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ABSTRACT 

Acute pancreatitis is a progressive inflammatory disease with a complex pathomechanism, 

which is only partially revealed. The mortality of the disease is unacceptably high, therefore 

there is an emerging necessity to develop specific clinical therapy to treat acute pancreatitis 

patients. In the recent years experimental results provided new insight into the disease 

development, which can be utilized in clinical therapy. Early subcellular events in pancreatic 

acinar and ductal cells, such as toxic intracellular Ca2+ overload and mitochondrial damage, 

and impaired pancreatic ductal fluid and bicarbonate secretion have been highlighted recently. 

In this brief review we will summarize these advances. 

 

 

  



Introduction 

Acute pancreatitis (AP) is the most common cause of hospitalization among non-

malignant gastrointestinal diseases 1 and therefore it is a major healthcare problem worldwide. 

The most common causes of AP are heavy alcohol abuse and cholelithiasis 2, however other 

factors (such as genetic mutations) can play major role in the disease development, especially 

in children 3. The disease mortality in severe cases - where multiorgan failure is prolonged - 

can reach 30-50% 4, moreover the therapy of AP is limited to supportive treatment without 

specific therapeutical targets.  

Intrapancreatic activation of trypsinogen 5, the activation of nuclear factor κB (NF-κB) and 

the consequent  upregulation of inflammatory mediators 6 have been shown to play an 

important role in the development and the progression of the disease. In addition to these 

observations, in the recent years several studies highlighted the crucial importance of 

intracellular Ca2+ overload and mitochondrial damage in the AP pathogenesis. Another 

important progression in the understanding of the disease pathogenesis is the recognition of 

the role of impaired pancreatic ductal function in the development of AP.    

  

Intracellular Ca2+ toxicity in acute pancreatitis 

Intracellular Ca2+ signaling is one of the major signaling pathways in the exocrine 

pancreas 7, 8 regulating the secretion of digestive enzymes in acinar cells, or the activity of 

several ion transporters and channels and therefore bicarbonate and fluid secretion in ductal 

cells. During physiological receptor stimulation Ca2+ is released from the endoplasmic 

reticulum (ER), which is the major Ca2+ store in non-excitable cells. These types of Ca2+ 

signals consist of repetitive, short lasting peaks, which have a strict spatiotemporal 

localization 9. The spatial localization in acinar cells is maintained by the mitochondria, which 

form a belt-like structure in the apical perigranular region of the cells and buffer the released 

Ca2+ preventing its propagation to the basolateral area and the development of global Ca2+ 

elevations 10. This unique organization of the mitochondria has been described in pancreatic 

ductal cells as well 11, 12. The temporal localization of the released Ca2+ is achieved through 

the rapid Ca2+ reuptake into the ER by the sarcoendoplasmic reticulum Ca2+ ATPase 

(SERCA) and trough extrusion via the plasma membrane (PM) by the PM Ca2+ ATPase 

(PMCA). The operation of these pumps is ATP dependent. On the other hand prolonged 

agonist stimulation of the cells could empty the Ca2+ stores, therefore the cells need other 

source to maintain the stimulation. This source is usually the external Ca2+, which can enter 

the cells via PM Ca2+ channels during a process called store operated Ca2+ entry (SOCE) 13. 



The two proteins that mediate this process are the ER transmembrane Ca2+ sensor stromal 

interaction molecule 1 (Stim1) and PM Ca2+ channel Orai1. Lowering the Ca2+ concentration 

in the ER causes the translocation of Stim1 to the ER-PM contact sites, where it activates the 

Ca2+ influx via Orai1 (Figure 1.) 14. This process is part of the physiological signaling 

however it can be toxic, if the proper regulation is damaged 15. The intracellular Ca2+ overload 

will lead to premature activation of trypsinogen 5, mitochondrial damage, cell necrosis in 

acinar cells 16 and impaired bicarbonate secretion in pancreatic ductal cells 12. In a recent 

publication Gerasimenko et al. demonstrated the inhibition of extracellular Ca2+ entry via 

Orai1 by a pharmacological compound called GSK-7975A prevents acinar cell necrosis in 

vitro (Figure 1.) 17. This observation was further challenged by Wen et al., who have tested 

the effects of two Orai1 inhibitors (GSK-7975A and CM_128) in mouse and human 

pancreatic acinar cells in vitro and in three different in vivo pancreatitis model 18. Both 

inhibitors prevented the Ca2+ overload of human and murine pancreatic acinar cells and 

significantly impaired pancreatic edema, inflammation and necrosis in all experimental 

models used. These results not just highlight the crucial role of Ca2+ toxicity in the AP 

pathogenesis, but also raise the possibility of targeted pharmacological treatment in AP. 

Although the possible application of Orai1 inhibitors have to be carefully investigated in 

experimental models to avoid potentially lethal side effects, such as severe immunodeficiency 

due to inhibited T cell function.  

 

Mitochondrial damage and energetic breakdown in pancreatitis 

 Another hallmark of the AP pathogenesis is the mitochondrial damage 19. The 

digestive enzyme synthesis of the acinar cells, or the ion and fluid secretion of the ductal cells 

require a lot of energy. To provide the sufficient amount of ATP both acinar and ductal cells 

are densely populated with mitochondria (see above). Under physiological conditions 

mitochondria buffer the released Ca2+. However under pathophysiological conditions, the 

control over the Ca2+ signaling is lost, which will lead to mitochondrial Ca2+ overload. On the 

other hand the most common toxic factors that induce AP – such as bile acids, ethanol and its 

metabolites – have direct mitochondrial toxicity as well 12, 16, 20, 21. Depending on the type of 

the damage, the mitochondria can induce cell death via two different pathways. Apoptosis is 

considered as the controlled form of cell death with characteristic subcellular changes (cell 

blebbing and shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA 

fragmentation) and ATP dependence. During this process cytochrome c is released from the 

mitochondrial inner membrane electron transport chain leading to the activation of effector 



caspases – the mediators of apoptosis. In contrast, necrosis is predominantly an unregulated 

mechanism of cell death that include loss of mitochondrial transmembrane potential (Δψm), 

decreased ATP production, mitochondrial swelling, vacuolization, loss of plasma membrane 

integrity and crucially, leakage of the intracellular contents 22. In this process a key step is the 

opening of the mitochondrial permeability transition pore (MPTP) induced by mitochondrial 

matrix Ca2+ overload. MPTP is a non-specific channel that forms in the inner mitochondrial 

membrane allowing passage of molecules under 1.5 kDa, causing loss of Δψm that is essential 

to ATP production 23. 

During AP apoptosis and necrosis co-exists, although apoptosis seems to be less harmful due 

to the lower activation of the immune system 24. However the available experimental and 

clinical data are controversial in this topic. Very recently Mukherjee et al. tested the effect 

MPTP inhibition on the severity of AP in rodent experimental AP models (Figure 2.) 25. They 

have shown that the inhibition of MPTP with pharmacological compounds (two cyclosporine 

A derivate: DEB025 or TRO40303), or genetic deletion of the Ppif gene (that encodes 

cyclophylin D, a component of MPTP) significantly decrease the severity of AP in different 

independent models. These observations suggest that the MPTP inhibition might be 

potentially beneficial in the AP therapy. In a recent clinical study the efficacy and safety of 

TRO40303 (an MPTP inhibitor) have been evaluated for the reduction of reperfusion injury in 

patients undergoing revascularization for ST-elevation myocardial infarction (MITOCARE 

study) 26. Although this study did not show any effect of TRO40303 in limiting reperfusion 

injury of the ischaemic myocardium, this therapeutical approach shall be tested on AP 

treatment as well. Another indirect evidence for this hypothesis has been provided by Judak et 

al., who showed that the supplementation of cellular ATP in vitro diminished the inhibitory 

effect of ethanol metabolites on the ion transport activities in isolated guinea pig pancreatic 

ductal cells 27. These results suggest that the restoration of the cellular energy level can be 

beneficial in AP, which can prevent the cellular dysfunction and cell damage. 

 

The role of pancreatic ductal secretion in the pathogenesis of AP 

Until the recent years the research studies highlighted the role of pancreatic acinar 

cells in the AP pathogenesis, however nowadays it is well established that the pancreatic 

ductal epithelial cells play an important role in the physiology of the pancreas as well 7, 28. The 

exocrine pancreas produces 2,5L of alkaline fluid daily, which washes the digestive enzymes 

into the duodenum. Changes that effects the ductal secretion affect the acinar cell function as 

well and can lead to serious diseases like cystic fibrosis 29. Moreover our group demonstrated 



that the autoactivation of trypsinogen is a pH dependent process, with increased activity in 

acidic environment, which means that HCO3
- secretion prevents the untimely trypsinogen 

autoactivation 30. These observations indicate that acinar and ductal cells don’t function 

independently, but it is more likely that they create an acino-ductal functional unit, where they 

act as an integrated system and interact with each other during physiological secretion 31, 32. 

Besides its physiological role, the ductal secretion seems to have pivotal role during the 

pathogenesis of AP as well. Insufficient electrolyte and fluid secretion by pancreatic ductal 

cells seems to lead to increased patient risk for pancreatitis 33. These clinical observations 

have been supported by experimental data by Pallagi et al. 34. They showed that mice with 

deletion of the Na+/H+ exchanger regulatory factor-1 that have selectively impaired ductal 

function develop more severe AP upon cerulein hyperstimulation, or intraductal 

administration of sodium taurocholate. In addition, we have shown that pancreatic epithelial 

fluid and bicarbonate secretion is significantly elevated in the absence of peripheral serotonin 

35 (an important inhibitor of pancreatic ductal secretion 36, 37), which might contribute to the 

decreased severity of AP in these mice 38. Taken together these observations highlight the 

potential benefits of the correction of pancreatic ductal secretion in the treatment of AP.  

 

Damaged cystic fibrosis transmembrane conductance regulator (CFTR) function in AP 

CFTR Cl- channel play an important role in the bicarbonate secretion of the pancreatic 

ductal epithelial cells into the ductal lumen (Figure 3.) 39. It is also established that mutations 

of CFTR that impair bicarbonate permeability can increase the risk of AP 40. Moreover 

experimental data suggest that CFTR function can affect the pathogenesis and severity of AP. 

DiMagno et al. showed that genetic deletion of CFTR in mice induce overexpression of 

proinflammatory cytokines, moreover these mice develop more severe AP 41. Recently we 

investigated the role of CFTR in the pathogenesis of alcohol-induced AP in details and 

showed that indeed the in vivo pancreatic fluid secretion is markedly decreased in CFTR 

knockout mice (Figure 3.) 20. These mice displayed more severe AP induced by 

intraperitoneal injection of ethanol and fatty acid. In addition, in pancreatic tissue samples 

from patients diagnosed with alcohol-induced AP the CFTR protein and mRNA expression 

were markedly decreased in small pancreatic ducts 20. This mechanism also seems to be 

relevant in other forms of pancreatitis. In human pancreatic tissue samples Ko et al. described 

CFTR mislocalisation in alcoholic, obstructive and idiopathic chronic pancreatitis 42. Our 

observations supported this observation, moreover we showed that this decrease is caused by 

the direct effects of ethanol and ethanol metabolites on CFTR expression (accelerated plasma 



membrane turn over and decreased protein maturation due to impaired protein folding) 20. The 

impaired fluid and bicarbonate secretion due to the CFTR mislocalisation could lead to 

decreased intraluminal pH, decreased wash out of the digestive enzymes and a protein rich 

ductal fluid 43. These changes promote the formation of intraluminal protein gel, or plugs that 

are one of the earliest histological features of chronic pancreatitis 44, 45.  

 

Conclusions and future perspectives 

 In this review we summarized the recent improvements in the understanding of the 

pathogenesis of AP. Evidences from different research groups suggest that sustained 

intracellular Ca2+ overload and mitochondrial damage with a consequent ATP depletion have 

key role in acinar and ductal cell injury during AP. This cell injury will lead to impaired 

secretion and premature activation of digestive enzymes and impaired ductal fluid and 

bicarbonate secretion. Experimental evidences suggest that the inhibition of cellular Ca2+ 

overload, or the prevention of mitochondrial damage might have clinical relevance in the AP 

therapy and shall be utilized in clinical trials and guidelines 3, 46-49. An important conclusion 

from these results - which have already been utilized in a clinical trial 50 - is the emerging 

significance of the early cellular changes in AP. For effective therapy, patients with AP have 

to be diagnosed as early as possible and the assessment of severity is crucial in the 

management of the disease. Early recognition of severe disease may prevent serious adverse 

events and improve patient management as well as overall clinical outcome, therefore in this 

trial the authors aimed to develop a simple and accurate clinical scoring system that can 

stratify patients with AP during the first 6-12 hours of hospitalization according to their risk 

for severe disease course. Our observations also highlight the importance of the pancreatic 

ductal secretion and the wash out of the digestive enzymes from the lumen. Moreover Takacs 

et al. described that the luminal pH was significantly lower in patients with acute biliary 

pancreatitis vs. controls 51. Dubravcsik et al. applied these experimental results to improve the 

outcome of biliary AP and designed a clinical trial to show whether early endoscopic 

intervention with the usage of preventive pancreatic stenting – and the restoration of the 

pancreatic ductal outflow - improves the outcome of acute biliary pancreatitis 52.  
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Figure legends 

 

Figure 1. Inhibition of Ca2+ overload is beneficial in experimental AP. A. Store operated 

Ca2+ entry (SOCE) is part of the physiological Ca2+ signaling. The two proteins that mediate 

SOCE are the endoplasmic reticulum (ER) transmembrane Ca2+ sensor stromal interaction 

molecule 1 (Stim1) and the plasma membrane (PM) Ca2+ channel Orai1. Exhaustion of the 

ER Ca2+ stores induces Stim1 translocation to the ER-PM contact sites, where it activates the 

Ca2+ influx via Orai1. However during AP the control over Ca2+ entry is lost, leading to toxic 

Ca2+ overload. B. Recent experimental data suggest that the inhibition of Orai1 and therefore 

the protection of the pancreatic acinar cells from sustained Ca2+ elevation are beneficial in 

AP. 

 

Figure 2. Mitochondrial damage in AP. A. The most common pancreatitis inducing factors 

- such as alcohol and bile acid – induce mitochondrial damage and consequent ATP depletion 

in pancreatic acinar and ductal cells. The toxins can maintain sustained Ca2+ release, which 

can induce the opening of the mitochondrial permeability transition pore (MPTP), or damage 

the mitochondria directly. These changes induce cell death, which is a hallmark of AP. B. The 

genetic, or pharmacologic inhibition of MPTP can protect the mitochondria and decrease the 

cellular damage in AP.  

 

Figure 3. Impaired CFTR function and pancreatic ductal bicarbonate secretion in AP. 

Under physiological conditions (left) CFTR is expressed on the luminal membrane of small 

inter/intralobular pancreatic ducts with the SLC26A6 Cl-/HCO3
- exchanger. The secretory 

function of these proteins maintains the alkaline intraluminal pH (pHL) and washes out the 

digestive enzymes from the ductal lumen. During alcohol-induced AP (right) the function of 

CFTR is inhibited and the expression is decreased leading to impaired bicarbonate and fluid 

secretion and consequently drop in the pHL. The washout of the activated digestive enzymes 

is insufficient. These changes together will increase the severity of AP.  
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