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Abstract: Following the impact of droughts witnessed during the last decade there is an urgent
need to develop a drought management strategy, policy framework, and action plan for Jordan.
This study aims to provide a historical baseline using the standardized precipitation index (SPI) and
meteorological drought maps, and to investigate the spatial and temporal trends using long-term
historical precipitation records. Specifically, this study is based on the statistical analysis of
38 years of monthly rainfall data, gathered from all 29 meteorological stations that cover Jordan.
The Mann–Kendall test and linear regression analysis were used to uncover evidence of long-term
trends in precipitation. Drought indices were used for calculating the meteorological SPI on an
annual (SPI12), 6-months (SPI6), and 3-months basis (SPI3). At each level, every drought event was
characterized according to its duration, interval, and intensity. Then, drought maps were generated
using interpolation kriging to investigate the spatial extent of drought events, while drought patterns
were temporally characterized using multilinear regression and spatial grouped using the hierarchical
clustering technique. Both annual and monthly trend analyses and the Mann–Kendall test indicated
significant reduction of precipitation in time for all weather stations except for Madaba. The rate
of decrease is estimated at approximately 1.8 mm/year for the whole country. The spatial SPI krig
maps that were generated suggest the presence of two drought types in the spatial dimension: Local
and national. Local droughts reveal no actual observed trends or repeatable patterns of occurrence.
However, looking at meteorological droughts across all time scales indicated that Jordan is facing an
increasing number of local droughts. With a probability of occurrence of once every two years to
three years. On the other hand, extreme national droughts occur once every 15 to 20 years and last for
two or more consecutive years. Linear trends indicated significant increase in drought magnitude
by time with a rate of 0.02 (p < 0.0001). Regression analysis indicated that draught in Jordan is time
dependent (p < 0.001) rather than being spatially dependent (p > 0.99). Hierarchical clustering was
able to group national draughts into three zones, namely the northern zone, the eastern zone, and
the southern zone. This study highlights the urgent need for a monitoring program to investigate
local and national drought impacts on all sectors, as well as the development of a set of proactive risk
management measures and preparedness plans for various physiographic regions.
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1. Introduction

1.1. Background

Drought is a general term referring to a consequence of an extended period (e.g., season, year,
or more) of deficient precipitation compared to the statistical decadal average for a region. These
events result in water shortages that impact on the functioning of natural ecosystems, and bring great
hardship and disruption to human activities [1,2]. A drought is a temporary dry period, in contrast to
the permanent aridity in known arid areas, and droughts occur in most parts of the world, even in wet
and humid regions [3–5].

Droughts are considered a natural hazard; a traditional disaster often leading to emergency
mobilization. Since the 19th century, more people have been negatively affected by drought than any
other physical hazard; more than 11 million people have died as a consequence of drought, and more
than 2 billion people have been affected in some way [6]. The percentage of the planet affected by
drought has more than doubled in the last 40 years and, in the same time span, droughts have affected
more people worldwide than any other natural hazard [7]. Droughts represent the primary cause of
most ill health and death due to a lack of access to adequate and clean water supplies. Droughts have
significant socioeconomic and environmental impacts, both direct and indirect. In general, drought
have a major impact on agriculture and related sectors, including forestry and fisheries, and it can lead
to famines, internal displacement, natural resource degradation, weak economic performance, and can
also exacerbate social tensions and fuel civil unrest [8–12].

A drought event is gradual, and usually hits different regions of a country with varying levels
of intensity and at different time periods. The variability of the precipitations is influenced by the
combined effects of major atmospheric dynamics such as El Niño–southern oscillation (ENSO), global
atmospheric composition, and local land effects [13]. Significant correlations are found between
precipitation extremes and the three previous mentioned factors. Previous El Niño events in some parts
of the Middle East and North Africa (MENA) region have led to flooding, with significant damage to
infrastructure. In the year after previous El Niño events, dry conditions have led to drought, reduced
water availability, and reduced crop productivity [14]. During the El Niño phase, precipitation spells
generally become drier [15].

To help manage these impacts drought indicators are helpful to understand the onset of a drought
and its characteristics in terms of severity, duration, and direction [16–22]. Unfortunately, there is no
single indicator or index that can precisely describe the onset and severity of a drought [23–26]. Based
on the nature of the water deficit, four types of droughts are defined: Meteorological, hydrological,
agricultural, and socioeconomical [27,28].

According to the IPCC [29], the frequency, severity, and duration of droughts have increased over
time. Drought, a devastating natural hazard, affects a significant proportion of the global population,
particularly those living in semiarid and arid regions. Climate change is indeed exacerbating drought
in many parts of the world, and future projections suggest droughts will become more widespread,
broadly consistent with expected changes in the hydrologic cycle under global warming [5,30–32].
Several indices are presented in literature, among those are:

1. Percent of normal [33];
2. Deciles [34];
3. Palmer drought severity index (PDSI) [35–37];
4. Surface water supply index (SWSI) [38];
5. Standardized precipitation index (SPI) [39–42];
6. Palfai aridity index (PAI) [43];
7. and others [8,44–46].

The nature of the indicator, local conditions, data availability, and validity are the factors that
usually determine which indicator is to be applied [47]. Mathbout, S. et al. [48] investigated the
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spatiotemporal characteristics of drought phenomenon in Syria using the SPI and the standardized
precipitation evapotranspiration index (SPEI) for various time scales (3, 6, 9, 12, and 24 months) using
data from 20 weather stations covering the years 1961–2012. The authors concluded that the temporal
and spatial characteristics of the SPI and SPEI can be used for developing a drought intensity—areal
extent—and frequency curve that assesses the variability of regional droughts in Syria.

Several studies have indicated that most arid and semiarid lands in the Middle East are highly
sensitive to periodic climate change and are considered to be some of the driest areas of the world,
suffering from considerable levels of water scarcity [31,49,50]. Middle Eastern countries are subjected to
severe droughts that affect the development of these countries across many aspects and sectors [51–53].
ACSAD (2011) classified the 1998–2001 drought across this region was the worst in 50 years, affecting
millions of people.

Drought cannot be stopped but, due to the growing availability of technological innovations,
it can be forecasted—in some cases, up to a month in advance. Likewise, when appropriate policy
instruments are in place, the impacts of drought can be substantially mitigated and reduced. Experience
shows that proactive and risk-based management approaches are effective in enhancing the resilience
of communities and their capacity to cope with drought, but despite the progress made, drought
management and planning is often overlooked until a crisis unfolds. This reactive, crisis-led response
gives rise to a fragmented policy space where interventions differ across sectors, tend not to be “joined
up,” and therefore, drought mitigation strategies tend to underperform. [7,54]. In order to avoid such
failures and to reduce the costs caused by drought, drought characterization should be the basis for
implementing effective drought monitoring and developing an early warning system, which is one
important component of a national drought management policy.

2. Study Area

Jordan is one of the developing countries in the Middle East, located about 80 kilometers east
of the Mediterranean Sea between 29◦11′ to 33◦22′ north, and 34◦19′ to 39◦18′ east. Unfortunately,
the country lacks natural resource wealth and is ranked among the poorest countries in the world
in terms of water scarcity, where the water resources per capita is less than 100 liters per capita per
day [55,56]. In addition, the country is facing unstable agricultural development and food insecurity
due to multiple demands on the water supply to satisfy the needs of population growth, economic
development, and the sudden influx of refugees from neighboring countries. These pressures will be
significantly exacerbated by the adverse impacts of climate change and global warming.

Jordan exhibits various micro-climate conditions caused by altitude variability that ranges from
−400 m sea level (Dead Sea) to 1750 m in the southern highlands. Thus, the climate varies from dry
sub-humid Mediterranean in the northwest of the country to desert conditions at the majority of the
east [57]. For this reason, Jordan was divided into three physiographic regions for the purposes of this
study:

1. The highlands, that comprise mountainous and hilly regions that receive the largest rainfall, and
occasionally snow.

2. The Jordan Rift Valley (JRV), located west of the highlands, which is rich in water resources,
making it fertile and thus primarily used for intensive agricultural practices.

3. The desert, which occupies about 90% of the total area of the country and is distributed in the
northern, central, and eastern regions (Figure 1).
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Figure 1. Hashemite Kingdom of Jordan as a study area.

In Jordan, the challenge is to provide sustainable livelihoods for the population as a whole, and
particularly for those living in the fragile arid and semiarid ecosystems, where they often face water
scarcity, made worse in times of drought, as well as land degradation and desertification. Climate
change is also playing a vital role in placing additional constraints on fragile ecosystems and limited
natural resources. In recent years, Jordan has witnessed a significant increase in the natural, human,
and economic impacts of water shortage which resulted from fluctuations in, and a shortage of,
precipitation. In the last three decades in particular, drought episodes have resulted in severe social
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crises in Jordan, receiving broad attention from senior decision makers, as well as the scientific and
governing communities [54].

Droughts in Jordan are characterized by an increasing frequency and severity over time ([58–60].
Drought frequency is increasing in Jordan, with almost twice as many droughts between 1961–2012
as between 1900–1960. This trend, coupled with future climate predictions that show an increase in
maximum temperatures and a decrease in winter precipitation, emphasize that water scarcity is likely
to become an even greater concern for future generations [58,61]. Jordan experiences recurring periods
of drought. The most recent drought period, 1998–2000, resulted in serious economic, environmental,
and social losses. Drought impact information is a critical requirement for the conduct of vulnerability
assessments for various sectors [62]. Impacts of drought in Jordan can be severe. At least 70% of the
camel population died due to the drought effect of the period between 1958–1962; around 30% of the
sheep died or were slaughtered prematurely in the 1997 drought; and the 1999 drought led to a 99%
drop in the cereal harvest, and a 60% fall in the production of red meat and milk [62]. Recent droughts
in Jordan, including the intense 2013–2014 drought, illustrate the complex nature of drought impacts
on hydrological, agricultural, social, economic, and ecological systems.

The drought season in Jordan tends to be from January through March, and over time, the effects
of drought tend to move from the southern desert to those in the north, and from the eastern desert
to the highlands and the Jordan Rift Valley (JRV) in the west [63]. For the past 35 years, droughts in
Jordan have occurred in a frequent, no uniform, and irregularly repetitive manner. Drought severity,
magnitudes, and life span have all increased over time from previously normal levels to new extremes,
especially in the last decade when some reached SPI levels of over 4.

The efforts so far made by the Jordanian government are not enough to address such serious
consequences, though they do recognize the urgent need to develop an appropriate strategy and action
plan for drought preparedness and mitigation, particularly for the agricultural sector. Jordan needs to
implement a holistic approach of integrated drought management based on a proactive and preventive
risk management approach, rather than the ad hoc approach of crisis management, in order to reduce
the impact of droughts.

A drought management strategy, supported by a sound policy framework, should be designed
to deliver effective, timely, and coordinated actions on the ground from all designated public and
private institutions. This requires decision makers, stakeholders, and the public at large to have timely
information from drought monitoring and early warning systems which urgently need to be developed
and implemented now. The strategic plan will be based on the development of an effective impact
assessment procedure, proactive risk management measures, preparedness plans to increase coping
capabilities, and effective emergency response programs to reduce the impact of a drought. The main
aim of this study is to provide maps based on a historical baseline and to investigate the presence
of spatial and temporal drought trends through investigating the SPI of meteorological droughts in
Jordan using long-term historical precipitation records.

3. Methodology and Data Analysis

Monthly rainfall data for 29 meteorological stations covering the whole country (Figure 2) were
obtained from the Jordan Meteorological Department (JMD) for 38 years (1979/1980 to 2016/2017).
The characteristics of the long-term historical mean annual rainfall data for all meteorological stations
is presented in Table 1.

To characterize and search for monthly rainfall extremes, preliminary statistical analysis was
performed for each meteorological station using the distribution platform within the JMP statistical
software [64]. The preliminary statistical analyses included measures of central tendency (mean and
median), dispersion (standard deviation and coefficient of variation), and distribution (skewness
and kurtosis).

To explore specific rainfall trends, monthly and annual rainfall data were investigated using both
the Mann–Kendall test and linear regression analysis (time series linear regression). In linear regression
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analysis, the coefficient of determination (R2), root mean square error, and p-value, as obtained from
analysis of variance (ANOVA), is used to determine the significance of the linear trend. Trends are
described in a linear equation where both intercept and slope have significant meanings [64].
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Figure 2. Rainfall Distribution map of the country based on long historical rainfall records (Modified
after MWI, 2010).

The Mann–Kendall test is a nonparametric statistical test used for indicating trends in data [65–68].
The acceptance or rejection of the main hypothesis (Ho: There exists a trend in the data) at a certain
probability level (α) is based on the calculation of Kendall’s tau (τ) that measures the association
between two ordinal variables [69]. Kendall’s tau (τ) ranges from −1.0 to 1.0, where a positive value
indicates that the rankings of both variables increase together. A negative value, on the other hand,
indicates that, as the rank of one variable increases, the other decreases. If the two variables are
independent, then the Kendall’s tau is expected to be approximately zero [70–73]
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Table 1. Statistical summary for annual rainfall data per station. CV: Coefficient of variation.

No. Station Name Altitude
(m)

Mean
(mm)

SD
(mm)

Min
(mm)

Max
(mm)

CV
(%) Skewness Kurtosis

1 Baqura −170 392.4 133.3 174.3 918.3 34.0 1.86 5.76
2 DeirAlla 330 282.3 93.1 117.0 599.0 33.0 1.30 2.73
3 Ghor Safi −350 72.4 28.6 18.3 151.8 39.5 0.30 0.21
4 Irbid 616 459.6 144.6 216.8 912.9 31.5 1.52 3.20
5 Rabba 920 337.3 103.3 138.0 606.0 30.6 0.39 0.65
6 Shoubek 1365 251.6 97.4 95.0 482.0 38.7 0.72 0.23
7 Tafieleh 1200 203.8 61.5 85.0 358.0 30.2 0.68 0.26
8 Salt 796 550.1 166.8 246.0 1130. 30.3 1.40 3.25
9 Aqaba 51 25.6 21.4 1.0 86.0 83.7 1.05 0.38

10 RasMunief 1150 463.9 142.9 217.0 913.0 30.8 1.50 3.29
11 Amman Airport 790 254.2 88.2 111.0 548.0 34.7 1.67 3.60
12 Mafreq 686 154.8 54.3 65.0 301.0 35.1 0.93 0.98
13 Safawi H5 674 70.1 32.0 16.0 158.0 45.6 0.70 0.53
14 Queen AIA 722 155.9 51.7 56.0 326.0 33.2 1.05 2.68
15 Maan 1069 41.2 24.5 12.0 108.0 59.5 1.17 1.29
16 Al-Jafer 865 31.4 25.7 1.0 135.0 82.0 2.09 6.14
17 Zarqa 664 129.5 45.3 48.0 258.0 34.9 1.14 1.68
18 WadiDhuleil 575 141.0 49.3 54.5 276.0 35.0 1.04 0.94
19 Qatraneh 730 97.3 31.1 25.0 156.0 31.9 −0.25 0.56
20 Azraq South 610 54.0 30.5 9.0 149.0 56.5 0.90 0.93
21 Reweished H4 683 81.2 36.7 16.0 168.0 45.3 0.09 0.14
22 WadiErRayyan −200 308.5 107.0 132.0 708.0 34.7 1.65 4.39
23 Sweileh 1050 468.6 180.1 212.6 1258.3 38.4 2.39 9.23
24 Maddaba 758 307.6 123.1 55.9 755.5 40.0 1.10 3.70
25 Ramtha 590 209.1 90.8 25.9 453.9 43.4 0.63 0.70
26 DierAbi Said −224 461.2 149.1 234.0 942.6 32.3 1.42 3.33
27 South Shuna −211 165.5 53.7 57.9 341.4 32.4 0.88 2.27
28 University of Jordan 992 486.9 161.2 225.3 1150.8 33.1 2.05 6.97
29 Jerash 585 364.5 115.9 189.5 696.7 31.8 1.10 1.37

3.1. Standardized Precipitation Index (SPI)

Drought indices calculator (DrinC) version 1.5.73 was used to calculate meteorological SPI [74].
Prior to calculating this, the long-term monthly rainfall records were initially normalized using the
gamma distribution function within the DrinC software.

The SPI was calculated in line with McKee et al. [75] through which the standardized precipitation
is derived by dividing the difference between the normalized seasonal precipitation and its long-term
seasonal precipitation mean by the standard deviation (Equation (1)):

SPI =
xi j − xim

σ
(1)

where xi j is the seasonal precipitation at ith rain gauge station and jth observation, where xim is the
long-term seasonal mean, and where σ is its standard deviation.

According to McKee et al. [75], a drought event occurs any time the SPI is continuously negative
and reaches an intensity of −1.0 or less, and the event ends when the SPI becomes positive. Drought
severity is divided into seven classes in this study: Extremely wet (SPI > 2), very wet (1.5 to 1.99),
moderately wet (1.0 to 1.49), near normal (−0.99 to 0.99), moderate drought (−1.49 to −1), severe
drought (−1.99 to −1.5), and extreme drought (SPI < −2).

The data used for analysis were obtained from the Jordan Meteorological Department consisted of
monthly rainfall amounts for the hydrological year (rain season) in which rainfall starts in October and
increases to reach its peak in the winter months (December, January, and February), then decreases
gradually to vanish in May in the next year.

In this study, the SPI was calculated on an annual (SPI12), 6-months (SPI6), and 3-months (SPI3)
basis. The two SPI6 values for any given year are classified as SPI6W for the wet period from October to
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March, and SPI6D for the dry period from April to September. Similarly, the four SPI3 were classified
as SPI3JFM, SPI3AMJ, SPI3JAS, and SPI3OCD, months (January to March), spring months (April to June),
autumn months (July to September), and winter months (October to December), respectively.

At each level, every drought event had a duration (beginning to end), and an intensity for each
month that the event continues. The positive sum of the SPI’s for all months within a drought event
was then termed as the drought’s magnitude.

3.2. Areal Investigation

In order to investigate the areal extent of droughts in Jordan, tSPI values of all 29 meteorological
stations in Jordan for the period from 1980 to 2017 were interpolated using an ordinary kriging
interpolation technique via a geostatistical tool within the ArcGIS package [76]. The krig investigation
was performed in four steps. The first step involved the determination of the types of distribution.
The second step dealt with the characterization of spatial distribution that involved computation of
semivariance clouds in all directions using Equation (2) and tested for isotropy [77].

γ(h) =
1

2N(h)

N(h)∑
i=1

[(Z(x) −Z(x + h)]2 (2)

where, γ(h) is the semivariance, Z(x) the regionalized variable, and N(h) the number of pairs of sample
data taken a distance h.

The third step was modeling through the selection and construction of the best empirical fit to
represent the actual SPI spatial variations. There are several theoretical semivariogram models from
which to choose (e.g., linear, spherical, Gaussian, exponential, etc.), and the selection was based on both
a cross-validation test and the smallest nugget value [78,79]. Within this step, the final variogram
model was characterized by its three major components: (1) Distance of independency (major and
minor ranges), (2) sill, which represents the ordinary sample variance, and (3) nugget representing
the measurement error due to micro-regionalization. It is worth mentioning, as reported by [80],
the measuring stations of most in situ geophysical networks are spatially distributed in a highly
inhomogeneous manner, being mainly concentrated on continents and population centers, leads to
biases in geophysical statistics, serious difficulties in interpolating measurements to a uniform grid.

The fourth step involved the generation of prediction maps for SPI values at unknown locations
using the point kriging technique of simple linear weighted-interpolation scheme, or ordinary kriging.
The ordinary kriging technique assumes a constant unknown mean, where the value at the un sampled
point can be predicted by a linear weighting of the variation between the surrounding points derived
from variogram analyses (Equations (3) and (4)).

Z(X0) = µ+ ε(X0) (3)

Z(X0) =
∑

λ i γ(xi) ,
∑

λ i = 1 (4)

where, µ is an unknown constant and ε(x0) is the error associated to unknown location x0, Z(x0) is
the estimated value of Z at x0 and λi is the weight that give the best possible estimation from the
surrounding points.

3.3. Cluster Investigation

To investigate the spatial and temporal patterns of drought throughout the country, two methods
were used: Temporal analysis using multilinear regression and a clustering technique. For the
multilinear regression analysis, both time and location were included as independent variables to
predict the SPI12 as a response. The significant effect of each independent variable was estimated from
the parameter test using both ANOVA and t-test.
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In order to group the spatial drought pattern based on the SPI data, hierarchical clustering using
Ward’s method joins clusters to maximize the likelihood at each level of the hierarchy under the
assumptions of multivariate normal mixtures, spherical covariance matrices, and equal sampling
probabilities. The clustering was achieved using JMP statistical software.

In Ward’s minimum variance method, the distance between two clusters is the ANOVA sum
of squares between the two clusters added up over all the variables [66]. At each generation, the
within-cluster sum of squares is minimized over all partitions obtainable by merging two clusters from
the previous generation [81].

4. Results and Discussion

4.1. Investigating Rainfall Trends

The highest mean annual rainfall was recorded at the Salt station (550.1 mm) followed by
University of Jordan (486.9 mm), Sweileh (468.6 mm), the RasMunief station (463.9 mm), then Irbid
(459.6 mm). Those stations are all located in the north east of the country with elevations higher than
600 m above sea level. The distribution of rainfall data coincides with rainfall distribution isohyets
across the country, where only 2% of the country enjoy mean annual rainfall above 400 mm, all of
which is located in the northeast. Around 65.8% of the country suffers severe aridity (long mean
annual rainfall < 50 mm), and 10.2% falls within the arid zone (long mean annual rainfall between
100–200 mm), thus 90.5% of the country is characterized by an arid to severe arid environment (long
mean annual rainfall below 200 mm).

The detailed rainfall time series and trend analyses at both annual and monthly scales indicate
huge variability in rainfall data within and between stations (Table 1 and Figure 3). The associated
coefficient of variations (CVs) for annual rainfall data ranged from 30.2% up to 83.7%, illustrating the
significant variability of rainfall data at each weather station. At the same time, the positive skewness
values and high kurtosis values associated at the weather stations indicates the presence of extremely
high rainfall in very wet years, though most of the time, the rainfall is much less.

According to the Mann–Kendall test for historical annual rainfall data for the 29 meteorological
stations across Jordan, both the correlation coefficient (r) and the Kendall τ values are entirely negative
(except for the Madaba station, which might be due to human error in data collection) indicating the
decreasing trends in rainfall over time. The significance of rainfall trends varies from highly significant
(p < 0.001) to significant (p < 0.05) to nonsignificant (p > 0.05) as indicated by the associated p-values
(Table 2). The strongest trends are seen at Mafreq, Queen AIA, Ramtha, Shoubek, and Sweileh weather
stations. Similarly, regressed trends across all the weather stations showed decreasing trends and
agreed with the Mann–Kendall test results. The linear trends indicate an average decrease of about
1.8 mm/year for the whole country, ranging from 0.04 to 5.2 mm/year. On the other hand, Madaba
weather station shows a nonsignificant increase in rainfall records over time, with a mean rate of
change of 0.73 mm/year.
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Table 2. Mann–Kendall test and linear regression trend results for the annual rainfall records per
weather station.

Station R Kendall τ Prob > |τ| Linear Trend Equation R2 RMSE Prob > F

Baqura −0.231 −0.147 0.1954 5796.86 − 2.71 × Year 0.051 131.7 0.1735
DeirAlla −0.274 −0.176 0.1219 4751.47 − 2.24 × Year 0.071 90.9 0.1049
Ghor Safi −0.224 −0.204 0.0722 1195.83 − 0.56 × Year 0.048 28.3 0.1877

Irbid −0.270 −0.184 0.1049 7320.20 − 3.43 × Year 0.070 141.4 0.1094
ErRabeh −0.335 −0.197 0.0827 6420.43 − 3.05 × Year 0.107 99.0 0.0447 *
Shoubek −0.425 −0.297 0.0078 * 7509.17 − 3.63 × Year 0.181 89.3 0.0070 *
Tafieleh −0.386 −0.211 0.0627 4377.6 − 2.1 × Year 0.143 57.7 0.0195 *

Salt −0.313 −0.178 0.116 9721.26 − 4.59 × Year 0.094 161.0 0.0618
Aqaba −0.164 −0.130 0.2522 642.62 − 0.31 × Year 0.026 21.4 0.3365

RasMunief −0.223 −0.124 0.2739 6041.09 − 2.79 × Year 0.047 141.4 0.1904
Amman Airport −0.342 −0.207 0.0682 5553.58 − 2.65 × Year 0.112 84.2 0.0402 *

Mafreq −0.420 −0.238 0.0357 * 4164.22 − 2.01 × Year 0.169 50.2 0.0104 *
Safawi H5 −0.184 −0.149 0.1907 1099.41 − 0.52 × Year 0.032 31.9 0.2820

Queen AIA −0.308 −0.223 0.0496 * 2949.49 − 1.40 × Year 0.090 50.0 0.0669
Maan −0.150 −0.056 0.6236 684.24 − 0.32 × Year 0.021 24.6 0.3820

Al-Jafer −0.217 −0.128 0.2628 1008.17 − 0.49 × Year 0.045 25.5 0.2029
Zarka −0.283 −0.093 0.4137 2380.98 − 1.13 × Year 0.077 44.1 0.0925

WadiIDhuleil −0.418 −0.258 0.0229 * 3766.28 − 1.81 × Year 0.167 45.6 0.0108 *
Qatraneh 0.003 −0.020 0.8602 79.15 + 0.01 × Year 0.000 31.5 0.9846

Azraq South −0.153 −0.147 0.1954 871.78 − 0.41 × Year 0.022 30.6 0.3712
Reweished H4 −0.221 −0.084 0.4581 1504.29 − 0.71 × Year 0.046 36.4 0.1938
WadiErRayyan −0.188 −0.120 0.2908 3826.12 − 1.76 × Year 0.034 106.6 0.2715

Sweileh −0.328 −0.222 0.0498 * 10838.1 − 5.2 × Year 0.103 173.0 0.0499 *
Maddaba 0.068 0.064 0.5716 −1160.45 + 0.73 × Year 0.004 124.5 0.6922
Ramtha −0.464 −0.314 0.0055 * 7625.99 − 3.71 × Year 0.207 82.0 0.0041 *

DierAbi Said −0.003 0.067 0.5673 544.71 − 0.04 × Year 0.000 151.3 0.9863
South Shuna −0.115 −0.038 0.7437 1244.32 − 0.54 × Year 0.011 54.2 0.5381

Jerash −0.045 0.010 0.9299 1274.64 − 0.46 × Year 0.002 117.4 0.7946
University of Jordan −0.241 −0.166 0.1413 7290.79 − 3.41 × Year 0.055 158.8 0.1558

* Significant at 95% confidence level (probability < 0.05).

4.2. Annual Standardized Precipitation Index (SPI12) Variability

The SPI12 results show that 15% of the period between the years 1980 to 2017 is classified as
drought (SPI < −1) ranging from normal, through moderate, to extreme drought, while 72% of the
records are classified as near normal (Table 3). Conversely, wet conditions, from moderately wet to
extremely wet, were recorded for only 13% of the period, much of which fell in the years 1979, 1982,
1987, 1990, 1991, 1994, and 2002. It is important to note that 50% of the SPI data are below zero and
thus, 26% of the drought data in Jordan is above normal.

Table 3. The observed probability for seven categories according to the annual standardized precipitation
index (SPI12) values.

Category SPI Class Range
Probability (%)

SPI12 SPI6W SPI6D SPI3JFM SPI3AMJ SPI3JAS SPI3OCD

Extremely Wet ≥2.00 3.37 3.70 3.081 3.09 2.82 2.96 1.55
Very Wet 1.50 – 1.99 3.46 3.52 3.26 3.46 3.27 23.14 5.55

Moderately Wet 1.00 – 1.49 6.28 7.31 9.33 8.00 9.91 49.23 8.55
Near Normal −0.99 – 0.99 72.22 71.39 74.30 69.27 74.00 24.67 68.36

Moderately Drought −1.49 – 1.00 8.93 8.89 8.10 9.00 8.46 0 9.27
Severe Drought −1.99 − −1.5 3.10 2.91 1.14 4.82 1.27 0 4.55

Extreme Drought ≤ −2.00 2.64 2.29 7.92 2.36 0.27 0 2.18

There was an extreme drought event across the entire country in 1998–1999, and extreme drought
was observed at a few stations in the years 1980/1981, 2007/2008, 2010/2011, and 2012/2013. On the
other hand, moderate to severe drought events were observed over the years 1980/1981, 1982/1983,
1984/1985, 1988, 1993, 2003–2008, and 2010–2014 (Figure 4).
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Figure 4. Annual standardized precipitation index (SPI12) values for each station 1980–2017.

In terms of frequency, drought events tend to occur once every two to three years. On the other
hand, the whole country witnessed an extreme drought during 1998/1999 (SPI12 < −2), where its impact
extended through the following year. In terms of local impact, the most extreme drought event in the
data occurred during 2013/2014, with a SPI12 of −3.2 at Ramtha weather station, the only station at
which such an extreme was recorded that year.

The linear regression of SPI12 indicated the existence of a significant increase in drought magnitude
over time, at a rate of −0.02 per year (p < 0.0001). This indicates that drought events in Jordan are
becoming more frequent and with higher severity (Table 4).
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Table 4. Linear trend analysis for standardized precipitation index over time.

SPI Linear Trend Equation R2 RMSE Prob. > F

SPI12 = 40.39 − 0.02 × Year 0.0488 0.976 <0.0001*
SPI6W = 41.06 − 0.02 × Year 0.0505 0.975 <0.0001*
SPI6D = −3.45 + 0.002 × Year 0.0005 0.891 0.4642
SPI3AMJ = −1.86 + 0.001 × Year 0.0001 0.8774 0.6859
SPI3JAS = 1.25 + 0.000 × Year 0.0001 0.4080 0.9979
SPI3JFM = 30.69 − 0.015 × Year 0.0283 0.9867 <0.0001*
SPI3OND = 19.12 − 0.010 × Year 0.0113 0.9806 <0.0001*

* Significant at 95% confidence level (probability < 0.05).

4.3. Seasonal Standardized Precipitation Index (SPI6) Variability

The dry season standardized indices (SPI6D) show little variability overtime for all stations
(Figure 5), partly because summers are dry, with rainfall being particularly rare in April and May.
Indeed, April and May come at the end of the rainy season, and a drought during the dry season is
often due to reduced rainfall during these two months. Except in extremely wet years, rainfall in April
and May is less than 5% of the annual total rainfall.

The rainfall data for the 1980 to 2017 dry seasons shows that there was a drought for 17.2% of the
time (Table 3). On other hand, 46.2% of these drought events were classified as extreme, which may
indicate a huge reduction in rainfall during the dry seasons. Based on investigating the linear trends of
SPI3D over time, there were no significant trends detected (Table 4).

Although the lowest annual rainfall occurred during the year 1998/1999, the SPI6D indicates
that most extreme drought was recorded in 2012 with a value of −2.8 at RasMunief weather station,
followed by an event in 2000 with a value of −2.7 for the same station. The drought event at Ramtha
station is still considered to be extreme, on the basis of SPI6D, in the years 1987 and 2000, in addition
to the event at the Irbid weather station during 1987 and 2010, and at the Wadi El-Rayyan weather
station, also in 1987 and 2010.

By investigating the RasMunief weather station records, which is located at the highest point in
Jordan, at 1150 m above sea level, it was clear that the rainfall there always extends into April, and
sometimes into early May, with an average of about 20 mm for April, and 7 mm for May. However, in
the years 2000 and 2012, RasMunief recorded zero rainfall.

The wet season standardized indices (SPI6W) mimics the variability of the annual SPI overtime
(Figure 6). This is true as SPI6W represents the variability for about 95% of the rainfall records that falls
within the wet months (October to March). In a similar pattern to the annual indices, the drought has a
significant linear increase of about −0.02 per year (p < 0.0001).
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Figure 6. Wet season standardized precipitation index (SPI6W) values for each station 1980–2017.

4.4. Three-Months Standardized Precipitation Index (SPI3) Variability

The SPI3 values vary from −3.03 to 3.06 with an average of 0.30, though the variability in SPI3

varies according to the investigated months (Table 5 and Figure 7). The highest exist at SPI3JFM followed
by SPI3OND, while SPI3JAS has the lowest variability. Since there is no rainfall in July, and since the
average rainfall in August is only 0.01 mm, then SPI3JAS shows the variability for September only.
Tables 3 and 5 show that the observed probability is ranging from near normal to extremely wet, and
thus, this SPI3 can be used to categorize the existence of extremely wet conditions.
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Table 5. Summary of SPI3 magnitudes for the historical rainfall records from 1980 to 2017.

Parameters SPI3AMJ SPI3JAS SPI3JFM SPI3OND

Mean 0.098 1.253 0.000 0.011
Standard Deviation 0.877 0.408 1.000 0.986
Maximum 3.064 2.684 2.922 2.632
Minimum −2.767 0.633 −3.030 −2.787Climate 2019, 7, x FOR PEER REVIEW 18 of 26 
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SPI trend analyses (Table 4) indicated that there are significant increases in drought events, with a
rate of −0.015 and −0.01 per year for SPI3JFM and SPI3OND, respectively. However, SPI3AMJ and SPI3JAS

show no trends.
Similarly, SPI3AMJ represents the variability in spring time that extends from April to June.

In Jordan, the rainfall may extend into April and the first half of May only, therefore SPI3AMJ represents
the variability within those two months only, and ranged from −2.77 to 3.06.

In terms of drought occurrence, magnitude, and interval per weather station, the overall SPI3

variability indicates that droughts in Jordan are clearer in the period of October to December and
January to March. The data indicates that droughts during these periods is not only longer (as expressed
by variability between SPI quarters), but also more severe (magnitude) as indicated by the McKee
classification [77].

In addition to the above, SPI3 analyses indicates that national droughts are effective in months
and quarters, however local droughts are more evident at specific weather station either in the north or
south of the country. This variability shows that droughts in Jordan are either localized or national
based on the extent of each one (Figure 8).
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4.5. Spatial Extent of Drought

The spatial SPI krig maps generated using the geostatistical tool within the ArcGIS package
provided visual interpolations for the spatial extent of droughts in Jordan for the period from 1980 to
2017 (Figure 9). The generated maps prove the presence of two drought types based on the extent
of the event; local and national. A local drought is confined to a specific geographical area, lasting
one season, and there is no observable trend to them; an area suffering a local drought in one year
may not experience another for four or five years. Extreme local droughts, however, have a higher
intensity than national droughts at specific weather stations, and thus impose severe impacts on local
scale geographical locations.
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On the other hand, national droughts, where extremely low or zero rainfall is recorded at all
meteorological stations, are very rare. Of course, they have a much greater impact and magnitude than
local droughts, and though a national drought can go on for two consecutive years, the time between
such events is long.

The krig semivariogram analyses indicate that local droughts are anisotropy in their behavior,
with different angles of impact varying from year to year. In most cases, the drought spatial variation
is best fitted exponentially with very negligible nuggets and long major ranges. The location of local
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drought is related to the severity of impact. Local droughts in desert areas, in the west of the country,
seems more frequent but with lower impact since the low mean annual rainfall in those areas is less
than 50 mm anyway, while local droughts in the highlands is more critical as the mean average there is
more than 400 mm.

On the other hand, national droughts had a circular distribution fit in an isotropical behavior,
indicating that national droughts impact the whole spatial extent of the country with no specific trends
in orientation.

4.6. Cluster Analysis

Using multilinear regression analysis, the ANOVA tables indicated that the effect of the time
(year) is more significant than the spatial location as indicated by the very significant probability test of
p < 0.001 for time and nonsignificant p = 0.99 for location (Table 6). Regardless of the location of the
drought, the average SPI drought magnitude increases over time with an average rate of −0.02 per
year (R2 of 0.048 and RMSE of 0.9896).

Table 6. Regression analysis for SPI12 regarding spatial and temporal scales.

Weather Station Estimate t-ratio Prob > ItI a

Time −0.020028 −7.46 0.001 *
Baqura −0.000485 0.0 0.9975

DeirAlla 0.0003229 0.00 0.9984
Ghor Safi 0.003824 0.02 0.9807

Irbid −9.885e−5 −0.00 0.9995
ErRabeh 0.0021258 0.01 0.9893
Shoubek 0.0013583 0.01 0.9931
Tafieleh 0.0012457 0.01 0.9937

Salt 0.0002993 0.00 0.9985
Aqaba −0.000319 −0.00 0.9984

RasMunief 0.0006314 0.00 0.9968
Amman Airport −0.000698 −0.00 0.9965

Mafreq 0.0006292 0.00 0.9968
Safawi H5 0.0023324 0.01 0.9882

Queen AIA 0.0013181 0.01 0.9933
Maan −0.001784 −0.01 0.9910

Al-Jafer 0.0032788 0.02 0.9834
Zarka 0.0015815 0.01 0.9920

WadiIDhuleil 0.0001879 0.00 0.9991
Qatraneh 0.0043724 0.03 0.9779

Azraq South 0.0030334 0.02 0.9847
Reweished H4 0.0076678 0.05 0.9613
WadiErRayyan −0.000371 −0.00 0.9981

Sweileh −0.001671 −0.01 0.9916
Maddaba 0.0037757 0.02 0.9809
Ramtha 0.0055731 0.04 0.9718

DierAbi Said −0.019975 −0.12 0.9019
South Shuna −0.018202 −0.11 0.9106

Jerash 0.0001972 0.00 0.9990
University of Jordan −0.000684 −0.00 0.9965

a Student t-test at 95% probability level. * Significant at 95% confidence level (probability < 0.05).

The difference of a drought is clearer in more apparent in some years than others whilst in some
there is no significant differences found between weather stations when the extreme event (either wet
or dry) was national in scale.

Using Ward’s minimum variance method within hierarchical cluster analysis for SPI12, three
significant clusters were identified regardless of the effective year. The dendrogram results illustrated
shows the grouping pattern achieved from clustering (Figure 10). The results indicate that spatial
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locations of each group (cluster) have similar magnitudes and changes overtime that significantly
varies from other clusters.
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The generated grouping actually identifies three main regions in the kingdom: northern, eastern,
and southern. Each region has similar micro-climatological conditions. The northern region (shown in
red) is characterized by wet patterns with rainfall above 250 mm, while the eastern part of the kingdom
(shown in green) represent low rainfall regions with average annual rainfall of less than 100 mm, and
finally the southern region is characterized by average annual rainfall of less than 250 mm.

5. Conclusions

Analyzing the data across all scales indicates that Jordan is facing a growing number of drought
years. Although there are few variances between annual, 6-months, and 3-months basis SPI, however,
the various scaled SPI provides a better understanding of drought occurrences, magnitudes, and
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severity. The changes in precipitation deficiency according to SPI6 and SPI3 months bases proves
that the Jordanian climate is changing fast, with a narrowing of rainfall duration at both tails, and
decreasing in quantities over the winter season. Thus, droughts are forecasted to become longer in
duration and rather higher in severity. The computed SPIs and generated krig maps for all years in the
study suggest the presence of both local and national drought events. Local droughts tend to occur
once every two years to three years and are often more severe than national droughts, as indicated
at the RasMunief, Ramtha, Irbid, and Wadi El-Rayyan weather stations. On the other hand, extreme
national droughts occur once every 15 to 20 years and extend for two or more consecutive years. The
linear trend of drought magnitude indicated a significant increase over time with a rate of 2 percent.
Analysis of precipitation data starting from 1915 to present indicates that severe droughts have a
return period of 20 years before the 1990s, with a declining long-term precipitation rate. After 1995, the
return frequency severe droughts increased with recorded severe droughts in 1997–2001 and 2014. The
drought of 1958–1962 virtually ended camel husbandry as an economic activity in Jordan and led to
changes in agricultural credit schemes. The 1997–2001 drought saw precipitation declines of ~70%
across the country and resulted in the only documented official drought declaration in Jordan’s history.

The variability of drought events at the governorate and smaller scales reflects the assets held
in each region. The more populated areas with larger agricultural operations may be more sensitive
simply because there is more to lose, while sparsely populated dry zones (badia) may not have large
municipal populations or agricultural activity. The existence of severe to extreme local droughts
demonstrates the need to have a monitoring program to investigate the direct and indirect impacts on
all related sectors, and to develop proactive risk management measures and preparedness plans at
various physiographic regions. Officials and political decision-makers have difficulty identifying and
declaring the onset of drought conditions in both technical and legal senses.
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