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Abstract: A library of 1,2-aminoalcohol derivatives with a neoisopulegol-based octahydrobenzofuran
core was developed and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde.
The allylic chlorination of (+)-neoisopulegol, derived from natural (–)-isopulegol followed by
cyclization, gave the key methyleneoctahydrobenzofuran intermediate. The stereoselective
epoxidation of the key intermediate and subsequent oxirane ring opening with primary amines
afforded the required 1,2-aminoalcohols. The ring closure of the secondary amine analogues
with formaldehyde provided spiro-oxazolidine ring systems. The dihydroxylation of the
methylenetetrahydrofuran moiety with OsO4/NMO (4-methylmorpholine N-oxide) resulted in
the formation of a neoisopulegol-based diol in a highly stereoselective reaction. The antimicrobial
activity of both the aminoalcohol derivatives and the diol was also explored.

Keywords: neoisopulegol; octahydrobenzofuran; 1,2-aminoalcohol; chiral catalyst; antimicrobial activity

1. Introduction

The benzofuran moiety is prevalent in a great number of biologically active compounds and natural
products [1,2]. Moreover, compounds bearing this ring system are also promising key intermediates
in the preparation of natural products and clinical medicines [3–5]. Due to the availability of
these building blocks, numerous methods have been developed for the preparation of benzofuran
systems [6–11]. However, only a few examples of the synthesis of octahydrobenzofuran derivatives
have been reported including free-radical reactions [12,13], hydrogenation [14,15], tandem conjugate
addition [16], base- [17] or acid-catalyzed cyclization [18], and photochemical rearrangement [19].
Furthermore, octabenzohydrofuran derivatives are well-known versatile precursors for the construction
of a variety of therapeutic drugs [20]. For example, (±)-adunctin B and its modified derivatives that
bear a hexahydrobenzofurane moiety have shown antibacterial effects toward Micrococcus luteus [21].
(–)-Siccanin exhibits potent antifungal activity against several pathogenic fungi, and its clinical
effectiveness against surface mycosis is also known [22].

The 1,2-aminoalcohol moiety is present in a wide range of compounds that exhibit pharmaceutically
and biologically interesting properties [23]. For example, compounds bearing the hydroxyethylamine
core have the capacity to inhibit aspartic protease enzymes and are widely used as anti-HIV [24,25],
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antimalarial [26–28], and antileishmanial [29] agents. The 1,2-aminoalcohol function is found in a
broad range of β-adrenergic blockers that are used extensively in the management of cardiovascular
disorders [30], including hypertension, angina pectoris and cardiac arrhythmias, and other disorders
that are related to the sympathetic nervous system [31,32].

1,2-aminoalcohols have also been demonstrated to be excellent chiral auxiliaries and chiral
catalysts in asymmetric synthesis [33]. To achieve new, efficient, and commercially available chiral
catalysts, natural chiral terpenes, such as α-pinene [34–38], β-pinene [34,39], (–)-3-carene [39,40],
(–)-verbenone [41,42], (–)-fenchone [43,44], (+)-camphor [43,45,46], and (–)-menthone [47] have proven
to be excellent sources for the synthesis of bifunctional chiral compounds and heterocycles.

In the present work, we set out to create a compound library with a (+)-neoisopulegol-based
octahydrobenzofuran core and 1,2-aminoalcohol moieties. The synthesis started from commercially
available (–)-isopulegol and then utilizing the resulting 1,2-aminoalcohol derivatives as chiral catalysts
in the enantioselective addition of diethylzinc to benzaldehyde. Furthermore, the antimicrobial
activities of the synthesized compounds were also tested on multiple bacterial and fungal strains.

2. Results

2.1. Synthesis of Key Intermediate 3

Key intermediate (–)-3-methylenetetrahydrofuran 3 was prepared from commercially available
(–)-isopulegol 1 by oxidizing its hydroxyl function, followed by the stereoselective reduction of the
resulting carbonyl group, thus providing (+)-neoisopulegol 2 [48–51]. The allylic chlorination of
(+)-neoisopulegol 2 was followed by the cyclization-produced (–)-methylenetetrahydrofuran 3 [52–55],
which was transformed into (−)-methylenetetrahydrofuran 4 by allylic oxidation after applying the
literature method [55,56] (Figure 1).
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Figure 1. Synthesis of (–)-isopulegol-based methylenetetrahydrofuran 3: (i) PCC (2 equivalents), DCM
(Dichloromethane), 25 ◦C, 48 h, 80% than L-selectride (1.5 equivalents) dry THF,−78 ◦C, 1 h, 90% [48–51];
(ii) Ca(OCl)2, DCM, rt 25 ◦C, 3 h, 70% than NaH (2 equivalents), dry THF, 50 ◦C, 6 h [52–55]; (iii) CrO3

(3 equivalents), DCM/pyridine, reflux, 1.5 h, 84% [55,56].

2.2. Synthesis of Ispulegol-Based 1,2-Aminoalcohols

Our previous work has shown that epoxidation with t-BuOOH in the presence of vanadyl
acetylacetonate (VO(acac)2) as a catalyst can be successfully applied to prepare a new family of
neoisopulegol-based chiral aminodiol libraries [57]. However, upon applying this condition with
3, (–)-α-methylene-γ-butyrolactone 4 was observed as the major product. The formation of 4 was
explained by the allylic oxidation process shown in Figure 2 [58,59]. Finally, the synthesis of epoxide 5
was achieved by reacting 3 with mCPBA (meta-Chloroperoxybenzoic acid) in a stereoselective reaction
(Scheme 1) [60–63].
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Scheme 1. (i) mCPBA (2 equivalents), Na2HPO4. 2H2O (3 equivalents), 25 ◦C, 2 h, 23%; (ii) RNH2 (2
equivalents), LiClO4 (1 equivalent), MeCN, 70–80 ◦C, 6 h, 65–85%; (iii) 5% Pd/C, H2 (1 atm), MeOH,
25 ◦C, 24 h, 70–75%; (iv) 35% HCHO, Et2O, 25 ◦C, 1 h, 50–90%; (v) 2% OsO4/t-BuOH, 50% NMO/H2O,
acetone, 25 ◦C, 24 h, 50%.

Given that we clearly demonstrated in previous works [64,65] that the substitution of the nitrogen
atom of aminoalcohols definitely influences the efficiency of their catalytic activity, aminoalcohol
library 7–10 was prepared through the aminolysis of epoxide 5 with primary amines and lithium
perchlorate as a catalyst [66,67]. Since the ring closure of monoterpene-based aminoalcohols with rigid
structures has been shown to enhance their catalytic potential in our earlier experiments [64,65,68],
the treatment of aminoalcohols 7–10 with formaldehyde at room temperature resulted in the formation
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of spiro-oxazolidines 12–15. The debenzylation by hydrogenolysis of compounds 7–9 over Pd/C
in MeOH provided primary aminoalcohol 11 in moderate yields (Scheme 1). Since neither the
hydrogenolysis of N-benzyl analogues 7–10 nor the formation of an oxazolidine ring system by ring
closure with formaldehyde had an effect on the absolute configuration of C-3, the relative configuration
of the chiral centers of 11–15 is known to be the same as that of 7–10 [64,65,68].

The syn-selective dihydroxylation of compound 3 with OsO4 in the presence of a stoichiometric
amount of the co-oxidant, NMO (4-methylmorpholine N-oxide) produced product 6 as a single
diastereomer in a moderate yield [68,69] (Scheme 1).

The relative stereochemistry of aminoalcohols 7–10 and diol 6 was established by coupling
constant data and the NOESY (Nuclear Overhauser Effect SpecroscopY) spectral analysis. The large
coupling constant of H-9 (J4,9 = 11.2 Hz with 6 and J4,9 = 12.2 Hz with 7–10) indicated that it should be
axially oriented, while the coupling constant values between H-3 and H-4 (J4,3 = J3,4 = 2.3 Hz with 6
and J4,3 = J3,4 = 2.2–3.0 Hz with 7–10) supported their equatorial orientation. Furthermore, NOESY
correlations between OH-7 and H-3 as well as OH-7 and H-4 protons in DMSO-d6 (Dimethylsulfoxide-d6)
indicated that these groups were oriented in the same direction (see Supporting Information), Therefore,
the structures of 6–10 were concluded, as shown on Figure 3. The stereochemistry of 11 and 12–15 was
proven in a similar manner by 1D and 2D NMR measurements.
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Scheme 2. Model reaction for enantioselective catalysis.

The enantiomeric purity of 1-phenyl-1-propanols (S)-17 and (R)-17 was determined by GC analysis
on a Chirasil-DEX CB column using literature methods [70,71]. A low-to-moderate enantioselectivity
was observed. Aminoalcohols afforded the (S)-enantiomer (except 7, where a weak (R) selectivity
was observed), while the formation of the (R)-enantiomer was predominant when spiro-oxazolidines
were applied as catalysts (Table 1). Aminoalcohol 8 showed the best catalytic activity (ee = 40%)
with an (S)-selectivity (entry 2). The obtained results clearly indicate that the spiro-oxazolidine ring
had a poorer catalytic performance, probably due to the flexible spiro system. These results are in
good correlation with those observed with pinane- or sabinane-based spiro-oxazolidines in our earlier
studies [72,73].
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Table 1. Addition of diethylzinc to benzaldehyde catalyzed by aminoalcohol derivatives.

Entry Ligand Yield a (%) ee b (%) Configuration of the Major Product c

1 7 86 8 (R)
2 8 90 40 (S)
3 9 89 11 (S)
4 10 93 4 (S)
5 11 95 7 (S)
6 12 88 11 (R)
7 13 90 3 (R)
8 14 82 6 (R)
9 15 80 7 (R)

a After silica column chromatography. b Determined using the crude product by GC analysis (Chirasil-DEX CB
column). c Determined by comparing the tR of GC analysis and optical rotations with literature data.

2.4. Antimicrobial Effects

Since several aminoalcohols have been shown to exert antimicrobial activities on various bacterial
and fungal strains [74,75], the antimicrobial activities of the prepared aminoalcohol analogues and
diol 6 were tested against two yeasts, as well as two Gram-positive and two Gram-negative bacteria
(Table 2). Compounds 8 and 12 inhibited the studied Gram-positive bacteria with efficiencies over
20%, while other derivatives showed weak activities. In the case of Bacillus subtilis, 8 showed more
potential antimicrobial activity, while for Staphylococcus aureus, 12 proved to be the most effective agent.
Furthermore, only 9 showed an inhibition activity over 30% for Pseudomonas aeruginosa, while it had
only a moderate effect against Escherichia coli. All compounds presented low-to-moderate inhibitions
against E. coli in the range of 5–30%.

Table 2. Antimicrobial activities of the synthesized compounds.

Inhibitory effect (%) ± RSD
(%)

Yeast Gram-Negative Gram-Positive

Analogue Conc. (µg/mL) C. albicans C. krusei E. coli P.
aeruginosa B. subtilis S. aureus

6
10 − 36.5 ± 8.43 − − − −

100 − 58.4 ± 14.41 − − 21.7 ± 6.05 −

7
10 − − 8.7 ± 3.15 7.5 ± 1.54 − −

100 − − 20.0 ± 2.81 8.7 ± 0.49 − 7.1 ± 4.3

8
10 − − − − 19.0 ± 2.61 −

100 − − 17.1 ± 4.94 5.3 ± 4.31 31.9 ± 2.74 −

9
10 − − 16.7 ± 6.68 9.9 ± 1.8 − −

100 − − 21.0 ± 5.05 31.6 ± 1.73 9.8 ± 11.2 13.8 ± 1.73

10
10 − − 3.7 ± 1.68 − − −

100 − − 4.3 ± 10.71 2.3 ± 5.93 10.5 ± 10.12 −

11
10 − 3.7 ± 0.04 − − − −

100 − 16.0 ± 14.5 − − − −

12
10 − − 15.3 ± 4.35 − − 9.2 ± 7.75

100 − − 26.2 ± 4.06 1.8 ± 6.28 − 20.2 ± 8.92

13
10 − − 17.1 ± 8.19 − − −

100 − − 27.7 ± 8.54 7.0 ± 4.62 − 3.9 ± 3.39

14
10 − − 14.6 ± 4.38 4.1 ± 7.10 − 12.6 ± 0.57

100 − − 25.3 ± 2.99 16.8 ± 5.69 − 14.0 ± 3.68

15
10 − − 5.1 ± 7.92 − − −

100 − − 14.8 ± 4.87 − 1.5 ± 11.4 −

According to our results, N-substituted 1,2-aminoalcohols 7–10 had a moderate activity against
both Gram-negative and Gram-positive bacteria. Most of the ring-closing oxazolidine products (12–14)
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showed a similar moderate antibacterial activity. The removal of the nitrogen substituent of the
aminoalcohols led to the loss of antibacterial activity (see amino diol 6). None of the aminoalcohol
derivatives exhibited any remarkable antifungal effect, while diol 6 showed significant antifungal
activity against Candida krusei (Table 2).

3. Materials and Methods

3.1. Materials and General Methods

Commercially available compounds were used as-obtained from suppliers (Molar Chemicals
Ltd., Halásztelek, Hungary; Merck Ltd., Budapest, Hungary and VWR International Ltd., Debrecen,
Hungary), while solvents were dried according to standard procedures. Optical rotations were
measured in MeOH at 20 ◦C with a PerkinElmer 341 polarimeter (PerkinElmer Inc., Shelton, CT, USA).
Chromatographic separations and monitoring of reactions were carried out on a Merck Kieselgel
60 (Merck Ltd., Budapest, Hungary). Elemental analyses of all compounds were performed on a
PerkinElmer 2400 Elemental Analyzer (PerkinElmer Inc., Waltham, MA, USA). GC measurements for
the direct separation of commercially available enantiomers of isopulegol to determine the enantiomeric
purity of starting material 1 and the separation of O-acetyl derivatives of enantiomers were performed
on a Chirasil-DEX CB column (2500 × 0.25 mm I.D.) on a PerkinElmer Autosystem XL GC consisting
of a flame ionization detector (PerkinElmer Corporation, Norwalk, CT, USA) and a Turbochrom
Workstation data system (PerkinElmer Corp., Norwalk, CT, USA). Melting points were determined on
a Kofler apparatus (Nagema, Dresden, Germany) and were uncorrected. 1H- and 13C-NMR spectra
were recorded on a Brucker Avance DRX 500 spectrometer [500 MHz (1H) and 125 MHz (13C), δ = 0
(TMS, Tetramethylsilane)]. Chemical shifts are expressed in ppm (δ) relative to TMS as the internal
reference. J values are given by Hz.

(–)-Isopulegol 1 is commercially available from Merck Co with ee = 95%. (+)-Neoisopulegol 2
and (–)-6-methyl-3-methylenetetrahydrofuran 3 were prepared according to literature procedures. All
spectroscopic data of the synthesized compounds were similar to those described therein [55]. 1H, 13C,
HSQC, HMBC and NOESY NMR spectra of new compounds are available in Supplementary Materials.

3.2. (2′R,3aR,6R,7aS)-6-Methylhexahydro-2H-spiro[benzofuran-3,2′-oxirane] (5)

m-chloroperbenzoic acid (70% purity, 5.87 g, 23.8 mmol) was added at 0 ◦C to a solution of 3
(11.9 mmol) in CH2Cl2 (50 mL) and Na2HPO4·12H2O (6.35 g, 35.7 mmol) in water (130 mL), and the
mixture was stirred at room temperature. When the reaction was complete, as indicated by TLC (Thin
layer chromatography) (2 h), the mixture was separated and the aqueous phase was extracted with
CH2Cl2 (100 mL). The organic layer was washed with a 5% KOH solution (3 × 50 mL), then dried
(Na2SO4) and evaporated to provide 5 as the single product.

Yield: 23%, colorless oil. [α]20
D = −26.0 (c 0.27, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.83–0.93

(1H, m), 0.90 (3H, d, J = 6.5 Hz), 1.18–1.26 (1H, m), 1.32–1.42 (1H, m), 1.55–1.75 (4H, m), 2.03–2.10 (1H,
m), 2.83 (1H, d, J = 4.2 Hz), 2.96 (1H, d, J = 4.2 Hz), 3.63 (1H, d, J = 10.6 Hz), 4.21 (1H, d, J = 10.6 Hz),
4.25 (1H, d, J = 2.4 Hz). 13C NMR (125 MHz, CDCl3): δ = 22.4, 24.7, 26.4, 33.0, 36.5, 42.7, 47.4, 68.0, 70.1,
77.9. Anal. Calculated for C10H16O2: C, 71.39; H, 9.59. Found: C, 71.43; H, 9.52.

3.3. General Procedure for Ring-Opening of Epoxide with Primary Amines

A solution of the appropriate amine (5.88 mmol) in MeCN (10 mL) and LiClO4 (0.31 g, 2.94 mmol)
was added to a solution of epoxide 5 (0.50 g, 2.94 mmol) in MeCN (30 mL). The mixture was kept at
reflux temperature for 6 h. When the reaction was completed (indicated by TLC), the mixture was
evaporated to dryness, and the residue was dissolved in water (15 mL) then extracted with CH2Cl2
(3 × 50 mL). The combined organic phase was dried (Na2SO4), filtered, and concentrated. The crude
product was purified by column chromatography on silica gel with an appropriate solvent mixture
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(CHCl3:MeOH = 19:1). Further purification by recrystallization from a mixture of n-hexane:Et2O
resulted in compounds 7–10.

3.3.1. (3R,3aR,6R,7aS)-6-Methyl-3-((((R)-1-phenylethyl)amino)methyl)octahydrobenzofuran-3-ol (7)

Yield: 65%, white crystals, m.p.: 77–81 ◦C. [α]20
D = +27.0 (c 0.25, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.78–0.87 (1H, m), 0.86 (3H, d, J = 6.5 Hz), 0.98–1.06 (1H, m), 1.12–1.18 (1H, m), 1.38 (3H,
d, J = 6.6 Hz), 1.45–1.50 (1H, m), 1.51–1.63 (3H, m), 1.66–1.72 (1H, m), 2.00–2.05 (1H, m), 2.42 (1H, d,
J = 12.1 Hz), 2.77 (1H, d, J = 12.1 Hz), 3.64 (1H, d, J = 9.5 Hz), 3.70 (1H, d, J = 9.6 Hz), 3.79 (1H, q,
J = 6.5 Hz), 4.37 (1H, q, J = 3.0 Hz), 7.25–7.35 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 22.4, 24.4, 24.5,
26.5, 33.2, 37.0, 47.1, 49.5, 58.6, 76.3, 77.6, 82.4, 126.7, 127.4, 128.8. Anal. Calculated for C18H27NO2: C,
74.70; H, 9.40; N, 4.84. Found: C, 74.73; H, 9.45; N, 4.80.

3.3.2. (3R,3aR,6R,7aS)-6-Methyl-3-((((S)-1-phenylethyl)amino)methyl)octahydrobenzofuran-3-ol (8)

Yield: 75%, colorless oil. [α]20
D = −23.0 (c 0.255, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.75–0.85

(1H, m), 0.85 (3H, d, J = 6.3 Hz), 0.90–1.00 (1H, m), 1.10–1.16 (1H, m), 1.35–1.40 (1H, m), 1.39 (3H, d,
J = 6.6 Hz), 1.50–1.60 (2H, m), 1.63–1.67 (1H, m), 2.01 (1H, d, J = 14.5 Hz), 2.46 (1H, d, J = 12.2 Hz), 2.65
(1H, d, J = 12.2 Hz), 3.73 (3H, dd, J = 9.5, 20.2 Hz), 4.37 (1H, s), 7.25–7.40 (5H, m). 13C NMR (125 MHz,
CDCl3): δ = 22.3, 24.2, 24.3, 26.5, 33.1, 37.0, 46.9, 49.6, 58.9, 76.2, 77.6, 82.3, 126.4, 127.4, 128.8, 144.9.
Anal. Calculated for C18H27NO2: C, 74.70; H, 9.40; N, 4.84. Found: C, 74.68; H, 9.43; N, 4.85.

3.3.3. (3R,3aR,6R,7aS)-3-((Benzylamino)methyl)-6-methyloctahydrobenzofuran-3-ol (9)

Yield: 78%, white crystals, m.p.: 55–56 ◦C. [α]20
D = −7.0 (c 0.255, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.80–0.87 (1H, m), 0.87 (3H, d, J = 6.5 Hz), 1.03–1.06 (1H, m), 1.11–1.17 (1H, m), 1.45–1.49
(1H, m), 1.55–1.62 (2H, m), 2.01–2.05 (1H, m), 2.58 (1H, d, J = 12.1 Hz), 2.70 (1H, brs), 2.86 (1H, d,
J = 12.2 Hz), 3.70 (1H, d, J = 9.5 Hz), 3.79 (1H, d, J = 9.6 Hz), 3.80 (1H, s), 4.39 (1H, dd, J = 3.0, 6.0 Hz),
7.25-7.35 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 22.3, 24.3, 26.4, 33.1, 36.9, 47.1, 51.1, 54.3, 76.3, 77.6,
82.4, 127.4, 128.1, 128.6, 139.7. Anal. Calculated for C17H25NO2: C, 74.14; H, 9.15; N, 5.09. Found: C,
74.20; H, 9.10; N, 4.05.

3.3.4. (3R,3aR,6R,7aS)-3-((Isopropylamino)methyl)-6-methyloctahydrobenzofuran-3-ol (10)

Yield: 83%, white crystals, m.p.: 171–173 ◦C. [α]20
D = −7.0 (c 0.28, MeOH). 1H NMR (500 MHz,

DMSO-d6): δ = 0.75–1.00 (2H, m), 0.84 (3H, d, J = 3.5 Hz), 1.10–1.30 (2H, m), 1.22 (6H, s), 1.48 (1H,
brs), 1.57 (2H, d, J = 8.7 Hz), 1.75–1.95 (2H, m), 2.91 (1H, d, J = 12.2 Hz), 3.06 (1H, d, J = 12.3 Hz),
3.28 (1H, brs), 3.60 (1H, d, J = 8.8 Hz), 3.81 (1H, d, J = 8.9 Hz), 4.30 (1H, brs). 13C NMR (125 MHz,
DMSO-d6): δ = 18.3, 18.6, 22.1, 23.2, 26.0, 32.4, 36.3, 46.1, 46.6, 50.5, 75.1., 76.4, 80.1. Anal. Calculated
for C13H25NO2: C, 68.68; H, 11.08; N, 6.16. Found: C, 68.70; H, 11.03; N, 6.18.

3.4. General Procedure for Ring Closure of Aminoalcohols 7–10 with Formaldehyde

Thirty-five percent aqueous formaldehyde (20 mL) was added to a solution of aminoalcohols
7–10 (1.8 mmol) in Et2O (5 mL), and the mixture was stirred at room temperature. After 1 h, it was
made alkaline with 10% aqueous KOH (20 mL) and extracted with Et2O (3 × 50 mL). After drying
(Na2SO4) and solvent evaporation, crude products 12–15 were purified by column chromatography
(CHCl3:MeOH = 19:1).

3.4.1. (3R,3aR,6R,7aS)-6-Methyl-3′-((R)-1-phenylethyl)hexahydro-2H-spiro[benzofuran-3,5′
-oxazolidine] (12)

Yield: 50%, colorless oil. [α]20
D = +27.0 (c, 0.275 MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84–0.95

(2H, m), 0.87 (3H, d, J = 6.3 Hz), 1.10–1.17(1H, m), 1.34 (3H, d, J = 6.4 Hz), 1.50–1.65 (3H, m), 1.78–1.83
(1H, m), 2.02 (1H, d, J = 14.4 Hz), 2.57 (1H, d, J = 10.5 Hz), 2.94 (1H, d, J = 10.6 Hz), 3.35–3.40 (1H,
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m), 3.88 (2H, dd, J = 9.7, 19.1 Hz), 4.24–4.30 (3H, m), 7.22–7.33 (5H, m). 13C NMR (125 MHz, CDCl3):
δ = 22.3, 23.4, 24.6, 26.3, 33.2, 36.9, 45.7, 53.3, 62.5, 76.4, 78.3, 84.6, 91.5, 127.2, 127.4, 128.6, 144.8. Anal.
Calculated for C19H27NO2: C, 75.71; H, 9.03; N, 4.65. Found: C, 75.73; H, 9.00; N, 4.68.

3.4.2. (3R,3aR,6R,7aS)-6-Methyl-3′-((S)-1-phenylethyl)hexahydro-2H-spiro[benzofuran-3,5′
-oxazolidine] (13)

Yield: 95%, colorless oil. [α]20
D = −27.0 (c, 0.25 MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.82–0.96

(3H, m), 0.87 (3H, d, J = 6.3 Hz), 1.12–1.20 (1H, m), 1.25 (1H, s), 1.36 (3H, d, J = 6.2 Hz), 1.54–1.65
(3H, m), 1.80–1.85 (2H, m), 2.02 (1H, d, J = 14.4 Hz), 2.53 (1H, d, J = 10.6 Hz), 2.94 (1H, d, J = 10.7 Hz),
3.35–3.45 (1H, m), 3.87 (2H, t, J = 10.7 Hz), 4.26 (2H, s), 4.36 (1H, s), 7.20–7.40 (5H, m). 13C NMR
(125 MHz, CDCl3): δ = 22.3, 23.5, 24.5, 26.3, 33.2, 36.8, 45.7, 53.4, 62.5, 76.2, 78.2, 84.8, 127.2, 127.4, 128.7.
Anal. Calculated for C19H27NO2: C, 75.71; H, 9.03; N, 4.65. Found: C, 75.70; H, 9.07; N, 4.63.

3.4.3. (3R,3aR,6R,7aS)-3′-Benzyl-6-methylhexahydro-2H-spiro[benzofuran-3,5′-oxazolidine] (14)

Yield: 90%, white crystals, m.p.: 76–77 ◦C. [α]20
D = -9.0 (c, 0.25 MeOH). 1H NMR (500 MHz, CDCl3):

δ = 0.84–1.00 (2H, m), 0.88 (3H, d, J = 6.5 Hz), 1.14–1.21 (1H, m), 1.55–1.65 (3H, m), 1.80–1.84 (1H, m),
2.04 (1H, d, J = 13.8 Hz), 2.70 (1H, d, J = 11.8 Hz), 3.09 (1H, d, J = 11.8 Hz), 3.68 (2H, dd, J = 13.0,
18.4 Hz), 3.91 (2H, dd, J = 9.8, 11.2 Hz), 4.31 (1H, d, J = 2.7 Hz), 4.35 (2H, s), 7.25–7.35 (5H, m). 13C NMR
(125 MHz, CDCl3): δ = 22.3, 24.6, 26.3, 33.2, 36.8, 46.1, 54.5, 58.7, 76.7, 78.6, 86.0, 90.5, 127.5, 128.6, 128.8,
138.6. Anal. Calculated for C18H25NO2: C, 75.22; H, 8.77; N, 4.87. Found: C, 75.25; H, 9.73; N, 4.90.

3.4.4. (3R,3aR,6R,7aS)-3′-Isopropyl-6-methylhexahydro-2H-spiro[benzofuran-3,5′-oxazolidine] (15)

Yield: 95%, colorless oil. [α]20
D =−13.0 (c 0.25, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.79–0.86

(1H, m), 0.83 (3H, d, J = 6.6 Hz), 0.89–1.01 (2H, m), 0.99 (6H, d, J = 6.2 Hz), 1.07–1.13 (1H, m), 1.45–1.55
(1H, m), 1.55–1.60 (2H, m), 1.68–1.73 (1H, m), 1.86 (1H, d, J = 14.2 Hz), 2.35–2.40 (1H, m), 2.60 (1H,
d, J = 10.1 Hz), 2.87 (1H, d, J = 10.2 Hz), 3.64 (1H, d, J = 9.6 Hz), 3.84 (1H, d, J = 9.6 Hz), 4.09 (1H, d,
J = 2.6 Hz), 4.18 (1H, d, J = 3.2 Hz), 4.20 (1H, d, J = 3.2 Hz). 13C NMR (125 MHz, DMSO-d6): δ = 21.7,
21.8, 22.2, 23.7, 25.8, 32.5, 36.4, 44.9, 51.8, 51.9, 75.4, 77.1, 83.6, 91.1. Anal. Calculated for C14H25NO2: C,
70.25; H, 10.53; N, 5.85. Found: C, 70.28; H, 10.50; N, 5.83.

3.5. (3R,3aR,6R,7aS)-3-(Aminomethyl)-6-methyloctahydrobenzofuran-3-ol (11)

Aminoalcohols 7–9 (14.0 mmol) in MeOH (100 mL) were added to a suspension of
palladium-on-carbon (5% Pd, 0.22 g) in MeOH (50 mL), and the mixture was stirred under an
H2 atmosphere (1 atm) at room temperature. After the completion of the reaction (as monitored by
TLC, 24 h), the mixture was filtered through a Celite pad, and the solution was evaporated to dryness.
The crude product was recrystallized in Et2O, resulting in primary aminoalcohol 11.

Yield: 73% (with 7); 75% (with 8); 70% (with 9), white crystals, m.p.: 217–221 ◦C. [α]20
D = +7.0 (c

0.25, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.74–0.89 (2H, m), 0.83 (3H, d, J = 5.7 Hz), 1.46 (1H,
brs), 1.53–1.65 (2H, m), 1.75–1.83 (1H, m), 1.87 (1H, d, J = 13.8 Hz), 2.83 (1H, d, J = 12.9 Hz), 2.95 (1H, d,
J = 12.9 Hz), 3.56 (1H, d, J = 9.2 Hz), 3.80 (1H, d, J = 9.2 Hz), 4.28 (1H, s), 5.45 (1H, s), 8.04 (3H, s). 13C
NMR (125 MHz, DMSO-d6): δ = 22.2, 23.2, 25.9, 32.4, 36.4, 41.8, 45.7, 74.9, 76.5, 80.3. Anal. Calculated
for C10H19NO2: C, 64.83; H, 10.34; N, 7.56. Found: C, 64.85; H, 10.32; N, 7.60.

3.6. (3R,3aR,6R,7aS)-3-(Hydroxymethyl)-6-methyloctahydrobenzofuran-3-ol (6)

An aqueous solution of NMO (12 mL, 50% aqueous solution) and a solution of OsO4 in t-BuOH
(6 mL, 2% t-BuOH solution) were added in one portion to a solution of compound 3 (2.13 g, 14 mmol) in
acetone (60 mL). The reaction mixture was stirred at room temperature for 24 h, then quenched by the
addition of a saturated aqueous solution of Na2SO3 (100 mL), and extracted with EtOAc (Ethyl acetate,
3 × 80 mL). The organic layer was dried (Na2SO4) and evaporated. The crude product was purified
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by chromatography on silica gel by using n-hexane:EtOAc = 1:4. The product after purification was
recrystallized in Et2O resulting in compound 6 as white crystals.

Yield: 50%, white crystals, m.p.: 67–68 ◦C. [α]20
D = +3.0 (c 0.27, MeOH). 1H NMR (500 MHz,

DMSO-d6): δ = 0.75–0.80 (1H, m), 0.82 (3H, d, J = 6.5 Hz), 0.94–1.03 (1H, m), 1.04–1.11 (1H, m), 1.40–1.50
(1H, m), 1.50–1.57 (2H, m), 1.62–1.67 (1H, m), 1.85 (1H, d, J = 14.3 Hz), 3.34–3.38 (1H, m), 3.42 (1H, d,
J = 9.2 Hz), 3.47 (1H, dd, J = 5.5, 11.1Hz), 3.68 (1H, d, J = 9.2 Hz), 4.23 (1H, d, J = 2.2 Hz), 4.49 (1H, s),
4.52 (1H, t, J = 5.4 Hz). 13C NMR (125 MHz, DMSO-d6): δ = 22.3, 23.4, 26.2, 32.8, 36.7, 46.2, 63.2, 74.8,
76.5, 83.5. Anal. Calculated for C10H18O3: C, 64.49; H, 9.74. Found: C, 64.55; H, 9.69.

3.7. General Procedure for the Reaction of Benzaldehyde with Diethylzinc in the Presence of Chiral Catalysts

To the respective catalyst (0.1 mmol), 1 M Et2Zn in an n-hexane solution (3 mL, 3 mmol) was
added under argon atmosphere at room temperature. The solution was stirred for 25 min at room
temperature, and then benzaldehyde (1 mmol) was added. After stirring at room temperature for a
further 20 h, the reaction was quenched with a saturated NH4Cl solution (15 mL), and the mixture
was extracted with EtOAc (2 × 20 mL). The combined organic phase was washed with H2O (10 mL),
dried (Na2SO4) and evaporated under vacuum. The obtained crude secondary alcohols were purified
by flash column chromatography (n-hexane:EtOAc = 4:1). The ee and absolute configuration of the
resulting material were determined by chiral GC on a Chirasil-DEX CB column after O-acetylation in
Ac2O/DMPA/pyridine.

3.8. Antimicrobial Analyses

For the antimicrobial analyses, the pure synthesized compounds were dissolved in MeOH and
diluted with H2O to reach concentration levels up to 400 and 40 µg/mL with a final MeOH content of
10%. Then, these test solutions were investigated in a microdilution assay with two Gram-positive
bacteria (Bacillus subtilis SZMC 0209 and Staphylococcus aureus SZMC 14611), two Gram-negative
bacteria (Escherichia coli SZMC 6271 and Pseudomonas aeruginosa SZMC 23290), and two yeast strains
(Candida albicans SZMC 1533 and C. krusei SZMC 1352) according to the M07-A10 CLSI guideline [76]
and our previous work [57,77]. For the assay, the suspensions of the microbes were prepared from
overnight cultures that were cultivated in a ferment broth (bacteria: 10 g/L peptone, 5 g/L NaCl,
5 g/L yeast extract; yeast: 20 g/L peptone, 10 g/L yeast extract, and 20 g/L glucose) at 37 ◦C, and their
concentrations were set to 2 × 105 cells/mL with sterile media. Then, 96-well plates were prepared
by dispensing 100 µL of suspension containing the bacterial or yeast cells, 50 µL of sterile broth, and
50 µL of the test solutions into each well, which were then incubated for 24 h at 37 ◦C. The mixture of
150 µL of broth and 50 µL of 10% MeOH was used as the blank sample for background correction,
while 100 µL of the microbial suspension supplemented with 50 µL of the sterile broth and 50 µL of
10% MeOH was applied as the negative control. The positive control contained ampicillin (Sigma)
or nystatin (Sigma) for bacteria or fungi, respectively, at two concentration levels (100 µg/mL and
10 µg/mL). The inhibitory effects of each derivative were spectrophotometrically determined at 620 nm
after incubation, and the inhibition rate was calculated as the percentage of the positive control after
blank correction.

4. Conclusions

A new library of neoisopulegol-based chiral 1,2-aminoalcohols and a diol were developed from
(+)-neoisopulegol, as derived from commercially available (–)-isopulegol. The obtained aminoalcohols
and diol may serve as useful building blocks for the synthesis of new heterocyclic ring systems and
biologically active compounds.

The in vitro antimicrobial studies have clearly shown that the resulting N-substituted
aminoalcohols possess moderate antibacterial action on different bacterial strains, while the diol
has a remarkable antifungal effect.
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Aminoalcohol derivatives were also applied as chiral catalysts in the enantioselective addition of
diethylzinc to benzaldehyde with moderate but opposite enantioselectivity.

Supplementary Materials: The following are available online, Figures S3–S31: 1H, 13C, HSQC, HMBC and
NOESY NMR spectra of new compounds.
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39. Łączkowski, K.Z.; Kmieciak, A.; Kozakiewicz, A. Stereoselective synthesis of new monoterpene β-amino
alcohols. Tetrahedron Asymmetry 2009, 20, 1487–1492. [CrossRef]

40. Banina, O.A.; Sudarikov, D.V.; Nigmatov, A.G.; Frolova, L.L.; Slepukhin, P.A.; Zlotin, S.G.; Kutchin, A.V.
Carane amino alcohols as organocatalysts in asymmetric aldol reaction of isatin with acetone. Russ. Chem. Bull.
2017, 66, 293–296. [CrossRef]
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