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Edina Szűcs 1,5, Csaba Tömböly 1, Gyongyi Horvath 4, Sándor Benyhe 1 and László Vécsei 3,6,*

1 Institute of Biochemistry, Biological Research Center, Temesvári krt. 62., H-6726 Szeged, Hungary;
zador.ferenc@gmail.com (F.Z.); dvoracsko.szabolcs@brc.mta.hu (S.D.); szucsedina7@gmail.com (E.S.);
tomboly.csaba@brc.mta.hu (C.T.); benyhe.sandor@brc.mta.hu (S.B.)

2 Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged,
Hungary; gabor.balazs.nagy@gmail.com

3 Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged,
Semmelweis u. 6., H-6725 Szeged, Hungary

4 Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
kekesi.gabriella@med.u-szeged.hu (G.K.); horvath.gyongyi@med.u-szeged.hu (G.H.)

5 Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10.,
H-6720 Szeged, Hungary

6 Interdisciplinary Excellence Center, Department of Neurology, University of Szeged, Semmelweis u. 6.,
H-6725 Szeged, Hungary

* Correspondence: vecsei.laszlo@med.u-szeged.hu; Tel.: +36-62-545-351
† These authors contributed equally to the work.

Academic Editor: Raffaele Capasso
Received: 30 August 2019; Accepted: 14 October 2019; Published: 15 October 2019

����������
�������

Abstract: Schizophrenia, which affects around 1% of the world’s population, has been described as
a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms
remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have
yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in
both the development and manifestation of schizophrenia, which have been extensively studied and
reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms
in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common
points and potential interactions between kynurenines and the ECS in schizophrenia, which include
(i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their
presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising
pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.

Keywords: cannabinoids; endocannabinoids; cannabinoid receptors; kynurenines;
kynurenine pathway; schizophrenia

1. Introduction

Schizophrenia, which is among the major psychiatric syndromes, affects approximately 1% of the
population worldwide. The combined economic and social costs associated with this disorder rank it
as the 15th highest cause of disease-related disabilities worldwide [1]. Schizophrenia is characterized
by positive symptoms (i.e., hallucination, delusions, confused thought, and disorganized speech),
negative symptoms (i.e., asocial behavior, blunted emotions and motivation, affective flattening,
alogia, and avolition), and cognitive dysfunctions. Currently used antipsychotic medications have
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displayed insufficient efficacy and are mostly restricted to the improvement of positive symptoms,
given their limited or no effect on negative symptoms and cognitive impairments. Although the exact
pathophysiology of schizophrenia still remains unknown, certain theories have emerged, which involve,
for instance, the dopaminergic and glutamatergic systems [2]. Recently, the endocannabinoid system
(ECS) and kynurenic acid (KYNA) hypotheses—an extension of the glutamatergic dysfunction
model—have gained attention.

KYNA, kynurenines, and their associated elements (see Section 2.1.) share several physiological
functions with the ECS (see Section 3.1.). Furthermore, both systems are similarly dysfunctional in
schizophrenia [3,4]. This has led to the assumption of their interaction, which could be utilized for
therapeutic applications. This concept has been recently discussed by us [5] and others [6] in reviews.

Both kynurenines and the ECS have been separately implicated in schizophrenia and discussed
previously in numerous publications (Figure 1, Table 1). However, their common points and potential
interactions relevant to schizophrenia have yet to be reviewed. Thus, the present review aims to
gather and highlight related data and draw attention to potential interactions that might help us
better understand the pathology/etiology of schizophrenia. Although data describing the direct
interaction between the two systems in schizophrenia may be missing in some cases, multiple
overlapping functions/alterations in the two systems indicate the possibility of an interaction.
Accordingly, such potential interactions will be the focus of this review. To obtain a better overview
of these points, this review will cover a separate general introduction to kynurenines and the ECS.
Additionally, possible hypotheses for the mechanism of schizophrenia related to this review will be
discussed in the appropriate sections (see Section 2.2., Section 3.2., Section 4.2.1., and Section 4.4.1.).
Finally, new potential drug targets for both systems will also be discussed (see Table 1).
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Table 1. The main studies reviewing aspects of schizophrenia that are shared by kynurenines and the
endocannabinoid system (ECS). Reviews discussing the main therapeutic targets for kynurenines and
the ECS relevant to schizophrenia are also indicated separately.

Common Points and
Therapeutics Kynurenines ECS

Glutamatergic, dopaminergic,
and GABAergic systems [7,8] [9,10]

Astrocytes [11] [12]

Inflammation [13–17] [18–21]

Therapeutics [7,22–27] [28–30]

2. Kynurenines and Their Role in Schizophrenia

2.1. Kynurenines and Associated Elements

2.1.1. The Kynurenine Pathway

The kynurenine pathway (KP) is a collection of metabolic substances and enzymes present in
the synthesis and degradation of l-kynurenine (l-KYN). This process is the main metabolic route of
tryptophan (Trp) (Figure 2). The initial and rate-limiting step in the KP consists of two iron-dependent
enzymes, indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and IDO2) and tryptophan 2,3-dioxygenase
(TDO). These enzymes embed molecular oxygen through the 2–3 bond of the Trp indole moiety. IDO is
a monomer found in the central nervous system (CNS), whereas TDO is a homotetramer having stiff
substrate selectivity, and it occurs primarily in peripheral tissues, especially in hepatic tissue. IDO and
TDO catalyzes Trp to N-formyl-l-kynurenine by opening the Trp ring and further hydrolyze it to l-KYN
by formamidase. l-KYN can cross the blood–brain barrier completely and exert neuroprotective effects.
Roughly 60% of l-KYN present in the CNS is absorbed from the blood by glial cells.

l-KYN can be converted via three different pathways. The first metabolic route involves the
conversion of l-KYN into anthranilic acid by kynureninase and further into 3-hydroxyanthranilic
acid (3-HA) by 3-hydroxy-anthranilic acid 3,4-dioxygenase. The second branch of the KP begins
with the hydroxylation of l-KYN at the third position by kynurenine 3-monooxygenase (KMO),
which produces 3-hydroxykynurenine (3-HK) that can be further converted into xanthurenic acid
and 3-HA. Notably, anthranilic acid can also be converted into 3-HA, which can be further converted
into pyridine-2,3-dicarboxylic acid or quinolinic acid (QUIN), which is an N-methyl-d-aspartate
receptor (NMDAR) agonist that causes lipid peroxidation [31]. In the final step of this KP branch,
QUIN is then degraded into nicotinamide adenine dinucleotide (NAD+) [32]. The last branch of
the KP starts with the conversion of l-KYN into KYNA by kynurenine aminotransferases (KATs),
which have four subtypes with various biochemical profiles [33]. In contrast to QUIN, KYNA is
an endogenous glutamate receptor antagonist. Under physiological conditions, the KAT II enzyme is
responsible for the biosynthesis of KYNA in the brain [34]. KATs are chiefly present in astrocytes [35]
(see Section 4.3.2.), unlike other enzymes (e.g., KMO) that are primarily expressed in microglia [36].
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2.1.2. KYNA and Its Target Receptors

In 1853, KYNA was first discovered in dog urine by a German chemist, Justus von Liebig.
After 50 years, Ellinger and Homer revealed that KYNA is produced during Trp metabolism.
This metabolic route for Trp was first described in 1947 in a process called the KP [37]. Almost all
KP metabolites have a broad spectrum of biological effects and have been associated with
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numerous disorders [38], such as multiple sclerosis [39], Parkinson’s disease [40], migraine [41],
and schizophrenia [2], which will be further discussed.

KYNA can influence different types of receptors. Accordingly, it behaves as an antagonist at
the strychnine-insensitive glycine-binding site of NMDARs at low concentrations [42], while also
blocking the glutamate-binding site of NMDARs at higher doses [43]. Moreover, KYNA causes
weak antagonistic effects on kainate- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)-sensitive glutamate receptors [42], with its impact on AMPA receptor-mediated action being
concentration dependent. This effect is facilitatory at low concentrations (nanomolar to micromolar)
and inhibitory at high concentrations (micromolar to millimolar) [44]. Although published data
have suggested that KYNA also functions as an α7 nicotinic acetylcholine receptor (α7nAChR)
antagonist [45] by reducing the presynaptic release of glutamate, this concept is currently under
debate [46]. Another review reported that KYNA can be considered a bona fide endogenous
modulator for α7nAChR, although it is a complex phenomenon that depends mostly on methodological
considerations [47]. Furthermore, KYNA has an agonistic effect on the G protein-coupled receptor
35 (GPR35) [48,49], as well as on the aryl hydrocarbon receptors (AHR) [50]. Our group previously
demonstrated that KYNA displays diverse effects depending on its concentration (few hundred
nanomolar vs. micromolar), possibly through different receptor targets [51–53].

2.2. The KYNA Hypothesis of Schizophrenia

The KYNA hypothesis of schizophrenia has been studied and reviewed previously by numerous
authors [2,4,26,54,55]. This section will briefly discuss the background of this hypothesis, which is based
on the finding that exogenous NMDAR antagonists—such as phencyclidine and ketamine—induce
schizophrenia-like symptoms that can be mimicked by KYNA [4,7,56–58]. The hypothesis is also
supported by clinical data, given that patients with schizophrenia show increased KYNA levels in the
prefrontal cortex (PFC) (2.9 pmol/mg protein vs. 1.9 pmol/mg protein) [59] and cerebrospinal fluid
(CSF) (~1.7 vs. 1 nM) [60]. According to preclinical data, this elevation can lead to behavioral
and neurotransmission changes associated with schizophrenia, such as cognitive deficits and
disrupted glutamatergic, γ-aminobutyric acidergic (GABAergic), cholinergic, and dopaminergic
signaling [56,61–69]. Additionally, the inhibition of KYNA formation has been found to improve such
symptoms [70] (see Section 5.3.). The increase in KYNA levels in schizophrenia is partly due to the altered
enzyme activity/expression in the KP, which shifts Trp metabolism to KYNA production [8]. KYN levels
in the CSF and cortical brain regions are also increased in patients with schizophrenia [71,72], whereas
the neurotoxic branch of the KP (QUIN, 3-HK) seems to be unaffected [59,73,74]. Additionally, studies
have found reduced expression of KYNA target receptors, namely, NMDAR [75] and α7nAChR,
in postmortem brain samples of patients with schizophrenia [76,77].

3. The Endocannabinoid System and Its Role in Schizophrenia

3.1. Overview of the Endocannabinoid System

The ECS, which mainly consists of two well-characterized receptors, primarily endogenous
lipid-derived ligands called endocannabinoids, and enzymes responsible for their synthesis and
degradation, is involved in various physiological and pathological processes of the CNS and certain
peripheral organs [19,78].

To date, two types of cannabinoid receptors, cannabinoid receptor type 1 (CB1R) and
cannabinoid receptor type 2 (CB2R), belonging to the family of Gi/o protein-coupled receptors
(GPCRs) have been cloned [79–81]. Accordingly, their activation inhibits cAMP production,
stimulates mitogen-activated protein kinases, and presynaptically suppresses the release of several
neurotransmitters relevant to schizophrenia (see Section 4.2.3.) [10,82,83]. CB1Rs play a role in
regulating mood or emotions, antinociception, energy balance, immune mechanisms, and endocrine
functions [19,84]. Although CB1Rs are located predominantly in the hippocampus, basal ganglia,
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cortex, amygdala, and cerebellum, they are also highly expressed in the liver, adipose tissues, muscles,
cardiovascular system, and gastrointestinal system (GI) [19,85]. Additionally, CB1Rs are known to be
the most abundantly expressed GPCR in the CNS [86,87]. On the other hand, CB2Rs are expressed
predominantly in immune and hematopoietic cells, although they can also be found in the CNS, such as
in microglia [88]. Generally, CB2Rs have a protective role, they reduce inflammation-induced pain by
controlling cytokine regulation and immune cell migration (see Section 4.4.2.), and they also induce
peripheral antinociception [19,89].

Endogenous cannabinoid receptor (CBR) ligands are hydrophobic lipid-derived compounds,
among which N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) have been
most studied [90–92]. Their degradation is also important, with AEA being rapidly metabolized by
the fatty acid amide hydrolase (FAAH) and 2-AG being hydrolyzed by the monoacylglycerol lipase
(MAGL) enzyme (Figure 3). Blocking the FAAH enzyme has been considered a novel approach for
the treatment of schizophrenia (see Section 5.4.). Furthermore, plant-derived phytocannabinoids,
such as ∆9-tetrahydrocannabinol (∆9THC), the major psychoactive component of cannabis, and the
non-psychoactive cannabidiol (CBD), are also relevant to schizophrenia (see Section 3.2. and Section 5.4.).
Importantly, the psychoactive effects of ∆9THC are mediated through the brain CB1R, the most abundant
GPCR in the brain.

More than 30 years following the discovery and identification of CBRs, structurally diverse
synthetic cannabinoids have been developed and synthesized to investigate their interaction with
the ECS. Among these, the bicyclic CP 55940 and the aminoalkylindole WIN 55212-2 are potent
CB1/CB2 agonists that represent important exogenous cannabinoids in the field of cannabinoid research.
Later generations of synthetic cannabinoids, such as JWH-18, have been found in illicit herbal
mixes (“Spice”) and classified as a Schedule I controlled substance [84,93] in the United States.
Synthetic cannabinoids with high CB1R affinity and potency have been closely associated with the
development of schizophrenia (see Section 3.2.).
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3.2. The Cannabinoid Hypothesis of Schizophrenia

The cannabinoid hypothesis of schizophrenia has recently emerged, based on neuroimaging
reports, postmortem studies, and clinical evidence. Within this hypothesis, we distinguish between
the endogenous and exogenous cannabinoid hypotheses. The former is based on the fact that
ECS deregulation has been observed among patients with schizophrenia [94]. Notably, alterations
in CB1R availability, density, and/or mRNA expression and endocannabinoid levels have been
reported in certain brain tissues and CSF of patients with schizophrenia [94–97]. On the other hand,
the exogenous cannabinoid hypothesis refers to the association between environmental risk factors,
such as frequent and/or early use of cannabis or synthetic cannabinoids, and the development of
schizophrenia among vulnerable individuals, especially adolescents [10,98,99]. ∆9THC administration
can induce positive and negative symptoms, as well as cognitive impairments, resembling those of
schizophrenia among healthy individuals, while exacerbating symptoms among patients already
diagnosed with schizophrenia [100–102]. Moreover, a study by Moore and coworkers showed that
the risk of psychosis increases by approximately 40% among individuals who had previously used
cannabis [103]. Although ∆9THC is mainly responsible for the connections between cannabis and
schizophrenia, and while CBD can offset these associations (see Section 5.4), the cannabis plant itself
contains a large variety of other phytocannabinoids, terpenes, and phenolic compounds, not to mention
their metabolites [104]. This makes it challenging to accurately study the connection between cannabis
consumption and the risk of schizophrenia development.

4. Common Points and Potential Interactions between the Endocannabinoid System
and Kynurenines Relevant to Schizophrenia

4.1. Overview

This main section will review the functions and mechanisms of kynurenines that overlap
with the ECS and their potential interactions related to schizophrenia. Based on the literature,
the following three main aspects that form the basis for known and potential interactions between
kynurenines (mainly KYNA) and the ECS will be discussed in the subsequent sections: (1) glutamatergic,
dopaminergic, and GABAergic neurotransmission, given that KYNA and CB1R regulate all three;
(2) astrocytes, given their significance in KYNA production and CB1R function; and finally
(3) inflammation associated with schizophrenia, given that both the KP and ECS play important
roles in this mechanism. All three aspects will be discussed in separate sections while also
underscoring the basics of astrocyte functioning and other related, yet undiscussed hypotheses
of schizophrenia (dopaminergic, glutamatergic, and GABAergic neurotransmission and inflammation).
Additionally, each section will be accompanied by tables summarizing the main studies related to the
given section (see Tables 2–4).

4.2. Glutamatergic, Dopaminergic, and GABAergic Transmission Regulation by Kynurenines
and the Endocannabinoid System in Schizophrenia

4.2.1. The Basics of the Dopaminergic, Glutamatergic, and GABAergic Hypothesis of Schizophrenia

Dysregulation of brain neurotransmission, including dopaminergic, glutamatergic, and GABAergic
systems, forms the basis for neurochemical theories on the etiology of schizophrenia [105].
Considering that all aforementioned transmitters are involved in the control of several cerebral
processes, including locomotor functions, affect, motivation, and learning, abnormal activities therein
have been thought to be associated with many schizophrenia symptoms [105–108].

While the mesolimbic dopaminergic pathway may play a role in the development of positive
schizophrenia symptoms in the presence of excess dopamine and/or increased dopamine D2 receptor
expression [109], negative symptoms and cognitive deficits are thought to be caused by low mesocortical
dopamine levels and decreased dopamine D1 receptor density in the PFC [110]. However, clear
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limitations for this hypothesis exist, given that many aspects of schizophrenia cannot be explained
based on dopaminergic dysfunction alone, and many patients remain persistently disabled despite
treatment with various dopaminergic compounds.

Glutamatergic theories of schizophrenia have been based on the ability of NMDAR antagonists,
such as phencyclidine (PCP) and ketamine, to induce schizophrenia-like symptoms and on disturbances
of NMDAR-related gene expression and metabolic pathways accounting mainly for negative symptoms
and some cognitive dysfunctions of the disorder [111–113]. Reduced NMDAR activity on inhibitory
(GABAergic) neurons leads to disinhibition of glutamate neurons. Theoretically, such abnormally
increased glutamatergic activity through AMPA and metabotropic glutamate (mGLUT) receptors causes
overactivation of the mesolimbic and underactivation of the mesocortical dopaminergic pathways,
leading to morphological and structural brain changes resulting in psychosis [113,114].

Postmortem studies have widely reported alterations in multiple GABA-related markers
among patients with schizophrenia [115]. Dysfunction in the parvalbumin-containing subset of
cortical inhibitory neurons together with both pre- and postsynaptic components of GABAergic
neurotransmission could also play an important role in the clinical features of schizophrenia [108,116].
One of the most consistent postmortem findings in schizophrenia is reduced glutamic acid decarboxylase
67 (GAD 67) mRNA expression and consequent attenuation of inhibitory GABAergic neurotransmission
across multiple brain areas affected by schizophrenia [108,117]. These abnormalities could create
disturbances mainly related to emotional functioning and cognitive control. Additionally, one clinical
study reported lower GABA concentrations in CSF samples from patients with first-episode psychosis
compared with those from healthy volunteers, which were associated with total and general Positive
and Negative Syndrome Scale scores, illness severity, and poor performance in a test of attention [118].
However, neuroimaging studies measuring in vivo GABA have revealed no consistent alterations in
schizophrenia that might be hypothesized from animal models and postmortem data [119]. The absence
of large, detectable differences in GABA concentrations could reflect normalization via compensatory
upstream mechanisms that tend to increase the synaptic activity of GABA [115], which include
the reduction in GABA transporter 1 mRNA expression on presynaptic neurons (responsible for
GABA reuptake) and upregulation of GABAA receptors in postsynaptic pyramidal neurons [108,120].

KYNA and cannabinoids have been known to modulate the abovementioned neurotransmissions,
which will be discussed below and summarized in Table 2.

Table 2. Kynurenines and associated elements (enzymes, receptors) and members of the
ECS participating in glutamatergic, dopaminergic, and GABAergic neurotransmission associated
with schizophrenia.

Members References

Kynurenines and associated elements

KYNA [7,8]
α7nAChR [121]

ECS

AEA, 2-AG [122–124]
CB1R [10,125–127]

4.2.2. KYNA and Dopaminergic/Glutamatergic/GABAergic Interactions in Schizophrenia

Preclinical studies have provided ample evidence to suggest that KYNA has an inverse bidirectional
relationship with several neurotransmitters, including glutamate, dopamine, and GABA, which could
contribute to all symptom domains of schizophrenia [7,8]. Accordingly, though KYNA is generally
considered to be protective against QUIN-induced excitotoxicity, its abnormal accumulation beyond
physiological concentrations may cause NMDAR hypofunction on cortical GABA interneurons.
This may lead to reductions in GABAergic neurotransmission and disinhibition of cortical glutamatergic
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projections [128], as well as an excitatory effect on ventral tegmental area (VTA) dopamine firing
induced by the blockade of the NMDAR glycine site. Meanwhile, electrophysiological studies have
shown that KYNA appears to have an opposite action on dopamine neurotransmission via α7nAChR
antagonism, consequently reducing dopamine release and promoting cognitive impairments [121].

4.2.3. The Endocannabinoid System and Dopaminergic/Glutamatergic/GABAergic Interactions
in Schizophrenia

Given that CB1Rs inhibit the release of several neurotransmitters, including dopamine,
GABA, serotonin, glutamate, noradrenaline, and acetylcholine, the ECS may be considered
a key neuromodulatory pathway relevant in the etiology of multiple mental disorders [10].
Increasing evidence has suggested complex functional interactions between these neurotransmitter
systems at the anatomical and pharmacological levels. Generally, endocannabinoids are released
on demand by the postsynaptic neurons and travel retrogradely across the synapse, binding to and
activating CB1Rs located on the presynaptic terminals [125]. Such activation results in the short- or
long-term decrease in neurotransmitter release [126].

VTA dopaminergic cells can be considered a hub between brain regions processing sensory and
cognitive information that use the endocannabinoid lipid molecules as metabolic and homeostatic signal
detectors, influencing cell function [125]. The effects of cannabinoids/endocannabinoids on dopamine
transmission and dopamine-related behaviors are generally indirect and exerted through decreased
neurotransmission [94]. Thus, cannabinoid agonists reduce glutamate release from hippocampal
neurons [129], which results in a net increase in cortical pyramidal neuron excitability via the activation
of CB1Rs located on inhibitory GABAergic cells [127]. However, Steffens et al. had demonstrated that
the existence of CB1Rs in human neocortical dopamine terminals also directly affects cortical dopamine
input [130]. All these mechanisms likely contribute to cannabinoid-induced learning and memory
impairments. Furthermore, certain endocannabinoids (e.g., N-arachidonoyl dopamine and AEA) may
directly activate transient receptor potential vanilloid 1 channel (TRPV1) receptors [125,131], thereby
allowing direct facilitatory regulation of dopamine function (e.g., at the nucleus accumbens) that
influences the motivated behavior and reward process [9].

4.3. Astrocytes as a Potential Stage for the Endocannabinoid System and Kynurenine Interaction
in Schizophrenia

4.3.1. Overview of Astrocytes and Their Role in Schizophrenia

For many years, astrocytes were believed to be passive brain elements that maintain structural and
metabolic support for neurons [12]. However, recent studies have clearly demonstrated that astrocytes
are vital functional components of synapses, forming the so-called tetrapartite synapse, including
pre- and postsynaptic elements, other distinct glia cells aside from astrocytes (e.g., NG2 or microglia),
and the extracellular matrix [132–134]. In the tetrapartite synapse, astrocytes together with the
extracellular matrix create a synaptic cradle providing the basis for essential processes contributing to
neuroplasticity, such as synaptogenesis and synaptic maturation, isolation, and maintenance [135].
Accordingly, one recent review reported that each element of the tetrapartite synapse is disrupted in
schizophrenia [136]. CB1Rs and certain enzymes of the KP in astrocytes have been strongly associated
with schizophrenia and will be reviewed in this section, together with KYNA and its receptor targets
in astrocytes. Moreover, Table 3 summarizes the participating members for kynurenines and associated
elements and the ECS, as well as their common points, in astrocytes involved in schizophrenia.
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Table 3. Kynurenines and associated elements (enzymes, receptors) and members of the ECS present
in astrocytes and involved in schizophrenia. The table also highlights the common points between the
two systems.

Members and Features References

Kynurenines and associated elements

KYNA [137]
KAT II [35]

α7nAChR 1 [138]

ECS

AEA, 2-AG [122,123]
DAGL, MAGL [139,140]

CB1R [141]

Common points

Involved in the THC-induced enhanced glutamate release [142]
Co-localized CB1R and α7nAChRs mRNA [142]

1 although other KYNA receptors are present in astrocytes (see Section 4.3.2.), α7nAChRs have been the most
promising candidate for mediating the effects of KYNA associated with schizophrenia [61].

4.3.2. CB1Rs, KYNA Production, and Target Receptors of KYNA in Astrocytes

CB1Rs located on astrocytes are particularly interesting given their very low expression levels
therein [141,143,144], which is in contrast to their significance in terms of synaptic transmission,
long-term synaptic plasticity, and thus working memory [145–147]. Another interesting aspect of
astrocyte-derived CB1Rs is their coupling to Gq/11 type G-proteins, which activates phospholipase
C and produces inositol triphosphate [147]. This differs from the more widespread Gi/o type
coupling, which inhibits adenylate cyclase and cAMP production [78]. Additionally, 2-AG and
AEA endocannabinoids are also produced in astrocytes [122,123]. In fact, CB1Rs and the 2-AG
synthesizing enzyme, diacylglycerol lipase (DAGL; Figure 3), are co-expressed in close vicinity,
although this was demonstrated in spinal astrocytes from rats [139]. Moreover, MAGL, the enzyme
responsible for 2-AG degradation (Figure 3), is also expressed in astrocytes [140].

Astrocytes are key players in the KP given that KYNA synthesis (i.e., the irreversible transamination
of l-KYN to KYNA via KAT enzymes) takes place almost exclusively in such cells throughout
the mammalian brain [35]. Among the KAT enzymes, the type II enzyme is responsible for
approximately 75% of KYNA production in the mammalian brain under normal conditions [137] and
can be found mainly in astrocytes [148], with l-KYN being its only endogenous substrate [33,149].
Additionally, KYNA-producing astrocytes are positioned close to the capillary walls and pericytes
of the blood–brain barrier, which allows these glia cells to effectively accumulate l-KYN from the
circulation and quickly respond to fluctuations in peripheral KYN concentrations [150–153].

α7nAChRs, which are functionally expressed in astrocytes, have been implicated in memory
functions and neuroprotection [138,154]. Given the low abundance of NMDARs, demonstrating
their presence and functionality in astrocytes has remained challenging. Nevertheless, studies
have shown that astrocytic NMDARs are constructed from the same set of seven subunits, albeit
differently configured and assembled compared with neuronal NMDARs [155]. It is now clear
that astrocytic NMDAR activation generates intracellular calcium signaling, which—at least in
hippocampal astrocytes—has been suggested to enhance the release of inhibitory gliotransmitters
(e.g., ATP or endocannabinoids), eventually modulating presynaptic strength [156]. However, further
studies are needed to explore the effect of astrocytic NMDARs on neurotransmission modulation.
To date, functionally active GPR35 receptors have only been demonstrated in cultured astrocytes,
in which the activation of such receptors via KYNA reduces forskolin-induced cAMP production and
ATP-induced calcium transients [48].
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4.3.3. The Role of Astrocytic CB1Rs, α7nAChRs, and KYNA in Glutamate Neurotransmission and Its
Significance in Schizophrenia

Astrocytes play a significant role in glutamate biosynthesis, glutamate–glutamine cycle, glutamate
uptake and release, and d-serine biosynthesis and release, all of which are known to be dysregulated
in schizophrenia [157]. The role of CB1Rs and α7nAChRs in astrocytic glutamate neurotransmission
has been studied in detail. Accordingly, activating the aforementioned receptors stimulates glutamate
release, whereas blocking them inhibits this process [145,158], thereby modulating neuronal excitability.
In fact, studies have demonstrated that astrocyte-derived KYNA reduces glutamate release in the PFC
through α7nAChR. A recent study by Secci and coworkers revealed that CB1R and α7nAChR mRNA
co-localize on rat cortical astrocytes in the medial PFC [142] and are involved in the THC-induced
increase in glutamate release within the same region given that it was inhibited by both rimonabant
and KYNA [142]. Evidence has shown that cannabis use can reduce the negative symptoms of
schizophrenia [159,160], which Secci and coworkers found to be in agreement with their results.
In other words, excessive KYNA levels in the medial PFC associated with schizophrenia reduce
astrocytic glutamate release through the inhibition of α7nAChR, resulting in glutamate and NMDAR
hypofunction in the medial PFC, which is also attributed to the disorder. Thus, cannabis can
attenuate astrocytic-derived glutamate hypofunction and potentially improve the symptoms associated
with schizophrenia. Additionally, astrocytic CB1Rs and KYNA via α7nAChRs may secondarily
modulate dopamine release and the reinforcing properties of THC [161–165].

4.4. The Involvement of Kynurenines and the Endocannabinoid System in the Inflammatory Component
of Schizophrenia

4.4.1. The Inflammatory Hypothesis of Schizophrenia

Numerous genetic, epidemiological, and clinical evidences have suggested that inflammatory
pathways are disrupted in schizophrenia. Moreover, several studies have demonstrated that
individuals with infection or autoimmune diseases are more susceptible to schizophrenia [166–170].
The inflammations associated with schizophrenia, as will be discussed in the following section,
are related to both the CNS and peripheral organs, especially GI inflammation. Several studies have
demonstrated that both the ECS and kynurenines, as well as their related enzymes and receptors,
are involved in inflammation and immune regulation [13,19,111,171]. Although no reported evidence
has yet suggested crosstalk between these two systems in the inflammatory hypothesis of schizophrenia,
many common points indicate its possibility, including inflammatory cytokine regulation, microglial
activation, oxidative stress, GI inflammation, and related microbiome regulation, which will be explored
in the following sections. Participating members and common points in the described mechanisms are
summarized in Table 4.
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Table 4. Kynurenines and associated elements (enzymes, receptors) and members of the ECS that
participate in the inflammatory mechanism of schizophrenia. The table also highlights the common
points between the two systems relevant to this aspect.

Members and Features References

Kynurenines and associated elements

l-KYN, KYNA, 3-HK [15,35,172]
KAT, IDO, KMO [173–175]
GPR35 1, AHR 1 [14,15]

ECS

AEA, 2-AG [176–178]
CB2R, CB1R [19,179]

Common points

Cytokine regulation, microglial activation [19,35,175,177–179]
Oxidative stress [16,17,20,180–184]

KYNA and endocannabinoids communicate with gut microbiome [14,18,185–187]
Involvement in IBD [18,186,188]

Common features of GPR35 and CBRs [49,78,189–191]
1 targeted by KYNA.

4.4.2. Neuroinflammation, Cytokines, and Microglia Activation

A substantial amount of data has shown that acute and chronic CNS inflammation, which can
be induced by infectious agents, environmental toxins, factors, neural lesions, or genetic defects,
is associated with schizophrenia [192,193]. Several inflammatory degradation products, among which
inflammatory cytokines are the most significant [192], have been observed in brain tissues and the CSF
of approximately 50% of patients with schizophrenia [194,195]. Inflammatory cytokines are important
mediators in the communication between the CNS and immune system, with previous studies
thoroughly demonstrating their imbalance in schizophrenia [196,197]. Considering that microglial
dysfunction is also a significant factor in the development of inflammation and schizophrenia,
the microglial hypothesis has been another suggested mechanism contributing to the pathology
of the disorder [193,198–202]. Microglia are the main components of the immune system of
the CNS. Accordingly, systemic inflammation activates microglia, which in turn produce and
release proinflammatory cytokines and reactive oxygen species (ROS), increasing blood–brain barrier
permeability [203]. This allows inorganic and organic toxins to more easily enter the CNS, contributing
to neurological diseases, such as schizophrenia [204]. Microglial overactivation leads to microglial
sensitization or priming, wherein microglia will subsequently induce an exaggerated immune response
to a weak stimulus in the form of higher levels of cytokine production/release and microglial
proliferation [205,206], which can influence the development of schizophrenia [192].

Studies have shown a link among inflammation, Trp metabolism/KP, and schizophrenia [111].
Proinflammatory cytokines, such as interferon-γ (IFN-γ), interleukin 1, and tumor necrosis factor alpha
(TNFα), are able to shift Trp metabolism to l-KYN by increasing IDO enzyme activity [173,174,207,208].
Accordingly, IDO1 expression and enzymatic activity have been demonstrated to be upregulated in
response to infection, resulting in the accumulation of l-KYN and 3-HK, which possess antimicrobial
activity [172]. Interestingly, no pathogen has thus far shown sensitivity to KYNA [172], which has been
demonstrated to have anti-inflammatory and immunosuppressive properties [15]. These properties are
mainly mediated through GPR35 and AHR receptors [15]. Multiple studies have found an association
between Toxoplasma gondii, an obligate intracellular protozoan parasite that causes the infectious disease
toxoplasmosis, and schizophrenia [209–213]. This parasite has been suggested to increase IFN-γ
production, which activates IDO in microglia leading to Trp degradation and L-KYN elevation [214,215].
Consequently, the concentration of other kynurenines increases dramatically, including KYNA in
astrocytes, which were at the peak level 28 days post-infection and continued elevating after 56
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days [213]. This persistent brain KYNA elevation may contribute to the cognitive impairment observed
in schizophrenia [212]. The KAT enzyme, which seems to be cell-type specific, has also been involved
in inflammatory regulation. Reports have shown that IFN-γ alone or in combination with TNF reduced
KAT II, III, and IV mRNA expression in human dermal fibroblast cells [175]. Interestingly, the same
study revealed that KYNA levels were increased in the presence of IFN-γ. In fetal astrocytes, IFN-γ
increased the level KAT I and II transcripts [35], whereas lipopolysaccharide treatment also increased
KAT I but reduced KAT II mRNA expression in the hippocampus [216].

The ECS plays a key role in immunomodulation. Accordingly, both exogenous cannabinoids
and endocannabinoids suppress the production and release of proinflammatory cytokines in both
peripheral organs and the CNS through CB2Rs [19,179]. Another study demonstrated higher CBR
availability on innate immune cells and a simpler correlation network between cytokines and CBR
expression among patients with schizophrenia than among controls [217]. Circulating endocannabinoid
levels have been known to increase several fold during systemic inflammation [176]. This seems
to be supported by the finding of increased AEA levels in the CSF of patients with schizophrenia,
although it is negatively correlated with psychotic symptoms in the disorder [96]. Interestingly, studies
have reported a positive correlation between 2-AG levels and proinflammatory cytokine interleukin
6 concentrations [177,178]. Patients with borderline personality disorder share most of the positive
symptoms with those with schizophrenia and exhibit significantly higher circulating 2-AG and AEA
levels compared with controls [218]. As discussed in the previous sections, cannabis consumption is
a potential risk for the development of schizophrenia in vulnerable individuals, such as adolescents.
Additionally, immunomodulation can be one of the causal background mechanisms of cannabis.
∆9THC has also been shown to reduce cytokine production and secretion in most immune cells of the
CNS. Cytokines play a significant role in neurodevelopment and modulation of neurotransmitter and
neuropeptide systems, including the monoamine system [219], which might explain why adolescence
is the most susceptible period for cannabis smoking. Exogenous cannabinoids can also modify
microglia functioning and thus alter neurotransmission release and neuron architecture [198,220–222].
Additionally, studies have reported that both GPR35—of which the KYNA is an endogenous
ligand—and CB2R are expressed on leukocytes and involved in leukocyte recruitment, which can
be induced by KYNA in the case of GPR35 [223–229]. In fact, GPR35 and CB2R (and CB1R) have
similar structures and receptor signaling pathways [49,78], with studies suggesting a linkage between
GPR35 and cannabinoid receptors through the interconversion of their endogenous ligands, 2-acyl
lysophosphatidic acid and 2-AG [189]. Thus, the aforementioned data may indicate a potential
interaction between GPR35-mediated KYNA signaling and CB2R in inflammatory processes associated
with schizophrenia.

4.4.3. ROS and Oxidative Stress

ROS, such as superoxide or hydroxyl radicals, are byproducts of several enzymatic reactions
related to basic metabolic functions occurring in certain cell compartments, such as mitochondria,
peroxisome, endoplasmic reticulum, cell membrane, or cytoplasm [230]. Oxidative stress refers
to the imbalance between ROS and the class of protective reduction–oxidation enzymes that
detoxify ROS, such as catalase, superoxide dismutases, and enzymes of the glutathione system
(e.g., glutathione peroxidases) [231]. Inflammatory processes are tightly associated with oxidative
stress and ROS production given that the immune system starts to intensely produce ROS in response to
infection, which partly elicits inflammation via immune cell and microglial cytokine production [231].
Inflammatory cytokines, such as TNFα and interleukins 1 and 10, or other inflammation-inducing
signals, such as lipopolysaccharide, thrombin, or oscillatory shear stress, affect ROS production.
Increased ROS levels can activate nuclear factor κ-light-chain enhancer of activated B cells (NF-κB),
which then induces downstream mechanisms, such as antioxidant and inflammatory gene transcription
or proteasome and inflammasome activation [230]. Considerable data have demonstrated increased
oxidative stress in patients with schizophrenia, indicated by increased DNA, lipid, and protein oxidation
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and increased levels of total ROS accompanied by reduced gene levels of antioxidant enzymes [231,232].
Additionally, patients with schizophrenia exhibit mitochondrial dysfunction, which induces oxidative
stress and inflammatory processes [233]. As such, studies have suggested that oxidative stress ties
together certain risk factors of schizophrenia, such as aberrant neuronal migration, synapse formation,
neurotransmission, or neuroinflammation [231].

The KP plays a significant role in maintaining antioxidant balance in the brain. Persistent oxidative
stress via an imbalanced KP may lead to disrupted glutamatergic and dopaminergic neurotransmission
and altered brain functioning (see Section 4.2.) [192,196]. Certain metabolites of the KP (see Section 2.1.1.)
can generate oxidative stress and ROS, such as 3-HK, 3-HA, or QUIN [16,180–182,234–236], with QUIN
also being able to induce lipid peroxidation and mitochondrial dysfunction [16,235,237–240]. On the
other hand, KYNA behaves as an endogenous antioxidant by scavenging free radicals and inhibiting
oxidative stress [182,236,238]. Additionally, a quantitative analysis of schizophrenia-associated serum
metabolites revealed low levels of the antioxidant glutathione accompanied by increased levels of Trp
and kynurenine [241].

The link between the ECS and redox homeostasis has now become evident given the
numerous studies revealing the neuroprotective effects of cannabinoid ligands [183,242,243].
Furthermore, endocannabinoids are significantly involved in cell ROS production given that they
control mitochondria-derived ROS generation [20] notably by altering the expression and/or activity of
mitochondrial electron-transport chain components and/or by promoting changes in mitochondrial
membrane potential via the CB1R [244]. The ECS and related endocannabinoids can also regulate
oxidative stress and lipid peroxidation either through both CBRs or by scavenging free radicals [184,245].
Interestingly, CB1R and CB2R are distinctly involved in oxidative stress regulation, depending on
the cell and injury type and disease progression [245]. Accordingly, CB1R activation enhances redox
imbalance, whereas CB2R activation lowers ROS production [20,21,184].

4.4.4. Gastrointestinal Inflammation and Gut Microbiome

Considering that the GI tract is our body’s largest immune organ and is connected bidirectionally
to the brain through multiple neuronal pathways, disruption in GI function can affect the brain and
has been linked to the development of schizophrenia [246]. Given that the gut–immune barrier and
blood–brain barrier are functionally and structurally similar [247], the hypothesis is that toxic and
bioactive compounds penetrate through the epithelial and endothelial barriers of both the GI tract
and CNS, thereby inducing an immune response [246]. Schizophrenia has also been associated with
GI inflammatory comorbidities, such as irritable bowel syndrome (IBS) and inflammatory bowel
diseases (IBD) [248,249]. The involvement of the gut microbiome in the inflammatory component of
schizophrenia has also been an emerging field. Accordingly, a bidirectional relationship has been
suggested, given that changes in the microbial flora of the gut might lead to schizophrenia or other
neuropsychiatric disorders [250,251], while the brain can also alter the microbial habitat and composition
in the GI [252]. Studies have reported abnormal microbiome function, composition, and amount
in the oropharynx and feces of drug-naive patients with schizophrenia [253–257]. Interestingly,
risperidone—the most common medication for schizophrenia—has been shown to alter fecal bacterial
composition [258].

KYNA has been extensively studied in the GI system. Interestingly, KYNA content gradually
increases along the GI tract, with the distal-most portion having the highest content [14]. Considering
the positive correlation observed between KYNA content and microflora concentration in the small
intestine [186], the gut flora has been suggested to produce the common pool of intestinal KYNA [14].
Notably, certain food and herbs, such as honey, broccoli, or basil, also contain KYNA in micromolar
concentrations [259,260]. Additionally, KYNA may possess both negative and positive effects in bowel
diseases [14]. Accordingly, serum KYNA levels are increased in IBS most probably as a compensatory
mechanism [186] but are reduced in IBD [186]. Moreover, studies have shown that KYNA stimulates
bacterial growth in the GI system at low and medium concentrations [187] but displays antimicrobial
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activity at high concentrations [261]. The GI-related effects of KYNA are mediated through GPR35 [14],
which is highly expressed in the GI tract [49,190] and has been associated with IBD [191].

Endocannabinoids have been known to communicate with the gut microbiome [185] while also
playing an important role in regulating intestinal microbial product entry into the bloodstream and
thus in the development of metabolic diseases [18,19]. Additionally, multiple studies have highlighted
the therapeutic relevance of the ECS in IBD and IBS [18,188]. Cannabinoid receptors are abundantly
expressed in different areas/cells of the GI system, such as on enteric nerves, enteroendocrine cells,
immune cells, and enterocytes [19]. Similar to GPR35, cannabinoid receptors have also been implicated
in IBD [262]. Thus, considering the previously discussed overlapping functional and structural
properties of cannabinoid and GPR35 receptors, their high expression levels in the GI system, and their
common involvement in IBD, another potential area for their interaction within the inflammatory
component of schizophrenia can be surmised.

5. Therapeutic Potentials

5.1. Overview

This section will highlight the therapeutic potentials of the KP and ECS in the treatment
of schizophrenia. Numerous studies have investigated KAT II inhibitors and CBD, which will
be reviewed here (also see Tables 1 and 5). The most appealing approach would be to combine both
types of compounds to achieve a synergistic and more efficacious therapeutic effect. Additionally, these
alternative therapeutic targets might improve the main limitations of currently available medications,
namely, their poor effect on negative symptoms and cognitive impairment, as mentioned in the
introduction. A separate section will discuss the currently available dopaminergic antipsychotic
medications and clinical studies of non-dopaminergic agents in order to assess the potential of KAT II
inhibitors and CBD.

Table 5. A summary of potential therapeutic approaches for schizophrenia by targeting the kynurenine
pathway (KP) and ECS.

Approaches References

Kynurenine pathway

KAT II inhibition [22–25,27]
IDO, TDO KMO inhibition [7,26,263]

ECS

FAAH inhibition (including CBD) [264–271]
CB1R activation [272]
CB1R blockade [273–275]

5.2. Currently Available Medications

The goals in treating schizophrenia include targeting symptoms, preventing relapse, and increasing
adaptive functioning through both pharmacological and non-pharmacological (such as psychotherapy)
treatments whereby the patient can be integrated back into the community [105,276].

Antipsychotic drugs (APDs), which have been primarily used to manage psychosis (including
hallucinations, delusions, disordered thought, or paranoia), have been the mainstay of pharmacological
treatment protocols in schizophrenia as recommended by the National Institute of Health and
Care Excellence, World Health Organization, and the American Psychiatric Association [277–279].
All clinically approved and currently used APDs have nanomolar affinity for the dopamine D2 receptor
and fully or partially block the actions of dopamine in the mesolimbic pathway [280].

Over the past 50 years, numerous first-, second-, and third-generation antipsychotics have been
developed, while dramatic growth in the research of pharmacological schizophrenia treatment has
advanced our understanding of the neurobiology and neuropharmacology of the illness [279,281,282].
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First discovered in the 1950s, first-generation antipsychotics (e.g., chlorpromazine, haloperidol,
and fluphenazine), known as typical APDs, not only have antipsychotic effects but also extrapyramidal
side effects, and cause hyperprolactinemia in association with their full D2 receptor antagonism in the
CNS. First-generation antipsychotics also possess high affinity for muscarinic M1 ACh, histaminergic
H1, and α1 norepinephrine receptors, which can result in partially distinctive side-effect profiles
(e.g., cognitive deficits and sedation) [283].

Since the 1990s, newer drug compounds (clozapine, risperidone, olanzapine, quetiapine, etc.)
that blocked both dopamine and serotonin receptors were met with great expectations [284,285] and
were found to be effective in alleviating both positive and negative symptoms [105]. Although the
introduction of second-generation antipsychotics had become a cornerstone in the treatment of
schizophrenia, several unmet treatment needs in the field still existed. While newer antipsychotics
produced fewer motor side effects, safety and tolerability concerns regarding metabolic side effects,
such as obesity, dyslipidemia, and type 2 diabetes, have emerged [286].

Third-generation antipsychotics (e.g., aripiprazole and cariprazine), which are partial D2 agonists,
represent another pharmacologically different strategy in the attempt to normalize dopaminergic
imbalance in schizophrenia. Compared with full agonists, these agents have lower intrinsic activity
at D2 receptors, allowing them to act as either functional agonists or antagonists, thereby inhibiting
endogenous dopamine activity in the mesolimbic and activating the mesocortical pathways [287,288].
In addition, such an agent should ideally maintain dopaminergic tone in the nigrostriatal and
tuberoinfundibular pathways, thereby preventing extrapyramidal symptoms and hyperprolactinemia.
Additionally, they usually have partial agonist properties at dopamine D3, D4, 5-hydroxytriptamin
(5-HT)1A, 5-HT2C, and, to a much lesser extent, 5-HT2A receptors [289,290].

Considering that nearly 30% of patients do not respond to dopaminergic antipsychotics, treatment
resistance in schizophrenia and the need for decreasing serious adverse effects (extrapyramidal and
metabolic) associated with their long-term use have remained as major issues in psychiatry [291].
Findings regarding the inefficiency and safety profile of APDs have prompted the discovery of
promising new targets for the development of non-dopaminergic drugs based on the glutamatergic
and GABAergic hypothesis of schizophrenia that may replace currently used treatments. These will be
reviewed briefly in the following section.

Non-Dopaminergic Agents in Clinical Studies Based on the Glutamatergic and GABAergic Hypothesis
of Schizophrenia

Several approaches have been used in restoring NMDAR hypofunction [114]. While classical
NMDAR agonists have not been useful given that their excessive stimulation results in excitotoxicity and
neuron damage, the modulatory mechanisms of NMDAR functioning have been considered as more
promising targets [113,292,293]. Clinical trial results regarding NMDAR-enhancing small molecules
as an adjunct to dopaminergic drugs, such as glycine and d-serine (endogenous full agonists of the
NMDAR glycine site) and D-cycloserine (a partial NMDAR agonist), have been inconsistent [294–300].
Memantine, a drug that acts as a weak nonselective NMDA receptor antagonist, had been associated
with significant attenuation of positive, negative, and cognitive symptoms when used as an add-on
treatment to clozapine or olanzapine [301,302]. Positive allosteric modulators of AMPA-type glutamate
receptors, such as ampakines, and glycine transporter blockers, such as N-methylglycine (sarcosine),
have also been considered as promising therapeutic agents used in adjunct to already available
dopaminergic antipsychotics [303–306]. Preclinical studies have suggested that compounds targeting
metabotropic glutamate receptors, specifically subtype-selective allosteric modulators, may also be
used as an alternative to current treatments [114,307].

One pilot study involving a 4-week treatment with MK-0777, a partial GABA(A) receptor
agonist, revealed progress in cognitive performance among patients with chronic schizophrenia,
providing support for the beneficial effect of enhanced GABA activity in prefrontal functioning [308].
However, a later clinical study involving 60 patients with schizophrenia showed little benefit [308].
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Thus, more potent partial agonists with greater intrinsic activity at the GABA(A) α2 site might be
needed for cognitive enhancement in schizophrenia.

In conclusion, the abovementioned non-dopaminergic drugs have little to no effect when used
by themselves, but may improve the negative symptoms and cognitive impairments when used as
adjunct treatment to dopaminergic drugs without significant safety concerns. Based on these clinical
findings, compounds targeting the KP and ECS could be a compelling alternative approach toward
satisfying the unmet clinical needs of patients with schizophrenia.

5.3. Targeting the KP

Pharmacological manipulation of the KP for the treatment of schizophrenia is a complex approach
as described by Müller and colleagues [26]. Although increased brain KYNA levels have now
been considered as an important factor contributing to the complex symptoms of the disorder,
reducing KYNA levels could impair its neuroprotective effect against, for example, QUIN-induced
excitotoxicity [309]. Nevertheless, while many studies have dealt with this subject, KAT enzyme
targeting has been the most intensely studied therapeutic approach against schizophrenia.

As discussed in Section 2.1.1., KATs are responsible for the irreversible transamination of l-KYN
to KYNA [33], mainly in astrocytes. Thus, inhibiting KAT enzyme activity can be considered
as a logical approach for reducing increased brain KYNA levels associated with schizophrenia.
This approach would be less likely to interfere with other parts of the KP [310]. As described in
Section 4.3.2., KAT II has the greatest potency for therapeutic targeting among the four KAT enzymes
owing to its substrate specificity and its role in the production of most of the KYNA in the brain.
Studies have shown that reducing brain KYNA concentrations significantly improves cognitive
functions through selective inhibition of the KAT II enzyme [70,311]. While multiple KAT II inhibitors
have been developed to date, earlier designs, such as (S)-ESBA and BFF-122, were able to increase
extracellular levels of dopamine, acetylcholine, and glutamate and improve memory functions in
rats with schizophrenia-like symptoms [63,312–315]. However, due to poor blood–brain barrier
penetration, these earlier compounds required intracerebral administration to achieve central effects.
Such compounds were followed by systematically active, brain-penetrant KAT II inhibitors, such as
PF-04859989 [316] and BFF-816 [311]. Accordingly, PF-04859989 irreversibly inhibited both rat and
human KAT II, acutely inhibited amphetamine- and ketamine-induced disruption of auditory gating,
and improved performance in a sustained attention task. Moreover, it prevented ketamine-induced
disruption of performance in a working and spatial memory task in rodents and nonhuman primates,
respectively [70]. These behavioral experiments were confirmed by electrophysiological studies,
wherein PF-04859989 reduced the activity of midbrain dopamine neurons and nicotine-evoked
glutamatergic activity in the rat cortex [317,318]. Other compounds have been developed to improve
the pharmacological properties of PF-04859989 [22,319]. In contrast to PF-04859989, BFF-816 reversibly
inhibited KAT II, improved performance in spatial and contextual memory, attenuated evoked
glutamate release in rat PFC, and decreased hippocampus-dependent memory deficits in adult rats
prenatally treated with kynurenine [54,311,320]. Additionally, previous studies have reviewed several
other design approaches for KAT II inhibition [22–25,27].

Apart from KAT II, limited studies have examined other KP enzymes as a therapeutic target
for schizophrenia. One recent study describing an animal model of schizophrenia induced by
ketamine revealed that IDO, TDO, and KMO inhibition improved behavioral changes, prevented
lipid peroxidation and protein damage, and protected against antioxidant enzymes in rats [321].
IDO, in particular, gained more attention due to its previously discussed role in inflammation
associated with the disease [7,26,263].

5.4. Targeting the Endocannabinoid System

A considerable amount of data has suggested a connection between excess ∆9THC and synthetic
cannabinoid consumption and the development of schizophrenia. However, recent evidence has also
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shown the positive effects of cannabinoid compounds in patients with schizophrenia. For instance,
one study showed that dronabinol, the synthetic variant of ∆9THC, reduced core psychotic symptoms in
three out of six treatment-refractory patients with severe chronic schizophrenia, who had a self-reported
history of improvement with marijuana abuse [272].

Among cannabinoid compounds, CBD appears to be the most promising for the treatment
of schizophrenia. CBD, the other main component of cannabis, does not possess psychoactive
properties as mentioned previously. In fact, some of the effects of CBD on brain function and psychiatric
symptoms contrast those of ∆9THC [322]. In contrast, a recent study reported that CBD does not
attenuate ∆9THC-induced acute psychosis and memory impairments [102]. The precise mode of action
of CBD has yet to be fully understood given that it has mixed pharmacological properties, including
a week antagonistic binding toward CBRs, inhibition of FAAH activity, and stimulation of TRPV1,
the 5-HT1A receptor, and the D2 dopamine receptor [323,324]. Moreover, Bih and coworkers revealed
that numerous additional receptors, transporters, ion channels, and enzymes that could serve as
molecular targets for CBD are involved in neurological disorders [325]. According to preclinical studies,
CBD reduced amphetamine-induced effects on prepulse inhibition and hyperlocomotion induced by
other psychotomimetic drugs [265,326]. Human studies have shown that CBD improved both positive
and negative symptoms of schizophrenia [264,266,327–329]. Accordingly, studies that showed negative
results provided either a single dose or monotherapy of CBD [330,331] or included patients with
chronic schizophrenia who received multiple antipsychotic medications [102]. Furthermore, compared
with the conventional antipsychotic amisulpride, CBD reduced schizophrenia symptoms but with
significantly less side effects [266]. The same study also showed that CBD increased serum AEA levels,
which was associated with symptom improvement. This can be explained by the ability of CBD to
block FAAH activity, although other mechanisms have been proposed for its antipsychotic effects
(e.g., via the already mentioned D2, 5-HT1A and TRPV1 receptors) [325,332].

Studies have shown that AEA levels are inversely correlated with the severity of negative
schizophrenia symptoms [96], which leads to the assumption that high AEA levels might be
advantageous in schizophrenia. Thus, selective FAAH inhibition has also been extensively studied apart
from CBD. Accordingly, blocking AEA degradation improved both PCP- and amphetamine-induced
positive and negative symptoms in animals [267,268]. URB597, a selective FAAH inhibitor, reversed
PCP-induced social withdrawal effects and associated changes in c-Fos activation/inactivation
observed in distinct neuroanatomical locations related to the social interaction neurocircuitry [333].
Selective FAAH inhibition also alleviated the hyperdopaminergic phenotype of adult rats [270].
However, a novel schizophrenia rat model showed that during adolescence, URB597 treatment—which
is similar to exogenous cannabinoid treatment—increased the proportion of susceptible rats developing
increased dopamine neuron activity [269]. Unlike exogenous cannabinoid, however, URB597 did
not alter the behavioral response to amphetamine. Finally, a study on mouse hippocampal neuronal
cell lines revealed that AEA was a potential candidate for the treatment of oxidative stress-related
neurological disorders. The same study showed that during H2O2-induced redox imbalance, AEA
increased intracellular levels of superoxide dismutase and glutathione via CB1R, thereby protecting
the cells from oxidative stress [271].

The higher CB1R density and/or endocannabinoid levels in certain cortical and subcortical
(limbic) structures in patients with schizophrenia might also be associated with dopaminergic neuron
hyperactivity (positive symptoms) and glutamate neuron hypoactivity (negative symptoms) [9].
Preclinical studies have revealed that the antipsychotic potential of the CB1R antagonist rimonabant
was related to alterations in dopamine and glutamate transmissions in cortical structures [273,274].
Moreover, a 16-week double-blind, placebo-controlled, randomized clinical trial showed that
rimonabant did not improve global cognitive functioning, but did improve a specific learning
deficit based on the response to positive feedback [275]. Furthermore, one study showed
that the rimonabant group exhibited a significantly better total Brief Psychiatric Rating Scale
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score and anxiety/depression and hostility factors compared with placebo-treated patients with
schizophrenia [275]. However, another placebo-controlled clinical trial showed no improvements [334].

6. Summary and Conclusions

Schizophrenia has many aspects in which both kynurenines and the ECS are involved.
Although both have already been separately reviewed in detail, their overlapping functions,
mechanisms, and potential interaction in schizophrenia have yet to be elucidated. Therefore,
the present review aimed to highlight such aspects. Accordingly, the most well-known overlapping
areas include dopaminergic, glutamatergic, and GABAergic transmission regulation via cannabinoids
and KYNA. Moreover, the most possible receptor mediator for KYNA in this mechanism is the
astrocytic α7nAChR given that NMDAR inhibition by KYNA does not seem to influence glutamate
release [61]. Inflammatory mechanisms contributing to the development of schizophrenia are complex
and widespread and need to be studied more thoroughly. The overlapping structural, pharmacological,
and anatomical properties between GPR35 and CBRs are also promising candidates for regulating the
common aspects of inflammation associated with schizophrenia.

Though the treatment of schizophrenia still remains challenging, a better understanding of the
possible connections between kynurenines and the ECS could introduce novel therapeutic compounds
and targets for treatment. Such compounds could also compensate for limitations of currently
available medications. While KAT II inhibitors and CBD are promising, it will be interesting to
determine whether co-administration would yield a synergistic effect. Nonetheless, additional studies
are needed to adequately explore the interaction between kynurenines and the ECS and to better
understand their separate functioning.

Finally, parallel alterations in kynurenines/the KP and the ECS are present not only in schizophrenia
but also in other neurological disorders, such as Alzheimer’s disease [38,335–337]. Thus, studying
the interaction between kynurenines and associated elements and the ECS might also help us further
understand mechanisms and disorders apart from schizophrenia.
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