmax] is always less than 0.0025. As usual with branch-and-
bound methods, the CPU time employed by iB&B is quite erratic: some
problems are solved in just 314 seconds (see problem (5000, 50, 25)1), whereas
others require more than 68274 seconds (see problem (5000, 100, 50)3). The
CPU time employed by UEGO is also a bit erratic, but not as much as that
of iB&B.

UEGO is rather robust. As we can see in tables 6 and 8, it has 100%
success in all the problems solved by iB&B, i.e, in all the problems and in
all the runs, the solution provided by UEGO was always included in one
of the solution boxes provided by iB&B. In fact, we can see that the min-
imum, average and maximum objective function values obtained by UEGO
are always about the same (see also column ‘Dev’). Not only is the objective
function value the same in all the runs, but the solution point offered by
the algorithm is also the same, as can be seen in column ‘Dist’. This is also
true when considering all the problems, as can be checked in tables 7 and
9: in only 2 out of 40 settings is the average Dev greater than 0.1, and in
only 4 settings is the average Dist greater than 0.1. Also notice that the
worst objective function value found by UEGO in any of the runs is usually
better than or equal to Πbest. And this using a tiny fraction of the CPU time
employed by iB&B (see the values of the time reduction in column ‘T.R.’).

Hence, we can conclude that the rigorous iB&B can manage instances
with up to 1000 demand points without difficulties, but it starts experienc-
ing problems with instances with 5000 demand points. On the other hand,
UEGO is a trustworthy heuristic method, able to solve problems with up to
10000 demand points without difficulties and requiring less than 13 minutes.
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9. Conclusions and future research lines

An extension of the classical probabilistic choice rule has been introduced
and studied. According to the modified rule, called partially probabilistic
choice rule, a customer, in order to satisfy his/her demand, only patronizes
those facilities for which he/she feels an attraction greater than or equal to
a threshold value, and the demand is split among them proportionally to
their attraction. Unlike most of the choice rules employed in literature, the
threshold value implicitly implies that there may be some unmet demand.
Hence, the model is suitable for inessential goods.

The influence of the choice rule in the location of competitive facilities
has been analyzed. In particular, the problem of locating a single new facility
in the plane has been considered. The corresponding location problem for
profit maximization has been formulated, and a rigorous interval branch-and-
bound method (iB&B), as well as a heuristic evolutionary algorithm (UEGO)
have been proposed to cope with the problem.

According to the computational studies, the optimal location and quality
of the new facility as well as the profit obtained by the chain and by the new
facility may vary considerably depending on the customer choice rule em-
ployed. Hence, the selection of the choice rule to be used in real applications
should be made with care. In particular, although the assumption of the
probabilistic choice rule makes the problem more computationally tractable,
it should only be used when customers really patronize all the existing fa-
cilities because even a small threshold value may lead to a very different
solution.

As for the solution procedures, iB&B can solve problems with up to 1000
demand points rigorously. For larger instances, the use of the evolutionary
algorithm UEGO is recommended, as it is robust method.

The extension of the single facility location model with partially proba-
bilistic choice rule to the case of the location of more than one facility, and
to the case where competitors react by locating new facilities too, will be
analyzed in the future. The use of threshold values in other existing choice
rules is another line for future research.

A modification of the partially probabilistic choice rule is required to
handle essential goods, since in that case all the demand has to be served.
But what if at a given demand point the attraction towards any of the fa-
cilities falls below the minimum threshold level? One possibility is that the
demand at that demand point be served by the most attractive facility for
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that demand point (hence, all the customers at that demand point will go
the same facility, the most attractive for them, similarly to the customers
of the demand points for which there is only one facility with an attraction
level above the threshold). This modified rule requires a deeper study, as the
objective function should be reformulated.

As already highlighted in Serra et al. (1999), competitive location is a dif-
ficult field not only because it involves rather complex mathematical models,
but also because customer behavior cannot easily be transcribed into neat
equations. The model presented in this paper is just an approximation to
the real world. More research is needed on this aspect of customer behavior
modeling.
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Table 7: UEGO results for problems with n = 5000 demand points.

(m, k)prob Time Dist Min Aver Max Dev

(50, 12)1 168.1 0.019 7563.0 7563.0 7563.1 0.049
(50, 12)2 126.9 0.000 7220.4 7220.4 7220.4 0.001
(50, 12)3 132.7 0.001 6580.3 6580.3 6580.4 0.013
(50, 12)4 126.3 0.000 7976.9 7976.9 7976.9 0.002
(50, 12)5 190.1 0.015 6455.3 6455.3 6455.3 0.013

average 148.8 0.007 7159.2 7159.2 7159.2 0.016

(50, 25)1 206.2 0.000 9891.3 9891.3 9891.3 0.001
(50, 25)2 200.5 0.000 13645.7 13645.7 13645.7 0.003
(50, 25)3 279.3 0.005 13421.8 13421.8 13421.8 0.006
(50, 25)4 175.3 0.000 11390.6 11390.6 11390.6 0.002
(50, 25)5 270.4 0.000 11630.7 11630.7 11630.7 0.001

average 226.4 0.001 11996.0 11996.0 11996.0 0.003

(100, 25)1 319.1 0.039 5132.1 5132.2 5132.2 0.035
(100, 25)2 241.3 0.014 5175.9 5176.0 5176.0 0.008
(100, 25)3 288.9 0.057 5380.5 5380.6 5380.6 0.040
(100, 25)4 203.6 0.027 7543.6 7543.6 7543.6 0.004
(100, 25)5 423.8 0.028 4946.4 4946.4 4946.4 0.021

average 295.3 0.033 5635.7 5635.8 5635.8 0.022

(100, 50)1 221.7 0.007 16070.6 16070.6 16070.6 0.002
(100, 50)2 274.8 0.000 8975.2 8975.2 8975.2 0.002
(100, 50)3 325.6 0.004 9084.5 9084.5 9084.5 0.001
(100, 50)4 285.0 0.013 14853.1 14853.1 14853.2 0.036
(100, 50)5 373.1 0.009 16261.5 16261.5 16261.5 0.007

average 296.0 0.007 13049.0 13049.0 13049.0 0.010
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Table 9: UEGO results for problems with n = 10000 demand points.

(m, k)prob Time Dist Min Aver Max Dev

(100, 25)1 763.1 0.010 9818.8 9818.8 9818.8 0.006
(100, 25)2 631.9 0.006 9794.8 9794.8 9794.8 0.012
(100, 25)3 629.2 0.046 10851.0 10851.1 10851.1 0.043
(100, 25)4 480.3 0.145 11424.5 11424.8 11425.0 0.165
(100, 25)5 534.0 0.002 7739.7 7739.7 7739.7 0.013

average 607.7 0.042 9925.8 9925.8 9925.9 0.048

(100, 50)1 729.4 0.002 15296.8 15296.8 15296.8 0.000
(100, 50)2 857.6 0.009 19886.6 19886.6 19886.6 0.012
(100, 50)3 435.3 0.010 18422.5 18422.6 18422.6 0.038
(100, 50)4 678.0 0.081 15446.0 15446.0 15446.0 0.013
(100, 50)5 837.9 0.000 16921.3 16921.3 16921.3 0.002

average 707.6 0.020 17194.6 17194.7 17194.7 0.013

(200, 50)1 527.3 0.000 6468.9 6468.9 6468.9 0.000
(200, 50)2 660.7 0.051 8108.3 8108.5 8108.5 0.074
(200, 50)3 679.8 0.108 7095.2 7095.3 7095.4 0.072
(200, 50)4 529.6 0.220 9303.7 9303.9 9304.0 0.110
(200, 50)5 691.1 0.105 7056.1 7056.1 7056.2 0.051

average 617.7 0.097 7606.4 7606.5 7606.6 0.061

(200, 100)1 903.4 0.098 18956.1 18956.1 18956.2 0.007
(200, 100)2 912.4 0.128 13691.1 13691.1 13691.2 0.037
(200, 100)3 884.9 0.000 12457.5 12457.5 12457.5 0.000
(200, 100)4 626.4 0.003 18128.4 18128.4 18128.4 0.001
(200, 100)5 594.2 0.059 19783.6 19783.6 19783.7 0.015

average 784.3 0.058 16603.3 16603.3 16603.4 0.012
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