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A B S T R A C T

Carbon nanospheres were used as templates for the first time to prepare titania inverse opal photonic crystal.
From the spheres, opal colloid crystals were made by vertical deposition on microscope slides, and TiO2 was
grown on them using atomic layer deposition (ALD). For this technique, the relatively high thermal stability and
the presence of oxygen containing functional groups on the surface of the carbon spheres are beneficial.
Subsequent annealing burned out the template spheres, leaving behind the inverse opal structures. The upper
solid TiO2 layer was removed with argon ion sputtering. The samples were characterized with SEM, Raman
spectroscopy, XRD, EDX, UV–Vis diffuse reflectance spectroscopy and their photocatalytic activity was in-
vestigated in decomposing organic dyes under UV and visible illumination. A new approach was used to test
photocatalysis on the surface by utilizing UV–Vis reflectance and Raman spectroscopy in conjunction.

1. Introduction

Photonic crystals, particularly the inverse opal variants are in the
center of many researches because of their favorable and tunable op-
tical properties, which prevent the propagation of light in certain di-
rections with specified frequencies [1,2]. They can be made from a wide
variety of dielectric materials, e.g. silicon, silica, titania, ZnO or CdSe,
with methods such as sol-gel technique, atomic layer deposition (ALD)
or electrodeposition [3–8]. Among these materials, TiO2 is a widely
researched photocatalyst with a band gap of 3.2 eV (anatase form),
however, since it absorbs only in the UV range, shifting its absorption to
the visible region is preferred. Many approaches are tried for this
purpose, such as doping with metal or non-metal elements (e.g. Au, Sn,
C or N), using organic dyes for sensitization or making a composite
material (for example, with carbon nanotubes or WO3) [9–17].

Creating inverse opal structure from the TiO2 offers another method
to shift the absorption to visible region without any chemical mod-
ification through the slow photon effect. This phenomenon appears due
to the interaction of the wave packet reflected by the photonic band gap

with the transmitted wave packet at wavelengths near the gap.
Consequently, a stationary wave packet is formed, which possess
strongly reduced group velocity, so the lifetime of the photons and the
optical path of the light wave increase in the inverse opal. This process
helps the light absorption, thus increasing the photocatalytic activity
[18–21]. Inverse opals can also be prepared by top-down methods, but
bottom-up techniques are more convenient, as they take advantage of
the colloidal self-assembly [22–24]. In these approaches, a colloid
crystal is prepared from the template spheres, among which the most
widely used are polystyrene, poly(methyl methacrylate) and silica, then
the gaps between the spheres are filled with the chosen dielectric ma-
terial. For this purpose, ALD is a highly suitable technique as it ensures
homogenous coating of the spheres [25–28]. Finally, the spheres are
removed, leaving behind the inverse opal structure. The polymers can
be burned out, and silica is usually removed by dissolving it with hy-
drogen fluoride [29–31].

Our group showed previously that carbon nanospheres (CS) are
suitable templates for the atomic layer deposition of TiO2, because they
are thermally stable up to 300 °C in inert atmosphere and have oxygen
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containing functional groups on their surface. By subsequent annealing
of the CS-TiO2 composites, hollow titania shells can be made [32]. In
this work, by making an ordered face centered colloidal crystal from the
carbon nanospheres, and depositing TiO2 on it with ALD, inverse opal
structures were fabricated. For reference, an inverse opal was prepared
from polystyrene nanospheres, which is a widely used conventional
template for this purpose. The carbon spheres were tested for thermal
stability by thermogravimetry/differential thermal analysis (TG/DTA).
The inverse opal samples were investigated with scanning electron
microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD),
UV–Vis diffuse reflectance spectroscopy and their photocatalytic ac-
tivity investigated in decomposing two organic dyes, methyl orange dye
in solution, and methylene blue dye dried on the surface of the samples,
both under UV and visible light irradiation.

2. Materials and methods

2.1. Preparation of the carbon nanospheres

The carbon nanospheres (CS) were prepared from sucrose solution
by a hydrothermal method. The pH was alkaline, set to 11 with NaOH
solution. The reaction went for 12 h at 180 °C in an autoclave. The re-
sulting carbon nanospheres were washed with warm distilled water,
then with ethanol-water mixture, and afterwards, five times with
acetone. The resulting black powder was dried overnight at 70 °C. The
average diameter of the spheres was 458 nm, with a standard deviation
of 80 nm, which parameters were calculated from SEM images.

2.2. Preparation of the colloidal crystal

For reference, inverse opals were prepared from polystyrene spheres
(PS) as well (10 wt% in water, 300 nm diameter, with a standard de-
viation of 40 nm), which was bought from Sigma-Aldrich. The synthesis
process was the same for both CS and PS. It started with making a
0.3 wt% suspension in distilled water, which was placed in an ultra-
sonic bath for 2 h to separate the aggregated nanospheres. The sub-
strates were microscope slides, cleaned with soap, ethanol, then held 1
h in piranha solution (mixture of cc. H2SO4 and 30% H2O2, in 3:1 ratio)
to remove any organic remnants and make the surface hydrophilic.
After that, the glass slides were placed vertically in 5ml suspensions of
the CS and PS. They were put in a furnace at 50 °C for 14 h, so the
colloidal crystal could form during the evaporation of the water
through colloidal self-assembly, and were finally heated to 80 °C for 1.5
h.

2.3. Atomic layer deposition

The CS and PS colloidal crystals on the glass substrates were put in a
Beneq TFS-200-186 flow ALD machine. The atomic layer deposition
(ALD) of the TiO2 was performed at 50 °C, the pressure was 1mbar in
the reaction chamber. One deposition cycle was 0.3 s pulse of TiCl4
precursor, 3 s nitrogen purge, 0.3 s pulse of H2O and 3 s nitrogen purge,
and this cycle was repeated for 700 times. A clean glass substrate was
placed alongside the samples during the ALD, and the thickness of the
deposited oxide layer was measured on it by profilometry to be 55 nm.

2.4. Obtaining the inverse opal

The nanosphere-TiO2 composites were annealed in air in a
Nabertherm L9/11/B410 furnace, i.e. heated to 500 °C under 4 h, and
stayed at that temperature for 2 h. This process burnt out the CS and
PS, leaving behind the TiO2 inverse opal structure. Finally, the inverse
opals were sputtered for 100 min at 20 A current with argon ions in a
Leybold Heraeus instrument to remove upper solid TiO2 layer to get the
underlying inverse opal structure.

2.5. Characterization

TG/DTA measurements of the carbon spheres were made in a TA
Instruments SDT 2960 machine, with a heating rate of 10 °C/min until
900 °C, under 130 cm3/min gas flow. The measurement under nitrogen
flow simulated the environment in the ALD reactor, and the data in air
gave information about the annealing process.

For the SEM images, a LEO 1540 XB scanning electron microscope
was used, in high vacuum mode with a secondary electron detector.
Adhesive carbon tapes were used to fix the samples on a copper sample
holder. To prevent the carbon and polystyrene nanosphere opals from
charging, they were sputtered with an Au/Pd layer, which step was
unnecessary for the TiO2 inverse opals.

EDX spectra were measured on a JEOL JSM-5500LV scanning
electron microscope, and three EDX measurements were averaged for
each sample.

Raman spectra were taken on a Jobin Yvon Labram Raman spec-
troscope equipped with an Olympus BX41 microscope, using green
(532 nm) Nd-YAG laser. The measured range of the Raman shift was
between 100 and 1800 cm−1.

X-ray diffractograms were made on a PANanalytical X’Pert Pro MPD
X-ray diffractometer using Cu Kα radiation, the measurement range was
5–65°.

To get the UV–Vis diffuse reflectance spectra, a JASCO V-750
UV–VIS spectrophotometer with an integrating sphere was utilized with
BaSO4 reference material, between 300 and 800 nm. The band gap was
determined with Kubelka-Munk theory from Tauc plot [33].

Photocatalytic activity was tested in two different setups (Fig.
S1A–B). In the first one, the samples were immersed in 10 cm3 methyl
orange solution with a concentration of 4×10−5 M. The solution was
stirred for one hour so that the adsorption equilibrium could occur,
after which the irradiation started. For the experiments involving me-
thylene blue, a 25 µL droplet of a 0.001M solution was put on the
surface of the samples and dried for 1 h before the illumination. The
samples were tested in both cases with UV and visible light lamps as
well, the spectra of the lamps are on Fig. S2. Three 18W fluorescent
lamp was used in each experiment, stacked on each other, and the
sample was in front of the middle lamp at a distance of 5 cm. The de-
composition of the organic dyes was followed by an Avantes AvaSpec-
2048 fiber optic spectrometer, with an AvaLight–DHS light source,
using its own AvaSoft software. For the methyl orange measurements,
every half hour 3 cm3 was taken from solution, whose absorbance was
measured in a quartz cuvette, and was put back in for further photo-
catalysis. The decomposition of the methyl orange was followed by the
decrease in the relative absorbance (A/A0) of its most intensive peak at
464 nm. For the methylene blue experiments, the absorbance was
measured in reflectance mode with the same spectrometer, where the
bare inverse opal structure was the background, and spectra were taken
before and after the 4 h irradiation. The methylene blue peaks max-
imum were at different positions, on the inverse opal made with carbon
spheres (CSIO), it was at 668 nm, and in case of the inverse opal from
polystyrene spheres (PSIO), it was at 530 nm. The peaks were in-
tegrated from 400 to 770 nm for the CSIO, and from 420 to 700 nm for
the PSIO. This measurement was followed by Raman spectroscopy as
well, and the spectra were normalized for the most intensive peak of the
sample, which was the 146 cm−1 peak of the anatase TiO2. From the
many peaks of the methylene blue, the intensity of its most intensive
peak at 1630 cm−1 was examined, and the peak area was integrated
from 1570 cm−1 to 1670 cm−1.

3. Results and discussion

Thermogravimetry data on Fig. 1 show that the carbon spheres (CS)
were stable in nitrogen atmosphere until around 300 °C, when they
started to decompose, leaving behind half of the mass at 900 °C. This
ensured their stability during the ALD and enables higher temperature
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depositions in the future. In air, they fully burnt out at 500 °C, so the
template CS could be removed by annealing to this temperature. The
decomposition was endothermic in nitrogen, and fiercely exothermic in
air (DTA curves on Figs. S3–4). According to literature data, poly-
styrene begins to flow around 100 °C (its glass transition temperature),
so the chosen ALD temperature of 50 °C was necessary to avoid the
deformation of the template, considering the highly exothermic reac-
tion of TiCl4 with water when the TiO2 forms [34].

SEM pictures (Fig. 2a and c) reveal the successful synthesis of the
face centered cubic colloidal crystals (opals) from CS and PS. The

Fig. 1. TG analysis of the carbon spheres.

Fig. 2. SEM pictures of the samples (A: carbon sphere opal, B: TiO2 inverse opal from CS, C: polystyrene sphere opal, D: TiO2 inverse opal from PS).

Table 1
Composition of the inverse opals from EDX spectra.

Element O Na Al Si Cl Ca Ti

atomic %

CSIO 65.9 3.9 1.1 8.0 0.7 0.8 19.6
PSIO 65.7 0.7 1.1 8.5 0.2 1.0 22.8

Fig. 3. Raman spectra of the titania inverse opals.
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polystyrene spheres had a narrower size distribution (RSD: 13.3%)
compared to the carbon spheres (RSD: 17.5%), and the spheres are
more identical, so the PS opal is slightly more ordered than the CS opal.
In Fig. 2b and d, the titania inverse opals with their hollow structure
and interconnected spheres are visible.

EDX results in Table 1 show the approximate composition of the
inverse opals. Because of their hollow structure, signals from the glass
substrate (Na, Al, Si and Ca) are also detectable beside the Ti and O
from the TiO2. The small amount of Cl is residue from the ALD process,
as TiCl4 precursor was used.

Raman spectra in Fig. 3 shows that both samples were composed of
pure anatase TiO2. Its characteristic peaks are at 146, 400, 507 and
640 cm−1 [35]. The templates were completely removed with an-
nealing from the structure, as no D and G peaks of the carbon are visible
[32].

XRD diffractograms (Fig. 4) confirmed the Raman results, the
samples were pure anatase (ICDD card number: 01-075-2546). The
amorphous background is due to the glass microscope slide substrates.

For the inverse opals were white, non-transparent coatings on the
microscope slide substrates, diffuse reflectance spectra were taken from
them (Fig. 5). The photonic band gap (PBG) of the inverse opal struc-
ture is clearly present, which is the decrease in the absorbance above
the absorption edge of TiO2 (380 nm). The PSIO has its PBG at around
420 nm, while the CSIO has it at 550 nm, for the spheres were greater

on average. The absorbance increased at the blue and red edges of the
PBGs thus visible light was absorbed, which phenomenon is not shown
in case of anatase TiO2 powder [36]. Using different sized template
spheres, the size of the air pockets in inverse opals can be changed. This
way, the photonic band gap can be tuned, as the diameter of the tem-
plates determines the position of the band gap, and sharper peak can be
achieved with more identical spheres. For idealized cases, Bragg theory
can be used to calculate the exact position of the stop band [37]. In our
case, increase in the visible absorption was achieved. The calculated
band gap of the bulk TiO2 (Fig. S5A–B) was around 3.20 eV, for both
samples, as it is the expected literature value for anatase TiO2 [38].

The results of the photocatalytic decomposition of methyl orange
dye in solution are shown in Fig. S6 and Table S1. Under visible light,
no decomposition was detected without inverse opals, and the activity
of the samples was very low. Under UV light, there was measurable
photolysis of the methyl orange, and the activity of the samples was
greater. In all cases, only a little decomposition of the dye was mea-
sured, because the surface area of the samples was low compared to the
amount of solution, so another approach was needed.

For this reason, methylene blue was dried on the inverse opals, and
the decomposition on the surface was followed with UV–Vis reflectance
spectroscopy (Fig. 6). While according to the Raman and XRD mea-
surements, the samples are identical regarding their composition, the
reflectance spectra of the methylene blue differs. In case of all samples,
the methylene blue decomposed, even under visible light. This mea-
surement was further followed by Raman spectroscopy (Figs. 7 and 8),
with similar result as it can be seen in Table 2. In case of the PSIO under
visible light irradiation, it showed better performance when in-
vestigated with Raman spectroscopy, 58.5% decrease, while with
UV–Vis reflectance spectroscopy, it was only 27.5%. This discrepancy
may be caused by surface irregularities on the sample. This technique is
a more sensitive way to measure the photocatalytic properties of in-
verse opals structures, compared to wet photocatalysis in solution. For a
non-transparent film photocatalyst, e.g. to use in air purification, this
can be a more suitable method to evaluate the photocatalytic activity.

4. Conclusions

In this study, we used carbon nanospheres to fabricate inverse opal
photonic crystals, which were never used before as templates for this
purpose to the best of our knowledge. For reference, inverse opals were
made from conventional polystyrene nanospheres. The higher tem-
perature tolerance and surface functional groups of the carbon spheres
make them more suitable templates for atomic layer deposition than
polymer spheres and are easier to remove than silica spheres. Face-
centered cubic colloid crystals were prepared from the templates by
taking advantage of colloidal self-assembly, and atomic layer deposition
was utilized to fill the gaps between the spheres with titania. After
annealing and sputtering with argon ions, SEM images revealed the
hollow inverse opal structure with interconnected spheres. The bulk
material was pure anatase TiO2, as proved by Raman spectroscopy and
XRD measurements, and no carbon remained after annealing. UV–Vis
diffused reflectance spectroscopy confirmed the presence of the visible
photonic band gap. The CSIO had the photonic band gap at a higher
wavelength, and was less defined than for the PSIO, because of the
larger average diameter and wider size distribution of the carbon
spheres. The samples possess photocatalytic activity under UV and
visible light in decomposing organic dyes, while bulk TiO2 only works
under UV light, so this behavior can be attributed to the presence of the
photonic band gap due to the inverse opal structure. A new method was
developed to test photocatalysis on the surface in case of the methylene
blue dye, by utilizing both UV–Vis reflectance and Raman spectroscopy,
which can be a better way to evaluate activity for non-transparent films,
like inverse opals, as it is a more sensitive technique compared to
measuring in solution.

Fig. 4. XRD diffractograms of the TiO2 inverse opals.

Fig. 5. Diffuse reflectance spectra of the inverse opals.
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