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Introduction 

Drought is a phenomenon that can be characterised by an extended period of de�-

cient precipitation compared to the average and/or temperature that is much higher 

than the average, which consequently results in a signi�cant water shortage (WMO 

and GWP, 2016). Several indices have been developed for the characterization of 

drought (e.g. Palmer, 1965; Pálfai, 2004, Balint et al., 2011, Zargar et al, 2011), which 

are mostly using the classic meteorological parameters (precipitation, temperature, 

etc.) and don’t take into account that the severity of drought is greatly in�uenced by 

soil moisture conditions too. Some indices attempt to integrate this into the charac-

terisation of drought in an indirect way, by utilising precipitation data for the period 

before the examined time frame – a good example of this the Pálfai Drought Index 

that is widely used in Hungary (Pálfai, 2004). Other indices already calculate with soil 

moisture, although the data are often not based on direct �eld measurements, but 

applying simulated values (e.g. Narasimhan and Srinivasan, 2005). However, the role 

of soil moisture doesn’t only manifest in the regional modi�cation of the drought’s 

severity, but also – depending on the soil types – in the spatial pattern of drought 

within a given region (country, region, area). For instance in Hungary and Serbia, in 

the arenosol areas situated in the Danube-Tisza Inter�uves, the same meteorologi-

cal situation results in much more severe drought than in the areas east of the Tisza 

River, characterized by chernozem soils. In Hungary water shortage can be calcu-

lated for the upper 1 m layer of the soil from the simulation based soil moisture 

estimation of the National Meteorological Service (Chen and Dudhia, 2001; Horváth 

et al., 2015, OMSZ 2019a). 

For on-site measurement of soil moisture several methods are available, and the 

most widespread methods worldwide and also in Hungary are based on dielec-

tric constant measurement, especially the volumetric water content measurements 

utilising TDR (Time Domain Re�ectometry) technology (Kirkham, 2014). Within the 

framework of a previous project (WAHASTRAT, HUSRB/1203/121/130; 2013-2014), 

16 stations were installed in Southeast Hungary and in Vojvodina, where soil water 

content at six di�erent depths (10, 20, 30, 45, 60 and 75 cm) and meteorological 

parameters are also measured (Barta et al., 2014). Based on the experiences of this 
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station network, a countrywide network of stations for meteorological and soil water 

content monitoring was installed in 2016 (Fiala et al., 2018), which is operated by the 

General Directorate of Water Management (OVF) and is expanded continuously. By 

the summer of 2019 the number of stations reached 47 (OVF Drought Monitoring 

2019). 

In spite of having an extensive monitoring system both horizontally and vertically, 

the preparation of nationwide map of the current soil moisture condition is also a 

major challenge, because the spatial extension of point type measurement data 

faces many di�culties in the case of soil moisture. Just to mention a few: the spatial 

diversity of hydrophysical characteristics of soils (e.g. texture, saturated hydraulic 

conductivity, soil compaction), the role of macro- and microtopography in the devel-

opment of moisture conditions, and the in�uence of mosaic type land use and land 

coverage. Furthermore, on the site of monitoring stations, the agricultural cultiva-

tion cannot be continued, therefore the di�erence in land cover and the lack of soil 

cultivation question the representativeness of the measured soil moisture data at 

the stations. The solution to the complex problem can be the integration of remote 

sensing methods providing spatially continuous data.

Satellite remote sensing allows developing and applying algorithms that are capa-

ble of deriving information from large area of the earth surface in a uniform method. 

The estimation of soil moisture content based on satellite data has been a chal-

lenge that was studied over the last 3 decades (Srivastava et al., 2016). Approaches 

based on data from optical, thermal infrared and microwave sensors have been 

applied to estimate soil moisture over large areas with a high temporal interval. 

Barret and Petropoulos provide a detailed overview of these approaches (2014). 

Most approaches to retrieve soil moisture from satellite data are nowadays based 

on microwave data. Especially with the launch of Sentinel 1 radar satellites this is 

a promising direction. Unfortunately, no medium to high resolution soil moisture 

product is available yet, and therefore in the research an optical – thermal infrared 

approach is followed.

The large spatial and temporal heterogeneity of soil moisture content makes it 

di�cult make accurate estimates over large areas. Point measurements are repre-

sentative for a relatively small area, while satellite-based measurements integrate 

measurements over a large area and store the result in one pixel. Calibration and 

validation of satellite-based measurements with �eld measurements is therefore a 

di�cult task.

In our research the aim is to provide continuous satellite derived soil moisture 

datasets for the project study area (Csongrád and Bács-Kiskun Counties in Hun-

gary, Vojvodina in Serbia). To convert the resulted soil moisture index (SMI) maps to 

soil moisture content (SMC) in v/v% (volumetric water content, generally applied in 

pedology), the satellite derived SMI maps were attempted to be calibrated with �eld 

measurements of the soil moisture content. This chapter describes the research 

methods and the gained experiences applied in the project.  
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Methods

The satellite data based approach presented here is based on MODIS vegetation 

index MOD13 16 day composites and MODIS land surface temperature MOD11 

data. These data sets have been produced since 2000 and are therefore suitable 

for long term studies and continuous monitoring. The vegetation data is created by 

storing the maximum NDVI value for each pixel within a 16-day period (Huete 1999). 

This way cloud and other disturbances are minimized and data for the total study 

area can be acquired. It is assumed that within the 16 day period the vegetation 

state is relatively stable. The spatial resolution of the data is 250 x 250 meter. The 

land surface temperature data is a daily product with a spatial resolution of 500 

meter (Wang 1999). After registration, both input data sets can be downloaded and 

used freely. 

The optical – TIR based method is based on the assumption that thermal di�er-

ences in areas with similar vegetation cover are the result of changes in their soil 

moisture content (Vicente-Serrano et al., 2004). The algorithm was implemented 

using a set of python scripts and the arcpy geoprocessing library (Fig. 3.1). 

Figure 3.1. Soil moisture index processing work�ow

To determine areas with the similar vegetation cover, the NDVI layer is extracted 

from the MOD13 product. Using the reliability layer of the same MOD13 product, 

pixels with insu�cient quality are removed. The remaining pixels are normalized 

and reclassi�ed in 10 classes with equal width. Only if all classes are de�ned (that 

have pixels), the algorithm is fully determined, and the temperatures are processed. 

The land surface temperature layer is extracted from the MOD11 product. Only 

pixels with high quality are used for further processing. For each vegetation fraction 
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class, the minimum and maximum temperatures are extracted and the linear rela-

tionship between the land surface temperature and soil moisture content index 

within the class is established using (1).

 

insufficient quality are removed. The remaining pixels are normalized 
classes with equal width. Only if all classes are defined (that have pixels), the algorithm is 
fully determined, and the temperatures are processed. The land surface temperature layer is 
extracted from the MOD11 product. Only pixels with high quality are used for further 
processing. For each vegetation fraction class, the minimum and maximum temperatures are 
extracted and the linear relationship between the land surface temperature and soil moisture 
content index within the class is established using (1). 
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where SMIi,c is the soil moisture index for pixel i in class c. In this way, 10 SMI maps are 
created giving the soil moisture content for each vegetation fraction class. Combining the 
separate SMI maps gives the final SMI map for the total study area. The final map contains 
index values between 0 (minimum soil moisture content) and 1 (maximum soil moisture 
content). SMI maps can only be determined if sufficient pixels are available in the vegetation 
and land surface data, and if every vegetation class is determined. 
To convert the SMI maps to soil moisture content in v/v% units, the individual maps need to 
be calibrated with ground measurements. Two methods have been applied to calibrate the 
data. The first method is based on the soil moisture station network maintained by the 
Hungarian water authorities (OVF Aszálymonitoring 2019). This network consisted of 47 
stations in March 2019 of which 27 are in the area that was covered by this study (Fig. 3.2). 
Air temperature, soil moisture at 6 depths, soil temperature at 6 depths, relative humidity, and 
precipitation are measured by the stations. A php and curl API is provided to automatically 
download hourly data for every station. A python script was used to download the soil 
moisture data from a depth of 10 cm. For the period 01-01-2017 until 03-30-2019, if an SMI 
map was available, the soil moisture index was extracted from the SMI maps at the locations 
of the measurement stations, and compared to field measurements at 11:00 UTC, which is 

 (1)
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for pixel i in class c. In this way, 10 SMI maps 

are created giving the soil moisture content for each vegetation fraction class. Com-

bining the separate SMI maps gives the �nal SMI map for the total study area. The 

�nal map contains index values between 0 (minimum soil moisture content) and 

1 (maximum soil moisture content). SMI maps can only be determined if su�cient 

pixels are available in the vegetation and land surface data, and if every vegetation 

class is determined.

To convert the SMI maps to soil moisture content in v/v% units, the individual maps 

need to be calibrated with ground measurements. Two methods have been applied 

to calibrate the data. The �rst method is based on the soil moisture station network 

maintained by the Hungarian water authorities (OVF Aszálymonitoring 2019). This 

network consisted of 47 stations in March 2019 of which 27 are in the area that 

was covered by this study (Fig. 3.2). Air temperature, soil moisture at 6 depths, soil 

temperature at 6 depths, relative humidity, and precipitation are measured by the 

stations. A php and curl API is provided to automatically download hourly data for 

every station. A python script was used to download the soil moisture data from 

a depth of 10 cm. For the period 01-01-2017 until 03-30-2019, if an SMI map was 

available, the soil moisture index was extracted from the SMI maps at the locations 

of the measurement stations, and compared to �eld measurements at 11:00 UTC, 

which is more or less the time of the MODIS satellite overpass. In this way, for each 

day, the coe�cient of determination between the satellite based measurements 

and the �eld measurements was calculated. If the coe�cient of determination was 

higher than 0.5, the original SMI map was calibrated using the slope and intercept 

derived from the �eld measurements to get the �nal SMC map.
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Figure 3.2. Study area representing the soil moisture measurement stations and  

the �eld measurement points obtained within the survey on 27 March 2019

The second calibration method was based on a �eld measurement campaign exe-

cuted on March 27, 2019. On that day, four teams measured soil moisture content 

in the �eld using portable FieldScout TDR350 sensors (Fig. 3.3), which determine 

the average moisture of the soil’s upper 12 cm layer directly in v/v%, and with their 

integrated GPS module they instantly assign also the coordinates to the measure-

ment points. Each team measured soil moisture at about 35 locations, over a route 

having a length of about 200 km per team (Fig. 3.2). Portable devices have made it 

possible to carry out a survey that represent the land use and soil type –of certain 

parts of the study area. During the selection of the measuring points, it was an 

important factor to select plots with a size that covers at least one full pixel in the 

remotely sensed MODIS images. Taking into account the 250 x 250 m resolution of 
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the images, the goal was to select minimum 500 x 500 m plots. Most of these were 

arable lands, but there were also grasslands, orchards (vineyards) and forests.

At the same locations of the �eld measurements, soil moisture index data was 

extracted from the SMI map from the same day (Fig. 3.3). Also here, the coe�cient 

of determination was calculated to evaluate the strength of the connection between 

the satellite derived estimates and the �eld measurements.

 

Figure 3.3. Field measurement campaign on 27 March 2019 and the FieldScout TDR350 instrument

Results 

The satellite derived soil moisture maps were compared with the data of 27 soil 

moisture stations for the period 01/01/2017 until 29/03/2019. For 630 days a sat-

ellite based SMI could be produced, but many maps were produced during cloudy 

days resulting in large areas without SMI values (Fig 3.4). 

 

Figure 3.4 Soil moisture index maps with varying amount of missing data (gray areas) from 

1  January 2017 (left), 25 April 2017 and 12 November 2018 (right)
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To be able to determine the relation between the �eld measurements and the sat-

ellite data, it was decided that at least four points were required. In many cases, this 

requirement was not met, because the measurement stations were in areas where 

no SMI data was available. In total, on 440 days (or 70%), the regression equation 

could be determined. A further reduction was obtained because in many occasions 

the coe�cient of determination was very low. It was decided that only if the rela-

tionship was positive and the coe�cient of determination was above 0.5, the data 

from the ground soil moisture station could be used to calibrate the SMI map. This 

resulted in 27 (or 7.5 % out of the total period of 630 days) SM maps (Fig 3.5).

Figure 3.5 Soil moisture content map, calibrated based on the soil moisture ground station 

 network of the OVF for 14 July 2018.

The soil moisture data measured on 27 March 2019, resulted in an in situ dataset of 

136 soil moisture measurements. They were compared with the SMI map created 

based on satellite data for 28 March 2019. This was decided, because the image of 

the same day as the measurements was cloudy and in quite some places no data 

was available (Fig 3.6).

Based on the coordinates of each �eld measurement, SMI data was extracted 

from the pixel that was located at the same location. These values were plotted 

against the soil moisture content values in the �eld and the coe�cient of determi-

nation was calculated (Fig 3.7). Unfortunately, no statistical relationship between the 

values can be determined. Several attempts were made to create subsets for land 

use and soil type, but also then the coe�cient of determination was close to 0.



208 WATER@RISK  |  www.geo.u-szeged.hu/wateratrisk

Figure 3.6 Data availability for 27 March 2019 and 28 March 2019.

Figure 3.7 Relationship between volumetric soil moisture measurements in the �eld  

(horizontal axis) and satellite derived soil moisture index values (vertical axis) (total data sets)

The satellite derived soil moisture index values are indirectly derived from optical, 

near infrared and thermal data that measured over an area and integrated to one 

value for the complete pixel. The �eld soil moisture measurements are point meas-

urements representative for the direct surroundings of the measurement. The main 

reason for the lack of correspondence between the two data sets is this large di�er-

ence in scale. Another reason might be due to the fact that it is di�cult to determine 
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which pixel in the satellite image represents the soil moisture index value at the 

location of the point measurement. Overlaying the two data sets shows that a point 

may be on the boundary of two pixels (Fig 3.8 upper left). When observing the loca-

tion of the point measurements on a very high-resolution satellite image, it can be 

seen that the point probably represents the large �eld to the south (Figure 8 upper 

right). To correct for this problem, this type of points was manually moved to the 

pixel that probably gave a more realistic value (Fig 3.8 lover left and lower right). 

Unfortunately, also this manual correction did not provide a better coe�cient of 

determination.

 

 

Figure 3.8 Manual adaptation of location of �eld measurements to improve the SMI value 

 extraction. Upper left: original location of the point measurement in yellow on top of the SMI map 

(in gray). Upper right: original location of the point measurement on top of a very high resolution 

satellite image. Lower left: original point measurements (now in blue) were moved to their corrected 

location (in yellow). Lower right: new point location on top of the SMI data

Another example of misrepresentation of the point measurements is given in Fig 

3.9. The point measurement overlaid on the SMI �le seems to represent one pixel, 

but in reality, that pixel is composed of an integrated soil moisture index value that 

is based on very di�erent land cover types e.g. build up area, forest and �elds with 

di�erent types of agricultural activity (Fig 3.9 right).

 

Figure 3.9 Example of mixed land use
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One of the most important requirements from the selected �eld measurement 

points is to be located on a plots with homogenous land use, the size of which is 

bigger than twice the spatial resolution of the satellite image in both directions. Even 

on a homogenous plots, the di�erences in temperature and moisture resulting from 

the microtopographic conditions can be problematic (Fig 3.8). Unfortunately in the 

study area, on both the arenosols with diverse relief and in the depressions and 

ridges of the slightly wavy Bácska Loess plateau, there are signi�cant di�erences in 

humus (in colour) and moisture content. In the measuring campaign, it could have 

been another source of error that the measuring was performed in a dry period, 

and the soil’s drying depth was 8-15 cm. This meant that the value measured by 

the 12 cm long sensor was the average of the dry upper soil layer and the wet layer 

below it. Our experience is that the best time for calibration is the period that begins 

5-6 days after the end of a rainy period, when – depending on the hydrophysical 

characteristics of the soil – the drying of the soil has reached a stage that there are 

signi�cant di�erences between in both soil temperature and soil moisture, but the 

upper soil layer isn’t dry yet.

Another experience from the �eld measurement campaign was that the meas-

ured soil moisture data showed strong correlation with the soil’s salt content (Fig 

3.10/a). Fig 3.10/b shows the spatial distribution of salt content, indicating that 

the salt content was much higher east of the Tisza River than in the Danube-Tisza 

inter�uve. However, if those points where salt content is bigger than 0.06% were 

excluded and examine the relationship with only those soils that don’t have sodic 

soil characteristics, the correlation isn’t detectable. It can be concluded that the next 

measuring campaign, it would be useful to apply other soil moisture measurement 

types that are based on di�erent methodology, too, for calibration purposes. 

 

Figure 3.10 Relationship between soil moisture (VWC) and salt content (EC) in the study area (a), 

salt content values measured during the measuring campaign (b)
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Conclusion

During the testing of the developed methodology, several limiting factors could be 

identi�ed that make the applicability of calibration di�cult. In the remaining period 

of the project a further measuring campaign is planned, based on the experiences, 

when the �eld measurements will be carried out after a rainy period, so a wider 

spectrum of soil moisture data could be provided for calibration purposes, and 

more attention will be given to the pre-selection of larger and homogenous plots 

for measuring. Besides using the TDR technology portable devices, soil samples will 

also be collected to measure the water content (m/m%) of the soils also in the labo-

ratory, by this eliminating the possible in�uence of sodic soil characteristics. The SMI 

maps that are currently being created and published provide relative soil moisture 

data for the time being, which – although they don’t represent absolute volumetric 

percentage – are still capable of representing the actual spatial di�erences in soil 

moisture conditions. In addition to the improving spatial resolution, radar data can 

be used to solve the problem of cloudy periods, but their calibration and validation 

issues still need to be resolved. 


